In this paper, the least-squares solutions to the linear matrix equation $ A^{\ast}XB+B^{\ast}X^{\ast}A = D $ are discussed. By using the canonical correlation decomposition (CCD) of a pair of matrices, the general representation of the least-squares solutions to the matrix equation is derived. Moreover, the expression of the solution to the corresponding weighted optimal approximation problem is obtained.
Citation: Huiting Zhang, Yuying Yuan, Sisi Li, Yongxin Yuan. The least-squares solutions of the matrix equation $ A^{\ast}XB+B^{\ast}X^{\ast}A = D $ and its optimal approximation[J]. AIMS Mathematics, 2022, 7(3): 3680-3691. doi: 10.3934/math.2022203
In this paper, the least-squares solutions to the linear matrix equation $ A^{\ast}XB+B^{\ast}X^{\ast}A = D $ are discussed. By using the canonical correlation decomposition (CCD) of a pair of matrices, the general representation of the least-squares solutions to the matrix equation is derived. Moreover, the expression of the solution to the corresponding weighted optimal approximation problem is obtained.
[1] | K. Yasuda, R. E. Skelton, Assigning controllability and observability Gramians in feedback control, J. Guid. Control Dynam., 14 (1991), 878–885. doi: 10.2514/3.20727. doi: 10.2514/3.20727 |
[2] | H. Fujioka, S. Hara, State covariance assignment problem with measurement noise: A unified approach based on a symmetric matrix equation, Linear Algebra Appl., 203-204 (1994), 579–605. doi: 10.1016/0024-3795(94)90215-1. doi: 10.1016/0024-3795(94)90215-1 |
[3] | J. K. Baksalary, R. Kala, The matrix equation $AXB+CYD = E$, Linear Algebra Appl., 30 (1980), 141–147. doi: 10.1016/0024-3795(80)90189-5. doi: 10.1016/0024-3795(80)90189-5 |
[4] | K. W. E. Chu, Singular value and generalized singular value decompositions and the solution of linear matrix equations, Linear Algebra Appl., 88-89 (1987), 83–98. doi: 10.1016/0024-3795(87)90104-2. doi: 10.1016/0024-3795(87)90104-2 |
[5] | K. W. E. Chu, Symmetric solutions of linear matrix equations by matrix decompositions, Linear Algebra Appl., 119 (1989), 35–50. doi: 10.1016/0024-3795(89)90067-0. doi: 10.1016/0024-3795(89)90067-0 |
[6] | M. Dehghan, M. Hajarian, Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation $A_{1}X_{1}B_{1}+A_{2}X_{2}B_{2} = C$, Math. Comput. Model., 49 (2009), 1937–1959. doi: 10.1016/j.mcm.2008.12.014. doi: 10.1016/j.mcm.2008.12.014 |
[7] | H. Zhou, An iterative method for symmetric solutions of the matrix equation $AXB+CXD = F$ (in Chinese), Math. Numer. Sin., 32 (2010), 413–422. |
[8] | H. Zhou, An iterative algorithm for solutions of matrix equation $AXB+CXD = F$ over linear subspace (in Chinese), Acta Math. Appl. Sin., 39 (2016), 610–619. |
[9] | Z. Peng, Y. Peng, An efficient iterative method for solving the matrix equation $AXB+CYD = E$, Numer. Linear Algebra Appl., 13 (2006), 473–485. doi: 10.1002/nla.470. doi: 10.1002/nla.470 |
[10] | G. Xu, M. Wei, D. Zheng, On solutions of matrix equation $AXB+CYD = F$, Linear Algebra Appl., 279 (1998), 93–109. doi: 10.1016/S0024-3795(97)10099-4. doi: 10.1016/S0024-3795(97)10099-4 |
[11] | A. P. Liao, Z. Z. Bai, Y. Lei, Best approximate solution of matrix equation $AXB+CYD = E$, SIAM J. Matrix Anal. Appl., 27 (2006), 675–688. doi: 10.1137/040615791. doi: 10.1137/040615791 |
[12] | S. Yuan, A. Liao, Least squares Hermitian solution of the complex matrix equation $AXB+CXD = E$ with the least norm, J. Franklin Inst., 351 (2014), 4978–4997. doi: 10.1016/j.jfranklin.2014.08.003. doi: 10.1016/j.jfranklin.2014.08.003 |
[13] | S. Yuan, Q. Wang, Two special kinds of least squares solutions for the quaternion matrix equation $AXB+CXD = E$, Electron. J. Linear Algebra, 23 (2012), 257–274. |
[14] | F. Zhang, M. Wei, Y. Li, J. Zhao, Special least squares solutions of the quaternion matrix equation $AXB+CXD = E$, Comput. Math. Appl., 72 (2016), 1426–1435. doi: 10.1016/j.amc.2015.08.046. doi: 10.1016/j.amc.2015.08.046 |
[15] | F. Zhang, M. Wei, Y. Li, J. Zhao, The minimal norm least squares Hermitian solution of the complex matrix equation $AXB+CXD = E$, J. Franklin Inst., 355 (2018), 1296–1310. doi: 10.1016/j.jfranklin.2017.12.023. doi: 10.1016/j.jfranklin.2017.12.023 |
[16] | S. F. Yuan, Least squares pure imaginary solution and real solution of the quaternion matrix equation $AXB+CXD = E$ with the least norm, J. Appl. Math., 4 (2014), 1–9. doi: 10.1155/2014/857081. doi: 10.1155/2014/857081 |
[17] | Y. Yuan, The least-square solutions of a matrix equation (in Chinese), Numerical Mathematics–A Journal of Chinese Universities, 4 (2001), 324–329. |
[18] | Y. Yuan, The minimum norm solutions of two classes of matrix equations (in Chinese), Numerical Mathematics–A Journal of Chinese Universities, 2 (2002), 127–134. |
[19] | Y. Yuan, H. Dai, The least squares solution with the minimum norm of matrix equation $A^\top XB+B^{\top}X^\top A = D$ (in Chinese), Numerical Mathematics–A Journal of Chinese Universities, 27 (2005), 232–238. |
[20] | G. H. Golub, H. Zha, Perturbation analysis of the canonical correlations of matrix pairs, Linear Algebra Appl., 210 (1994), 3–28. doi: 10.1016/0024-3795(94)90463-4. doi: 10.1016/0024-3795(94)90463-4 |
[21] | G. Yao, A. Liao, Least-squares solution of $AXB = D$ over Hermitian matrices $X$ and weighted optimal approximation, Math. Theory Appl., 23 (2003), 77–81. |
[22] | M. Wang, M. Wei, On weighted least-squares skew-Hermite solution of matrix equation $AXB = E$ (in Chinese), J. East China Normal Univ. (Nat. Sci.), 1 (2004), 22–28. |
[23] | M. Wang, M. Wei, On weighted least-squares Hermite solution of matrix equation $AXB = E$ (in Chinese), Math. Numer. Sin., 26 (2004), 129–136. |