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Abstract: In this paper, we investigate the normwise condition numbers of the indefinite least squares
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performed to illustrate the tightness of the upper bounds.

Keywords: indefinite least squares problem; multiple right-hand sides; normwise condition number
Mathematics Subject Classification: 65F35, 65F20

1. Introduction

Let A ∈ Rm×n, b ∈ Rm, m ≥ n. The indefinite least squares (ILS) takes the form [3, 4]

min
x∈Rn

(b − Ax)T J(b − Ax), (1.1)

where J is a signature matrix,

J =

[
Ip 0
0 −Iq

]
, p + q = m.

In the above symbols, AT , Rm×n, and Ip stands for the transpose of A, the set of m× n real matrices, and
the identity matrix of order p, respectively. Obviously, the ILS problem reduces to the famous linear
least squares problem when q = 0. The ILS problem has wide application background in the total
least squares problem [18] and the area of optimization known as H∞ smoothing [9, 16]. Therefore,
some authors investigated its numerical algorithms, stability of algorithms, and perturbation analysis
[3, 4, 6, 13, 14, 17].

Given a problem, the condition number measures the worst-case sensitivity of its solution to small
perturbations in the input data. Combined with backward errors, it provides a (possibly approximate)
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linear upper bound for the forward error, i.e., the difference between a perturbed solution and the exact
solution [10]. Bojanczyk et al. [3] studied the normwise condition number of the ILS problem and
presented an upper bound. Li et al. [11] discussed the mixed and componentwise condition numbers of
this problem, and derived their explicit expressions and the easily computable upper bounds. Recently,
the condition numbers for a linear function of the solution for ILS problem also named as partial
condition numbers are studied by Li and Wang [12]. Some results of the paper were recovered by Diao
and Zhou [5] by using the dual technique of condition number theory.

The ILS problem with multiple right-hand sides (MILS) was first proposed by Ou and Peng [15]
and its definition is

min
X∈Rn×s

trace((B − AX)T J(B − AX)), (1.2)

where A ∈ Rm×n, B ∈ Rm×s, and J is the signature matrix defined above. Obviously, the MILS problem
(1.2) reduces to the ILS problem (1.1) when s = 1. In [15], the authors presented the sufficient and
necessary conditions of solvability of MILS problem. Yang and Li [19] studied the normwise, mixed
and componentwise condition numbers and the corresponding structured condition numbers of the
MILS problem. In this paper, we will study the normwise condition number of MILS problem under
the weighted norm.

The following weighted Frobenius norm

‖(αA, βb)‖F =

√
α2‖A‖2F + β2‖b‖22

was first used by Gratton for deriving the normwise condition number for the linear least squares
problem [8]. Here ‖ � ‖F denotes the Frobenius norm of a matrix, and ‖ � ‖2 denotes the spectral norm
of a matrix or the Euclidean norm of a vector. We will call the latter 2-norm uniformly later in this
paper. Subsequently, this kind of norm was used for the partial condition number for the linear least
squares problem [1] and the normwise condition number of the truncated singular value solution of a
linear ill-posed problem [2]. In this paper, we use the weighted Frobenius norm and weighted 2-norm
which defined by

‖[A B]‖F =

√
α2‖A‖2F + β2‖B‖2F , α, β > 0,

and
‖[A B]‖∈ =

√
α2‖A‖22 + β2‖B‖22 α, β > 0.

These norms are very flexible since they allow us to monitor the perturbations on A and B. For instance,
large values of α (resp., β ) enable us to obtain condition number problems where mainly B (resp., A)
are perturbed.

2. Preliminaries

The operator vec and the Kronecker product will be of particular importance in what follows. The
vec operator stacks the columns of the matrix argument into one long vector. For any matrices X =

[xi j] ∈ Rm×n and Y ∈ Rp×q, the Kronecker product X ⊗ Y is defined by X ⊗ Y = [xi jY] ∈ Rmp×nq. It is
easy to find that when A is a row vector and B is a column vector,

A ⊗ B = BA.
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The following results on Kronecker product are from [7]

(X ⊗ Y)T = XT ⊗ YT , ‖X ⊗ Y‖2 = ‖X‖2‖Y‖2, (2.1)

vec(XZY) = (YT ⊗ X)vec(Z), vec(XT ) = Πmnvec(X), (2.2)

and
Πpm(Y ⊗ X) = (X ⊗ Y)Πnq, (2.3)

where Z ∈ Rn×p, Πmn ∈ R
mn×mn is the permutation matrix defined by

Πmn =

m∑
i=1

n∑
j=1

Ei j ⊗ ET
i j.

Here each Ei j ∈ R
m×n has entry 1 in position (i, j) and all other entries are zero. Furthermore, we have

(X ⊗ Y)(C ⊗ D) = (XC) ⊗ (YD), (2.4)

where the matrices C and D are of suitable orders.

3. Normwise condition numbers of MILS problem

In this section, we present two kinds of normwise condition numbers of (1.2) with respect to
weighted Frobenius norm and weighted 2-norm. The MILS problem (1.2) has a unique solution if
and only if AT JA > 0, that is, it is positive definite. In this case, the unique solution can be expressed
as [19]

XMILS = (AT JA)−1AT JB.

Let ∆A ∈ Rm×n, ∆B ∈ Rm×s, and ∆A be sufficiently small such that (A + ∆A)T J(A + ∆A) > 0. Hence,
the perturbed MILS problem

min
X∈Rn×s

trace
(
((B + ∆B) − (A + ∆A)X)T J((B + ∆B) − (A + ∆A)X)

)
has a unique solution

XMILS + ∆X = [(A + ∆A)T J(A + ∆A)]−1(A + ∆A)T J(B + ∆B).

The closed formula for the normwise condition number of MILS problem with respect to the weighted
Frobenius norm is given first.

Theorem 3.1. Let A ∈ Rm×n, B ∈ Rm×s, and assume that AT JA > 0. Then the normwise condition
number

κF (A, B) = lim
ε→0

sup
‖[∆A ∆B]‖F ≤ε‖[A B]‖F

‖∆X‖F
ε‖XMILS‖F

satisfies

κF (A, B) =

∥∥∥∥∥[ ((JR)T⊗M−1)Πmn−XT
MILS⊗A[†]

α
Is⊗A[†]

β

]∥∥∥∥∥
2
‖[A B]‖F

‖XMILS‖F
, (3.1)

where R = B − AXMILS, M = AT JA, and A[†] = M−1AT J.
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Proof. It follows from the proof of Theorem 3.3 in [19] that

∆X = M−1∆AT JR − A[†]∆AXMILS + A[†]∆B + O(ε2). (3.2)

Omitting the second-order terms, applying the operator vec to (3.2) and using (2.2), we have

vec(∆X) =
[(

(JR)T ⊗ M−1
)
Πmn − XT

MILS ⊗ A[†]
]

vec(∆A) +
(
Is ⊗ A[†]

)
vec(∆B)

=

[
((JR)T⊗M−1)Πmn−XT

MILS⊗A[†]

α
Is⊗A[†]

β

] [
αvec(∆A)
βvec(∆B)

]
. (3.3)

Thus, a simple calculation yields

‖∆X‖F
ε‖XMILS‖F

≤

∥∥∥∥∥[ ((JR)T⊗M−1)Πmn−XT
MILS⊗A[†]

α
Is⊗A[†]

β

]∥∥∥∥∥
2

∥∥∥∥∥∥
[
αvec(∆A)
βvec(∆B)

]∥∥∥∥∥∥
2

ε‖XMILS‖F

=

∥∥∥∥∥[ ((JR)T⊗M−1)Πmn−XT
MILS⊗A[†]

α
Is⊗A[†]

β

]∥∥∥∥∥
2
‖[∆A ∆B]‖F

ε‖XMILS‖F

≤

∥∥∥∥∥[ ((JR)T⊗M−1)Πmn−XT
MILS⊗A[†]

α
Is⊗A[†]

β

]∥∥∥∥∥
2
‖[A B]‖F

‖XMILS‖F
.

The upper bound above is attainable according to the property of 2-norm. Consequently, (3.1) holds.
�

Remark 1. When α = β = 1, the normwise condition number κF (A, B) is reduced to the normwise
condition number κ(A, B) in Theorem 3.3 of [19].

Note that
[

((JR)T⊗M−1)Πmn−XT
MILS⊗A[†]

α
Is⊗A[†]

β

]
∈ Rsn×(mn+ms), hence when m and n are very large, it is

a very large matrix. Consequently, the storage requirements are very large. In the following theorem,
we give a new expression of κF (A, B).

Theorem 3.2. Under the assumptions of Theorem 3.1, we have

κF (A, B) =

∥∥∥∥∥ N
α2 +

Is⊗((A[†](A[†])T ))
β2

∥∥∥∥∥1/2

2
‖[A B]‖F

‖XMILS‖F
, (3.4)

where N = (RT R) ⊗ M−2 + (XT
MILSXMILS) ⊗ (A[†](A[†])T ) −[

(RT AM−1) ⊗ (M−1XMILS) + (XT
MILSM−1) ⊗ (M−1AT R)

]
Πns.

Proof. Considering (2.1), (2.3) and (2.4), we have[
((JR)T⊗M−1)Πmn−XT

MILS⊗A[†]

α
Is⊗A[†]

β

] [
((JR)T⊗M−1)Πmn−XT

MILS⊗A[†]

α
Is⊗A[†]

β

]T

=

(
(RT J) ⊗ M−1

) (
(JR) ⊗ M−1

)
+

(
XT

MILS ⊗ A[†]
) (

XMILS ⊗ (A[†])T
)

α2 +

(
Is ⊗ A[†]

) (
Is ⊗ (A[†])T

)
β2

−

(
(RT J) ⊗ M−1

)
Πmn

(
XMILS ⊗ (A[†])T

)
+

(
XT

MILS ⊗ A[†]
)
ΠT

mn

(
(JR) ⊗ M−1

)
α2
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=
(RT R) ⊗ M−2 + (XT

MILSXMILS) ⊗ (A[†](A[†])T )
α2 +

Is ⊗ (A[†](A[†])T )
β2

−

(
(RT J) ⊗ M−1

) (
(A[†])T ⊗ XMILS

)
Πns +

(
XT ⊗ A[†]

) (
M−1 ⊗ (JR)

)
Πns

α2

=
N
α2 +

Is ⊗ (A[†](A[†])T )
β2 .

It is well known that ‖C‖2 = ‖CCT ‖
1/2
2 for any matrix C ∈ Rm×n, hence substituting the above equality

into (3.1) gives (3.4). �

Since N
α2 +

Is⊗(M−1AT AM−1)
β2 ∈ Rsn×sn, the expression (3.4) reduces the storage requirements significantly

when m and n are very large.
Remark 2. When B ≡ b is an m-vector (i.e., s = 1) and AT JA > 0, the ILS problem with a single

right-hand side has a unique solution xILS = (AT JA)−1AT Jb and r = b− AxILS. It follows from Theorem
3.2 that

κF (A, b) =

∥∥∥∥∥( ‖xILS‖
2
2

α2 + 1
β2

)
M−1AT AM−1 +

‖r‖22
α2 M−2 −

M−1AT rxT
ILSM−1+M−1 xILSrT AM−1

α2

∥∥∥∥∥1/2

2
‖[A b]‖F

‖xILS‖F
.

Denote c1 =

√
β2/α2 + 1/‖xILS‖

2
2 and c2 = c1 + 1/‖xILS‖2, it can easily be verified that

(
‖xILS‖

2
2

α2 +
1
β2

)
M−1AT AM−1 +

‖r‖22
α2 M−2 −

M−1AT rxT
ILSM−1 + M−1xILSrT AM−1

α2

= M−1
[
−
‖xILS‖2

β
AT J ‖r‖2

α
In

]  c1Im − c2
JrrT J
‖r‖22

β

α

JrxT
ILS

‖xILS‖2‖r‖2

0 In


 c1Im − c2

JrrT J
‖r‖22

0
β

α

xILSrT J
‖xILS‖2‖r‖2

In

  − ‖xILS‖2
β

JA
‖r‖2
α

In

 M−1,

which together with the above equality gives

κF (A, b) =

∥∥∥∥∥∥∥M−1
[
−
‖xILS‖2

β
AT J ‖r‖2

α
In

]  c1Im − c2
JrrT J
‖r‖22

β

α

JrxT
ILS

‖xILS‖2‖r‖2

0 In


∥∥∥∥∥∥∥

2

‖[A b]‖F

‖xILS‖F
.

The above closed formula of κF (A, b) appears in [5, Theorem 3.2] with L = In.
Although, Theorem 3.1 and Theorem 3.2 give the explicit expressions for the condition number

κF (A, B), these expressions may not be computed easily for involving Kronecker products. Using
the properties of 2-norm and (3.4), we can get the following easily computable upper bound for this
condition number.

Theorem 3.3. For the normwise condition number κF (A, B), we have

κF (A, B) ≤

(
‖R‖22‖M

−1‖22+‖XMILS‖
2
2‖A

[†]‖
2
2+2‖M−1XMILS‖2‖M−1AT R‖2
α2 +

‖A[†]‖
2
2

β2

)1/2

‖[A B]‖F

‖XMILS‖F
:= κF (A, B). (3.5)
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In the following theorem, we will give the upper bound of the normwise condition number for the
MILS problem under the weighted 2-norm.

Theorem 3.4. Let A ∈ Rm×n, B ∈ Rm×s, and assume that AT JA > 0. Then the normwise condition
number

κ∈(A, B) = lim
ε→0

sup
‖[∆A ∆B]‖∈≤ε‖[A B]‖∈

‖∆X‖2
ε‖XMILS‖2

satisfies

κ∈(A, B) ≤

∥∥∥∥∥[ ‖M−1‖2‖R‖2+‖A[†]‖2‖XMILS‖2

α

‖A[†]‖2
β

]∥∥∥∥∥
2
‖[A B]‖∈

‖XMILS‖2
:= κ∈(A, B), (3.6)

where R = B − AXMILS, M = AT JA, and A[†] = M−1AT J.

Proof. Omitting the second-order terms and taking 2-norm of (3.2), we obtain

‖∆X‖2 ≤
(
‖M−1‖2‖R‖2 +

∥∥∥A[†]
∥∥∥

2
‖XMILS‖2

)
‖∆A‖2 +

∥∥∥A[†]
∥∥∥

2
‖∆B‖2

=

[
‖M−1‖2‖R‖2+‖A[†]‖2‖XMILS‖2

α

‖A[†]‖2
β

] [
α‖∆A‖2
β‖∆B‖2

]
. (3.7)

It follows from (3.7) that

‖∆X‖2 ≤
∥∥∥∥∥[ ‖M−1‖2‖R‖2+‖A[†]‖2‖XMILS‖2

α

‖A[†]‖2
β

]∥∥∥∥∥
2
‖[∆A ∆B]‖∈ .

Thus, the inequality (3.6) follows. �

4. Numerical experiments

We consider the MILS problem (1.2) with [19]

A =

[
A1

A2

]
, A1 =


101
102 102
...

...
. . .

n + 100 n + 100 · · · n + 100

 ∈ Rn×n, A2 =


1
1 1
...

...
. . .

1 1 · · · 1

 ∈ Rn×n,

J =

[
In+1 0
0 −In−1

]
, B =


1 2 · · · s
1 2 · · · s
...

...
. . .

...

1 2 · · · s

 ∈ R2n×s.

In specific numerical experiments, we set s = 5, α = β = 1 and n = 20, 30, 40 or 50. In these cases,
AT JA > 0, which guarantees the MILS problem has the unique solution. All the computations were
carried out in Matlab R2015b.

First, we report the computed results (denoted by ‘CR’) and the elapsed CPU times in seconds
(denoted by ‘CPU’) for computing the normwise condition number κF (A, B) by using formulae (3.1)
and (3.4) and the upper bound of κF (A, B) (i.e., κF (A, B)) in Table 1.
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Table 1. Computed results and the elapsed CPU times.

n
Formula (3.1) Formula (3.4) κF (A, B)

CR CPU CR CPU CR CPU

20 497.3247 1.1768 497.3247 0.0214 497.3377 0.0015

30 836.7598 15.0208 836.7598 0.0310 836.7791 0.0019

40 1.2435 × 103 93.8911 1.2435 × 103 0.0423 1.2436 × 103 0.0035

50 1.7206 × 103 345.5236 1.7206 × 103 0.0571 1.7206 × 103 0.0037

We can see from Table 1 that the computing results by using formulae (3.1) and (3.4) are asymp-
totically equal, but the elapsed CPU times by using (3.4) are much less than those by using formula
(3.1). In addition, the upper bound κF (A, B) is good estimate of the corresponding condition number
κF (A, B) and the elapsed CPU times are minimum.

Now we show the tightness of the upper bound estimate on the normwise condition number κ∈(A, B)
provided in Theorem 3.4. Let the perturbations be ∆A = 10−12×A and ∆B = 10−10× rand(2n, s), where
rand(·) is the MATLAB function. Define ε = ‖[∆A ∆B]‖∈ / ‖[A B]‖∈. For small ε, it follows from the
definition of κ∈(A, B) that

‖∆X‖2
‖XMILS‖2

≤ εκ∈(A, B) + O(ε2) ≤ εκ∈(A, B) + O(ε2).

As shown in Table 2, the error bounds given by the upper bound of the condition number in Theorem
3.4 are at most two order of magnitude larger than the actual errors. This illustrates that, as the estimate
of its corresponding condition number, the upper bound in Theorem 3.4 is tight.

Table 2. Comparisons of our estimated errors with the exact errors.

n 20 30 40 50

‖∆X‖2
‖XMILS‖2

3.7184 × 10−11 3.3238 × 10−11 3.2861 × 10−11 4.4377 × 10−11

εκ∈(A, B) 5.1648 × 10−10 8.4054 × 10−10 1.2276 × 10−9 1.6852 × 10−9

5. Conclusions

In this paper, we investigate the normwise condition numbers of the indefinite least squares problem
with multiple right-hand sides with respect to the weighted Frobenius norm and 2-norm. The closed
formulas or upper bounds for these condition numbers are presented, which extend the earlier work for
the indefinite least squares problem with single right-hand side.
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