We deal with sign-changing solutions for the Kirchhoff equation
$ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ u = 0, \; \ x\in \partial\Omega, \end{cases} $
where $ a, b > 0 $ and $ \lambda, \mu\in\mathbb{R} $ being parameters, $ \Omega\subset \mathbb{R}^{3} $ is a bounded domain with smooth boundary $ \partial\Omega $. Combining Nehari manifold method with the quantitative deformation lemma, we prove that there exists $ \mu^{\ast} > 0 $ such that above problem has at least a least energy sign-changing (or nodal) solution if $ \lambda < a\lambda_{1} $ and $ \mu > \mu^{\ast} $, where $ \lambda_{1} > 0 $ is the first eigenvalue of $ (-\Delta u, H^{1}_{0}(\Omega)) $. It is noticed that the nonlinearity $ \lambda u+\mu|u|^{2}u $ fails to satisfy super-linear near zero and super-three-linear near infinity, respectively.
Citation: Xia Li, Wen Guan, Da-Bin Wang. Least energy sign-changing solutions of Kirchhoff equation on bounded domains[J]. AIMS Mathematics, 2022, 7(5): 8879-8890. doi: 10.3934/math.2022495
We deal with sign-changing solutions for the Kirchhoff equation
$ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ u = 0, \; \ x\in \partial\Omega, \end{cases} $
where $ a, b > 0 $ and $ \lambda, \mu\in\mathbb{R} $ being parameters, $ \Omega\subset \mathbb{R}^{3} $ is a bounded domain with smooth boundary $ \partial\Omega $. Combining Nehari manifold method with the quantitative deformation lemma, we prove that there exists $ \mu^{\ast} > 0 $ such that above problem has at least a least energy sign-changing (or nodal) solution if $ \lambda < a\lambda_{1} $ and $ \mu > \mu^{\ast} $, where $ \lambda_{1} > 0 $ is the first eigenvalue of $ (-\Delta u, H^{1}_{0}(\Omega)) $. It is noticed that the nonlinearity $ \lambda u+\mu|u|^{2}u $ fails to satisfy super-linear near zero and super-three-linear near infinity, respectively.
[1] | V. Bobkov, Least energy nodal solutions for elliptic equations with indefinite nonlinearity, Electron. J. Qual. Theo., 2014 (2014), 1–15. http://dx.doi.org/10.14232/ejqtde.2014.1.56 doi: 10.14232/ejqtde.2014.1.56 |
[2] | D. Cassani, Z. Liu, C. Tarsi, J. Zhang, Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145–161. http://dx.doi.org/10.1016/j.na.2019.01.025 doi: 10.1016/j.na.2019.01.025 |
[3] | B. Cheng, X. H. Tang, Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems, Complex Var. Elliptic Equ., 62 (2017), 1093–1116. http://dx.doi.org/10.1080/17476933.2016.1270272 doi: 10.1080/17476933.2016.1270272 |
[4] | Y. B. Deng, S. J. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500–3527. http://dx.doi.org/10.1016/j.jfa.2015.09.012 doi: 10.1016/j.jfa.2015.09.012 |
[5] | Y. B. Deng, W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^{3}$, Discrete Cont. Dyn.-A, 38 (2018), 3139–3168. http://dx.doi.org/10.3934/dcds.2018137 doi: 10.3934/dcds.2018137 |
[6] | G. M. Figueiredo, N. Ikoma, J. R. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. An., 213 (2014), 931–979. http://dx.doi.org/10.1007/s00205-014-0747-8 doi: 10.1007/s00205-014-0747-8 |
[7] | G. M. Figueiredo, R. G. Nascimento, Existence of a nodal solution with minimal energy for a Kirchhoff equation, Math. Nachr., 288 (2015), 48–60. http://dx.doi.org/10.1002/mana.201300195 doi: 10.1002/mana.201300195 |
[8] | G. M. Figueiredo, J. R. Santos Júnior, Existence of a least energy nodal solution for a Schrödinger-Kirchhoff equation with potential vanishing at infinity, J. Math. Phys., 56 (2015), 051506. http://dx.doi.org/10.1063/1.4921639 doi: 10.1063/1.4921639 |
[9] | Z. Guo, Ground state for Kirchhoff equations without compact condition, J. Differ. Equations, 259 (2015), 2884–2902. http://dx.doi.org/10.1016/j.jde.2015.04.005 doi: 10.1016/j.jde.2015.04.005 |
[10] | X. M. He, W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3}$, J. Differ. Equations, 252 (2012), 1813–1834. http://dx.doi.org/10.1016/j.jde.2011.08.035 doi: 10.1016/j.jde.2011.08.035 |
[11] | Y. S. Huang, Z. Liu, Y. Wu, On Kirchhoff type equations with critical Sobolev exponent, J. Math. Anal. Appl., 462 (2018), 483–504. http://dx.doi.org/10.1016/j.jmaa.2018.02.023 doi: 10.1016/j.jmaa.2018.02.023 |
[12] | S. Khoutir, Least energy sign-changing solutions for a class of Schrödinger-Poisson system on bounded domains, J. Math. Phys., 62 (2021), 031509. http://dx.doi.org/10.1063/5.0040741 doi: 10.1063/5.0040741 |
[13] | G. Kirchhoff, Mechanik, Teubner: Leipzig, 1883. |
[14] | F. Y. Li, C. Gao, X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 448 (2017), 60–80. http://dx.doi.org/10.1016/j.jmaa.2016.10.069 doi: 10.1016/j.jmaa.2016.10.069 |
[15] | G. B. Li, P. Luo, S. J. Peng, C. H. Wang, C. L. Xiang, A singularly perturbed Kirchhoff problem revisited, J. Differ. Equations, 268 (2020), 541–589. http://dx.doi.org/10.1016/j.jde.2019.08.016 doi: 10.1016/j.jde.2019.08.016 |
[16] | G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equations, 257 (2014), 566–600. http://dx.doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011 |
[17] | Q. Li, X. Du, Z. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 477 (2019), 174–186. http://dx.doi.org/10.1016/j.jmaa.2019.04.025 doi: 10.1016/j.jmaa.2019.04.025 |
[18] | Y. H. Li, F. Y. Li, J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equations, 253 (2012), 2285–2294. http://dx.doi.org/10.1016/j.jde.2012.05.017 doi: 10.1016/j.jde.2012.05.017 |
[19] | J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284–346. http://dx.doi.org/10.1016/s0304-0208(08)70870-3 doi: 10.1016/s0304-0208(08)70870-3 |
[20] | S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl., 432 (2015), 965–982. http://dx.doi.org/10.1016/j.jmaa.2015.07.033 doi: 10.1016/j.jmaa.2015.07.033 |
[21] | B. B. V. Maia, On a class of p(x)-Choquard equations with sign-changing potential and upper critical growth, Rend. Circ. Mat. Palermo., 70 (2021), 1175–1199. http://dx.doi.org/10.1007/s12215-020-00553-y doi: 10.1007/s12215-020-00553-y |
[22] | A. M. Mao, S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239–243. http://dx.doi.org/10.1016/j.jmaa.2011.05.021 doi: 10.1016/j.jmaa.2011.05.021 |
[23] | A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the $P. S.$ condition, Nonlinear Anal., 70 (2009), 1275–1287. http://dx.doi.org/ 10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011 |
[24] | D. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Amer., 32 (1960), 1529–1538. http://dx.doi.org/10.1121/1.1907948 doi: 10.1121/1.1907948 |
[25] | M. Shao, A. Mao, Signed and sign-changing solutions of Kirchhoff type problems, J. Fix. Point Theory A., 20 (2018), 1–20. http://dx.doi.org/10.1007/s11784-018-0486-9 doi: 10.1007/s11784-018-0486-9 |
[26] | W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equations, 259 (2015), 1256–1274. http://dx.doi.org/10.1016/j.jde.2015.02.040 doi: 10.1016/j.jde.2015.02.040 |
[27] | J. Sun, L. Li, M. Cencelj, B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^{3}$, Nonlinear Anal., 186 (2019), 33–54. http://dx.doi.org/10.1016/j.na.2018.10.007 doi: 10.1016/j.na.2018.10.007 |
[28] | X. H. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equations, 261 (2016), 2384–2402. http://dx.doi.org/10.1016/j.jde.2016.04.032 doi: 10.1016/j.jde.2016.04.032 |
[29] | X. H. Tang, S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Dif., 56 (2017), 1–25. http://dx.doi.org/10.1007/s00526-017-1214-9 doi: 10.1007/s00526-017-1214-9 |
[30] | C. Vetro, Variable exponent p(x)-Kirchhoff type problem with convection, J. Math. Anal. Appl., 506 (2022), 125721. http://dx.doi.org/10.1016/J.JMAA.2021.125721 doi: 10.1016/J.JMAA.2021.125721 |
[31] | D. B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501. http://dx.doi.org/10.1063/1.5074163 doi: 10.1063/1.5074163 |
[32] | J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equations, 253 (2012), 2314–2351. http://dx.doi.org/10.1016/j.jde.2012.05.023 doi: 10.1016/j.jde.2012.05.023 |
[33] | L. Wang, B. L. Zhang, K. Cheng, Ground state sign-changing solutions for the Schrödinger-Kirchhoff equation in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 466 (2018), 1545–1569. http://dx.doi.org/10.1016/j.jmaa.2018.06.071 doi: 10.1016/j.jmaa.2018.06.071 |
[34] | M. Willem, Minimax Theorems, Bosten: Birkhäuser, 1996. |
[35] | Q. L. Xie, S. W. Ma, X. Zhang, Bound state solutions of Kirchhoff type problems with critical exponent, J. Differ. Equations, 261 (2016), 890–924. http://dx.doi.org/10.1016/j.jde.2016.03.028 doi: 10.1016/j.jde.2016.03.028 |
[36] | H. Ye, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 431 (2015), 935–954. http://dx.doi.org/10.1016/j.jmaa.2015.06.012 doi: 10.1016/j.jmaa.2015.06.012 |
[37] | H. Zhang, Ground state and nodal solutions for critical Schrödinger-Kirchhoff-type Laplacian problems, J. Fix. Point Theory A., 23 (2021), 1–16. http://dx.doi.org/10.1007/s11784-021-00870-4 doi: 10.1007/s11784-021-00870-4 |
[38] | Z. T. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descentow, J. Math. Anal. Appl., 317 (2006), 456–463. http://dx.doi.org/10.1016/j.jmaa.2005.06.102 doi: 10.1016/j.jmaa.2005.06.102 |
[39] | X. Zhong, C. L. Tang, The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem, Commun. Pur. Appl. Anal., 16 (2017), 611–628. http://dx.doi.org/10.3934/CPAA.2017030 doi: 10.3934/CPAA.2017030 |