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1. Introduction

Throughout this paper, the complex m × n matrix space is denoted by Cm×n and the set of all n × n
unitary matrices is denoted by UCn×n. The conjugate transpose and the Frobenius norm of a complex
matrix A are denoted by A∗ ≜ Ā⊤ and ∥A∥, respectively. The Hermitian (skew-Hermitian) matrix A
is denoted by A = A∗(A = −A∗). The identity matrix of size n is represented by In. For matrices
A = (αi j) ∈ Cm×n, B = (βi j) ∈ Cm×n, A ∗ B is used to define the Hadamard product of A and B, that is,
A ∗ B = (αi jβi j) ∈ Cm×n.

It is known that the matrix equation

A∗XB + B∗X∗A = D (1.1)

plays an important role in automatic control. In 1991, Yasuda and Skelton [1] studied the assigning
controllability and observability Gramians in feedback control by (1.1). In 1994, Fujioka and Hara [2]
considered (1.1) in the context of studying state covariance assignment problem with measurement
noise. Owing to its important applications, there has been an increased interest in solving (1.1). In
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1980, Baksalary and Kala [3] established the solvability conditions and the representation of the general
solution to the matrix equation AXB + CYD = E. In 1987, Chu [4] considered the compatibility of
AXB + CYD = E by using the generalized singular value decomposition (GSVD), and provided the
least norm solution when the solution exists. After that, Chu [5] provided the solvability conditions
of (1.1) by using the GSVD. In addition, some iterative methods [6–9] are also used to solve such
matrix equations. There is no doubt that the researching of the least-squares solutions to this kind
of matrix equation should also be significant and interesting. In 1998, Xu et al. [10] provided the
least-squares Hermitian (skew-Hermitian) solutions of AXAH + CYCH = F by using the canonical
correlation decomposition (CCD). In 2006, Liao et al. [11] considered the least-squares solution with
the minimum norm of AXBH +CYDH = E by the CCD and GSVD. Yuan et al. [12,13] considered the
least-squares solutions with some constraints of the matrix equation AXB + CXD = E. Besides, other
scholars [14–16] also have studied the least-squares problems of AXB + CXD = E. However, solving
the least-squares solutions of (1.1) seems to be rarely considered in the literatures. Recently, Yuan [17]
proposed the least-squares solutions to the matrix equation A⊤XB − B⊤X⊤A = D by applying the
canonical correlation decomposition of [A⊤, B⊤]. Subsequently, Yuan [18, 19] proposed the minimum
norm solution of (1.1) by taking advantage of the generalized singular value decomposition of the
matrix pair [A∗, B∗], and provided the least-squares solution with the minimum norm of (1.1) by using
the normal equation and singular value decompositions. Motivated by the work above, it occurred to
us that can the least-squares solutions to (1.1) be derived in a similar way? The answer is affirmative.
In this paper, we will consider the least-squares solutions of (1.1) and the associated weighted optimal
approximation problem by utilizing the canonical correlation decomposition of a pair of matrices,
which can be mathematically formulated as follows.

Problem I. Given A ∈ Cn×m, B ∈ Cp×m,D ∈ Cm×m with D = D∗. Find X ∈ Cn×p such that

Φ1 = ∥A∗XB + B∗X∗A − D∥ = min . (1.2)

Problem II. Given F ∈ Cn×p, find X̂ ∈ SE such that

∥F − X̂∥W = min
X∈SE
∥F − X∥W , (1.3)

where ∥ · ∥W is the weighted norm will be defined below, SE is the solution set of Problem I.
By using the canonical correlation decomposition, the explicit expression of the least-squares

solutions to Problem I is derived. Also, the expression of the corresponding optimal approximation
solution under a weighted Frobenius norm sense to Problem II is deduced. Further, numerical
examples are provided to verify the correctness of our results.

2. Solution to Problem I

In order to solve Problem I, the following lemmas are needed.

Lemma 2.1. [10] Let J1 ∈ C
m×n, J2 ∈ C

n×m, CA = diag(α1, α2, · · · , αm), S A = diag(β1, β2, · · · , βm)
with αi > 0, βi > 0, and α2

i + β
2
i = 1, (i = 1, 2, · · · ,m). Then the following minimization problem with

respect to X ∈ Cm×n :
ϕ1 = ∥CAX − J1∥

2 +
∥∥∥S AX − J∗2

∥∥∥2 = min

holds if and only if X can be expressed as X = CAJ1 + S AJ∗2.
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Lemma 2.2. Let J1, J2 ∈ C
m×m with J1 = J∗1, CA = diag(α1, α2, · · · , αm), S A = diag(β1, β2, · · · , βm)

with αi > 0, βi > 0, and α2
i + β

2
i = 1, (i = 1, 2, · · · ,m). Then the following minimization problem with

respect to X ∈ Cm×m :

ϕ2 = ∥CAX + X∗CA − J1∥
2
+
∥∥∥S AX − J∗2

∥∥∥2 + ∥X∗S A − J2∥
2
= min

holds if and only if X can be expressed as

X +CAX∗CA = CAJ1 + S AJ∗2. (2.1)

Proof. For X = (xi j) ∈ Cm×m, Jl = (J(l)
i j ) ∈ Cm×m, (l = 1, 2), we have

ϕ2 = Σi j

(∣∣∣∣αixi j + x jiα j − J(1)
i j

∣∣∣∣2 + 2
∣∣∣∣βixi j − J(2)

ji

∣∣∣∣2) .
Clearly, ϕ2 is a continuously differentiable function of 2m2 variables of Re(xi j), Im(xi j), (i, j = 1, 2,
· · · ,m). The function of xi j is

Ω =

(∣∣∣∣αixi j + x jiα j − J(1)
i j

∣∣∣∣2 + ∣∣∣∣α jx ji + xi jαi − J(1)
ji

∣∣∣∣2 + 2
∣∣∣∣βixi j − J(2)

ji

∣∣∣∣2) .
According to the necessary condition of function which is minimizing at a point and J(1)

i j = J(1)
ji , we

obtain the following expression:

xi j + αix jiα j = αiJ
(1)
i j + βiJ

(2)
ji , (i, j = 1, 2, · · · ,m). (2.2)

Then the equation of (2.1) follows from (2.2). □

Lemma 2.3. Let J ∈ Cm×m, CA = diag(α1, α2, · · · , αm) with 0 < αi < 1, (i = 1, 2, · · · ,m). Then the
following equation with respect to X ∈ Cm×m :

X +CAX∗CA = J (2.3)

holds if and only if X can be expressed as

X = K ∗ (J −CAJ∗CA), (2.4)

where K =
(
ki j

)
∈ Cm×m, ki j =

1
1 − (αiα j)2 , (i, j = 1, 2, · · · ,m).

Proof. For X = (xi j) ∈ Cm×m, J = (Ji j) ∈ Cm×m, (2.3) can be equivalently written as

xi j + αix jiα j = Ji j, x ji + α jxi jαi = J ji, (i, j = 1, 2, · · · ,m). (2.5)

By (2.5), we can get

xi j =
Ji j − αiJ jiα j

1 − α2
i α

2
j

, (i, j = 1, 2, · · · ,m). (2.6)

Then the equation of (2.4) follows from (2.6). □
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Assume that the canonical correlation decomposition (CCD) [20] of the matrix pair [A∗, B∗] is

A∗ = Q[ΣA, 0]E−1
A , B∗ = Q[ΣB, 0]E−1

B , (2.7)

where EA ∈ C
n×n and EB ∈ C

p×p are nonsingular matrices, and

ΣA =



I 0 0
0 CA 0
0 0 0
0 0 0
0 S A 0
0 0 I



q
s

h − q − s
m − h − s − t

s
t

q s t

,

ΣB =



I 0 0
0 I 0
0 0 I
0 0 0
0 0 0
0 0 0



q
s

h − q − s
m − h − s − t

s
t

q s h − q − s

,

CA = diag(α1, α2, · · · , αs), 1 > α1 ≥ α2 ≥ · · · ≥ αs > 0,

S A = diag(β1, β2, · · · , βs), 0 < β1 ≤ β2 ≤ · · · ≤ βs < 1

with
α2

i + β
2
i = 1, (i = 1, 2, · · · , s),

q = rank(A)+rank(B)−rank(A∗, B∗), g = rank(A) = q+s+t, h = rank(B), and Q = [Q1,Q2,Q3,Q4,Q5,

Q6] ∈ UCm×m with the partition of Q being compatible with those of ΣA and ΣB.

According to (2.7), (1.2) can be equivalently written as

Φ1 =
∥∥∥∥[ΣA, 0]E−1

A X(E−1
B )∗[ΣB, 0]∗ + [ΣB, 0]E−1

B X∗(E−1
A )∗[ΣA, 0]∗ − Q∗DQ

∥∥∥∥, (2.8)

partition the matrices E−1
A X(E−1

B )∗ and Q∗DQ into the following forms:

E−1
A X(E−1

B )∗ =


X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44


q
s
t

n − g
q s h − q − s p − h

, (2.9)

Q∗DQ =



D11 D12 D13 D14 D15 D16

D∗12 D22 D23 D24 D25 D26

D∗13 D∗23 D33 D34 D35 D36

D∗14 D∗24 D∗34 D44 D45 D46

D∗15 D∗25 D∗35 D∗45 D55 D56

D∗16 D∗26 D∗36 D∗46 D∗56 D66



q
s
u
v
s
t

q s u v s t

, (2.10)
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where u = h − q − s, v = m − h − s − t. Inserting (2.9) and (2.10) into (2.8), we have

Φ1 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



X11 + X∗11 − D11 X12 + X∗21CA − D12 X13 − D13 −D14 X∗21S A − D15 X∗31 − D16

CAX21 + X∗12 − D∗12 CAX22 + X∗22CA − D22 CAX23 − D23 −D24 X∗22S A − D25 X∗32 − D26

X∗13 − D∗13 X∗23CA − D∗23 −D33 −D34 X∗23S A − D35 X∗33 − D36

−D∗14 −D∗24 −D∗34 −D44 −D45 −D46

S AX21 − D∗15 S AX22 − D∗25 S AX23 − D∗35 −D∗45 −D55 −D56

X31 − D∗16 X32 − D∗26 X33 − D∗36 −D∗46 −D∗56 −D66



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Apparently, Φ1 = min if and only if

∥∥∥X11 + X∗11 − D11

∥∥∥ = min,

∥X13 − D13∥
2 +
∥∥∥X∗13 − D∗13

∥∥∥2 = min,
∥∥∥X31 − D∗16

∥∥∥2 + ∥∥∥X∗31 − D16

∥∥∥2 = min,∥∥∥X32 − D∗26

∥∥∥2 + ∥∥∥X∗32 − D26

∥∥∥2 = min,
∥∥∥X33 − D∗36

∥∥∥2 + ∥∥∥X∗33 − D36

∥∥∥2 = min,∥∥∥CAX21 + X∗12 − D∗12

∥∥∥2 + ∥∥∥S AX21 − D∗15

∥∥∥2 = min,

(2.11)

∥CAX23 − D23∥
2 +
∥∥∥S AX23 − D∗35

∥∥∥2 = min, (2.12)∥∥∥CAX22 + X∗22CA − D22

∥∥∥2 + ∥∥∥S AX22 − D∗25

∥∥∥2 + ∥∥∥X∗22S A − D25

∥∥∥2 = min . (2.13)

By (2.11), we have

X11 =
1
2

D11 + N,

X13 = D13, X31 = D∗16, X32 = D∗26, X33 = D∗36,

X12 = D12 − D15S −1
A CA, X21 = S −1

A D∗15,

(2.14)

where N ∈ Cq×q is some skew-Hermitian matrix. According to (2.12) and Lemma 2.1, we have

X23 = CAD23 + S AD∗35. (2.15)

By (2.13) and Lemmas 2.2 and 2.3, we have

X22 = K ∗ (J −CAJ∗CA) , (2.16)

where K =
(
ki j

)
∈ Cs×s, ki j =

1

1 −
(
αiα j

)2 , (i, j = 1, 2, · · · , s), J = CAD22 + S AD∗25. Inserting (2.14)–

(2.16) into (2.9), we can get the following result.

Theorem 2.1. Suppose that A ∈ Cn×m, B ∈ Cp×m,D ∈ Cm×m with D = D∗. Let the canonical
correlation decomposition of the matrix pair [A∗, B∗] be given by (2.7), the partition of the matrices
E−1

A X(E−1
B )∗,Q∗DQ be given by (2.9) and (2.10), respectively. Then, the general solution of Problem I

can be expressed as

X = EA


1
2

D11 + N D12 − D15S −1
A CA D13 X14

S −1
A D∗15 X22 CAD23 + S AD∗35 X24

D∗16 D∗26 D∗36 X34

X41 X42 X43 X44

 E
∗
B,
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where X22 is given by (2.16), Xi4, X4 j, (i = 1, 2, 3, 4; j = 1, 2, 3) are arbitrary matrices and N ∈ Cq×q is
some skew-Hermitian matrix.

Clearly, (1.1) with D = D∗ is sovable if and only if Φ1 = min = 0, that is,

X11 + X∗11 − D11 = 0,
X13 − D13 = 0, X31 − D∗16 = 0, X32 − D∗26 = 0, X33 − D∗36 = 0,
CAX21 + X∗12 − D∗12 = 0, S AX21 − D∗15 = 0,
CAX23 − D23 = 0, S AX23 − D∗35 = 0,
CAX22 + X∗22CA − D22 = 0, S AX22 − D∗25 = 0,

(2.17)

Di4 = 0,D4 j = 0, (i = 1, 2, 3, 4; j = 5, 6),D33 = 0,D55 = 0,D56 = 0,D66 = 0. By (2.17), we obtain

X11 =
1
2

D11 + N, (2.18)

X13 = D13, X31 = D∗16, X32 = D∗26, X33 = D∗36,

X12 = D12 − D15S −1
A CA, X21 = S −1

A D∗15,

X23 = C−1
A D23 = S −1

A D∗35, C−1
A D23 − S −1

A D∗35 = 0,
X22 = S −1

A D∗25, D22 = D25S −1
A CA +CAS −1

A D∗25,

(2.19)

where N ∈ Cq×q is some skew-Hermitian matrix. Inserting (2.18) and (2.19) into (2.9), we have the
following result.

Theorem 2.2. Suppose that A ∈ Cn×m, B ∈ Cp×m,D ∈ Cm×m with D = D∗. Let the canonical
correlation decomposition(CCD) of the matrix pair [A∗, B∗] be given by (2.7), the partition of the
matrices E−1

A X(E−1
B )∗,Q∗DQ be given by (2.9) and (2.10), respectively. Then (1.1) has a solution if

and only if
D = D∗, DQ4 = 0, D33 = 0, D55 = 0, D56 = 0, D66 = 0,
C−1

A D23 − S −1
A D∗35 = 0, D22 = D25S −1

A CA +CAS −1
A D∗25.

(2.20)

In this case, the general solution of (1.1) can be expressed as

X = EA


1
2

D11 + N D12 − D15S −1
A CA D13 X14

S −1
A D∗15 S −1

A D∗25 C−1
A D23 X24

D∗16 D∗26 D∗36 X34

X41 X42 X43 X44

 E
∗
B, (2.21)

where Xi4, X4 j, (i = 1, 2, 3, 4; j = 1, 2, 3) are arbitrary matrices and N ∈ Cq×q is some skew-Hermitian
matrix.

Remark 2.1. Note that (1.1) has a unique solution X if and only if

n − g = 0, p − h = 0, q = 0,

which is equivalent to
rank(A∗, B∗) = n + p.
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In this case, the unique solution of (1.1) can be expressed as

X = EA

[
S −1

A D∗25 C−1
A D23

D∗26 D∗36

]
E∗B.

Based on Theorem 2.2, we can formulate the following algorithm 2.1 to solve (1.1).

Algorithm 2.1.

1) Input matrices A, B and D with D = D∗.

2) Compute the canonical correlation decomposition of the matrix pair [A∗, B∗] by (2.7).

3) Compute D11,D12,D13,D15,D16,D22,D23,D25,D26,D35 and D36 by (2.10), respectively.

4) If the conditions (2.20) are satisfied, go to 5); otherwise, Problem I has no solution, and stop.

5) Randomly choose skew-Hermitian matrix N ∈ Cq×q and compute X11 by (2.18).

6) Compute X12, X13, X21, X22, X23, X31, X32, X33 by (2.19), respectively.

7) Randomly choose Xi4, X4 j, (i = 1, 2, 3, 4; j = 1, 2, 3) and compute X by (2.21).

Example 2.1. Let m = 10, n = 7, p = 6. Suppose that the matrices A, B and D are given by

A =



0.89342 0.67419 −0.80676 −1.0582 −0.42837 0.22173 −1.3219 0.19747 0.36028 −0.23965
1.0497 0.10238 −0.39081 −0.87045 −0.47312 0.67326 −1.5633 −1.492 −0.67715 −0.08773

0.32308 0.075314 −0.1318 0.13962 −0.47165 0.26719 −1.1466 −1.6208 −0.56962 −0.23054
0.056371 0.36481 −0.45522 −0.45396 −0.14119 −0.04526 −1.5865 0.19897 −0.63784 0.84677

1.6889 1.3419 −0.46073 −0.11161 −0.64301 1.0634 −3.3326 −1.4834 −1.1785 1.2706
−0.25273 −0.11946 −0.45172 0.064737 −0.35219 0.4565 0.91037 −0.0099442 −0.39096 0.63466
−1.8326 −1.0145 1.1621 1.2864 0.94997 −1.2306 2.6438 1.213 0.79133 −0.67153


,

B =



−0.080912 −0.15446 0.88071 −1.4211 −0.33307 −0.87903 −1.5 −0.39493 −0.84953 1.395
0.63295 0.58091 1.9653 −1.6504 −1.0121 −0.90031 −0.59117 −0.080091 −0.4563 2.4604
−0.59487 0.52259 0.70132 −0.24961 0.28837 1.2096 0.17834 −0.086521 0.84257 0.53255
0.071586 −0.58669 −0.65556 0.24098 −0.20074 −0.79419 −0.5282 0.046106 −1.0188 −1.0261

0.1335 −0.43002 −2.396 2.2382 1.3994 0.82002 1.024 0.51096 0.79283 −2.3305
−0.02447 −0.033381 −0.32694 −0.014084 0.1577 0.0092585 0.74787 −0.43361 0.8833 0.49608


,

D =



−32.498 −41.334 −22.064 14.89 13.462 −21.284 −10.183 −6.1465 −27.471 −65.9
−41.334 −35.07 −28.227 34.054 21.937 0.88842 27.704 6.5266 −12.587 −48.428
−22.064 −28.227 43.379 −7.7439 −1.2298 −26.915 9.5348 −34.9 −24.195 26.775

14.89 34.054 −7.7439 −11.873 −5.0642 19.391 31.103 39.452 41.819 39.159
13.462 21.937 −1.2298 −5.0642 −13.579 6.6957 21.593 17.629 17.442 29.843
−21.284 0.88842 −26.915 19.391 6.6957 18.154 35.902 36.906 2.051 4.0912
−10.183 27.704 9.5348 31.103 21.593 35.902 182.31 61.244 120.04 58.104
−6.1465 6.5266 −34.9 39.452 17.629 36.906 61.244 2.0347 51.993 −25.591
−27.471 −12.587 −24.195 41.819 17.442 2.051 120.04 51.993 40.795 −1.4555
−65.9 −48.428 26.775 39.159 29.843 4.0912 58.104 −25.591 −1.4555 −44.385


.

It is easy to verify the solvability conditions are satisfied:
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Q∗4D = 1.0 × 10−13 [ −0.1776 0.0355 −0.1243 0.1421 0.0711 0.0910 0.6395 0.1599 0.2665 0 ] ,

D33 = 1.3831 × 10−14, D55 = 1.0 × 10−13

[
0.0581 −0.4387
−0.3434 −0.0124

]
,

D56 = 1.0 × 10−13

[
−0.2143 0.0623
−0.2106 0.0813

]
, D66 = 1.0 × 10−13

[
−0.2288 −0.0117

0.0105 0.2715

]
,

C−1
A D23 = S −1

A D∗35 =

[
35.9983
−22.9230

]
, D22 = D25S −1

A CA +CAS −1
A D∗25 =

[
3.5122 14.7861

14.7861 10.6574

]
.

According to Algorithm 2.1 above, if choose N = 0, Xi4 = 0, X4 j = 0, (i = 1, 2, 3, 4; j = 1, 2, 3), then
we can obtain a feasible solution X of (1.1) as follows:

X =



14.297 −29.492 −3.0526 10.77 −2.5732 −16.157
12.674 −5.1615 4.4051 21.794 −7.8158 −20.305
6.4513 19.863 4.3724 5.6231 11.727 −0.98557
−2.9642 10.036 3.9324 3.2979 −1.334 −10.045

13.035 −28.008 −0.76611 3.0924 −7.9222 −13.129
3.5708 −20.56 0.29646 −13.416 −2.922 −13.579
18.501 −21.876 2.6595 15.754 −6.8772 −25.22


with the corresponding residual estimated by

∥A∗XB + B∗X∗A − D∥ = 8.8662 × 10−13.

3. Solution to Problem II

Suppose that the CCD of the matrix pair [A∗, B∗] is of the form given by (2.7). For any X ∈ Cn×p,
we define a weighted norm as follows [21–23] :

∥X∥W ≜ ∥E−1
A X(E−1

B )∗∥. (3.1)

Write

E−1
A F(E−1

B )∗ =


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44


q
s
t

n − g
q s h − q − s p − h

. (3.2)

Therefore, for any X ∈ SE, (1.3) can be written as

∥F − X∥W =

∥∥∥∥∥∥∥∥∥∥∥∥∥
E−1

A F(E−1
B )∗ −


1
2

D11 + N D12 − D15S −1
A CA D13 X14

S −1
A D∗15 S −1

A D∗25 C−1
A D23 X24

D∗16 D∗26 D∗36 X34

X41 X42 X43 X44


∥∥∥∥∥∥∥∥∥∥∥∥∥
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=

∥∥∥∥∥∥∥∥∥∥∥∥∥

F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

 −

1
2

D11 + N D12 − D15S −1
A CA D13 X14

S −1
A D∗15 S −1

A D∗25 C−1
A D23 X24

D∗16 D∗26 D∗36 X34

X41 X42 X43 X44


∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Obviously, ∥F − X∥W = min, if and only if

∥M − N∥ = min, (3.3)
∥Fi4 − Xi4∥ = min, (i = 1, 2, 3, 4), (3.4)∥∥∥F4 j − X4 j

∥∥∥ = min, ( j = 1, 2, 3), (3.5)

where M = F11 −
1
2

D11. Note that N ∈ Cq×q is some skew-Hermitian matrix, which implies that the
relation of (3.3) is equivalent to

∥N − M∥2 =
∥∥∥∥∥N − 1

2
(M − M∗)

∥∥∥∥∥2 + ∥∥∥∥∥12(M + M∗)
∥∥∥∥∥2 ,

therefore, we have

N =
1
2

(M − M∗), X11 =
1
2

(D11 + M − M∗), (3.6)

where M = F11 −
1
2

D11. Apparently, by (3.4) and (3.5), we have

Xi4 = Fi4, (i = 1, 2, 3, 4), X4 j = F4 j, ( j = 1, 2, 3). (3.7)

Summing up the discussions above, we have the following result.

Theorem 3.1. Given F ∈ Cn×p and partition E−1
A F(E−1

B )∗ as (3.2). Let M = F11−
1
2

D11, then the unique
solution of Problem II can be expressed as

X̂ = EA


1
2

(D11 + M − M∗) D12 − D15S −1
A CA D13 F14

S −1
A D∗15 S −1

A D∗25 C−1
A D23 F24

D∗16 D∗26 D∗36 F34

F41 F42 F43 F44

 E
∗
B. (3.8)

Based on Theorem 3.1, we can formulate the following algorithm 3.1 to solve Problem II.

Algorithm 3.1.

1) Input matrices A, B, F and D with D = D∗.

2) Compute the canonical correlation decomposition of the matrix pair [A∗, B∗] by (2.7).

3) Compute D11,D12,D13,D15,D16,D22,D23,D25,D26,D35 and D36 by (2.10), respectively.

4) If the conditions (2.20) are satisfied, go to 5); otherwise, Problem II has no solution, and stop.
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5) Compute F11, Fi4, F4 j (i = 1, 2, 3, 4; j = 1, 2, 3) by (3.2).

6) Set M = F11 −
1
2

D11 and compute X11 by (3.6).

7) Compute Xi4 and X4 j (i = 1, 2, 3, 4; j = 1, 2, 3) by (3.7) and compute X̂ by (3.8).

Example 3.1. Let m = 10, n = 7, p = 6. Suppose that the matrices A, B,D and F are given by

F =



0.9754 −9.5717 −9.5949 −7.4313 0.46171 −4.3874
−2.785 −4.8538 6.5574 3.9223 −0.97132 −3.8156
5.4688 −8.0028 −0.35712 −6.5548 −8.2346 −7.6552
−9.5751 1.4189 −8.4913 −1.7119 −6.9483 −7.952
−9.6489 −4.2176 −9.3399 7.0605 3.171 1.8687

1.5761 −9.1574 −6.7874 −0.31833 −9.5022 4.8976
−9.7059 7.9221 7.5774 −2.7692 −0.34446 −4.4559


,

and the matrices A, B,D are the same as those of Example 2.1. It is easy to verify the solvability
conditions are satisfied by Example 2.1. According to Algorithm 3.1 above, we can obtain the unique
solution X̂ of Problem II as follows:

X̂ =



22.453 −27.405 2.902 −33.42 −13.843 −20.599
20.879 −12.679 20.666 1.2317 −30.38 −8.4501
−12.383 21.633 −5.6235 7.9966 11.409 −0.83169
−12.675 −12.705 −10.916 −1.1556 −23.496 −1.0355

30.483 −25.893 8.7596 −21.928 −10.622 −17.599
9.0127 −16.712 5.5371 −46.447 −9.6452 −17.62
32.651 −20.553 26.12 −26.865 −28.117 −18.774


with the corresponding residual estimated by

∥A∗X̂B + B∗X̂∗A − D∥ = 9.0698 × 10−13.

4. Conclusions

In this paper, we have obtained the expression of the least-squares solutions to Problem I and the
unique solution X̂ of Problem II by using the CCD of the matrix pair [A∗, B∗]. Two numerical examples
verify the correctness of our results.
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