Research article

Least energy sign-changing solutions of Kirchhoff equation on bounded domains

  • Received: 05 December 2021 Revised: 18 February 2022 Accepted: 23 February 2022 Published: 04 March 2022
  • MSC : 35J60, 35J20

  • We deal with sign-changing solutions for the Kirchhoff equation

    $ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ u = 0, \; \ x\in \partial\Omega, \end{cases} $

    where $ a, b > 0 $ and $ \lambda, \mu\in\mathbb{R} $ being parameters, $ \Omega\subset \mathbb{R}^{3} $ is a bounded domain with smooth boundary $ \partial\Omega $. Combining Nehari manifold method with the quantitative deformation lemma, we prove that there exists $ \mu^{\ast} > 0 $ such that above problem has at least a least energy sign-changing (or nodal) solution if $ \lambda < a\lambda_{1} $ and $ \mu > \mu^{\ast} $, where $ \lambda_{1} > 0 $ is the first eigenvalue of $ (-\Delta u, H^{1}_{0}(\Omega)) $. It is noticed that the nonlinearity $ \lambda u+\mu|u|^{2}u $ fails to satisfy super-linear near zero and super-three-linear near infinity, respectively.

    Citation: Xia Li, Wen Guan, Da-Bin Wang. Least energy sign-changing solutions of Kirchhoff equation on bounded domains[J]. AIMS Mathematics, 2022, 7(5): 8879-8890. doi: 10.3934/math.2022495

    Related Papers:

  • We deal with sign-changing solutions for the Kirchhoff equation

    $ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ u = 0, \; \ x\in \partial\Omega, \end{cases} $

    where $ a, b > 0 $ and $ \lambda, \mu\in\mathbb{R} $ being parameters, $ \Omega\subset \mathbb{R}^{3} $ is a bounded domain with smooth boundary $ \partial\Omega $. Combining Nehari manifold method with the quantitative deformation lemma, we prove that there exists $ \mu^{\ast} > 0 $ such that above problem has at least a least energy sign-changing (or nodal) solution if $ \lambda < a\lambda_{1} $ and $ \mu > \mu^{\ast} $, where $ \lambda_{1} > 0 $ is the first eigenvalue of $ (-\Delta u, H^{1}_{0}(\Omega)) $. It is noticed that the nonlinearity $ \lambda u+\mu|u|^{2}u $ fails to satisfy super-linear near zero and super-three-linear near infinity, respectively.



    加载中


    [1] V. Bobkov, Least energy nodal solutions for elliptic equations with indefinite nonlinearity, Electron. J. Qual. Theo., 2014 (2014), 1–15. http://dx.doi.org/10.14232/ejqtde.2014.1.56 doi: 10.14232/ejqtde.2014.1.56
    [2] D. Cassani, Z. Liu, C. Tarsi, J. Zhang, Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145–161. http://dx.doi.org/10.1016/j.na.2019.01.025 doi: 10.1016/j.na.2019.01.025
    [3] B. Cheng, X. H. Tang, Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems, Complex Var. Elliptic Equ., 62 (2017), 1093–1116. http://dx.doi.org/10.1080/17476933.2016.1270272 doi: 10.1080/17476933.2016.1270272
    [4] Y. B. Deng, S. J. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500–3527. http://dx.doi.org/10.1016/j.jfa.2015.09.012 doi: 10.1016/j.jfa.2015.09.012
    [5] Y. B. Deng, W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^{3}$, Discrete Cont. Dyn.-A, 38 (2018), 3139–3168. http://dx.doi.org/10.3934/dcds.2018137 doi: 10.3934/dcds.2018137
    [6] G. M. Figueiredo, N. Ikoma, J. R. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. An., 213 (2014), 931–979. http://dx.doi.org/10.1007/s00205-014-0747-8 doi: 10.1007/s00205-014-0747-8
    [7] G. M. Figueiredo, R. G. Nascimento, Existence of a nodal solution with minimal energy for a Kirchhoff equation, Math. Nachr., 288 (2015), 48–60. http://dx.doi.org/10.1002/mana.201300195 doi: 10.1002/mana.201300195
    [8] G. M. Figueiredo, J. R. Santos Júnior, Existence of a least energy nodal solution for a Schrödinger-Kirchhoff equation with potential vanishing at infinity, J. Math. Phys., 56 (2015), 051506. http://dx.doi.org/10.1063/1.4921639 doi: 10.1063/1.4921639
    [9] Z. Guo, Ground state for Kirchhoff equations without compact condition, J. Differ. Equations, 259 (2015), 2884–2902. http://dx.doi.org/10.1016/j.jde.2015.04.005 doi: 10.1016/j.jde.2015.04.005
    [10] X. M. He, W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3}$, J. Differ. Equations, 252 (2012), 1813–1834. http://dx.doi.org/10.1016/j.jde.2011.08.035 doi: 10.1016/j.jde.2011.08.035
    [11] Y. S. Huang, Z. Liu, Y. Wu, On Kirchhoff type equations with critical Sobolev exponent, J. Math. Anal. Appl., 462 (2018), 483–504. http://dx.doi.org/10.1016/j.jmaa.2018.02.023 doi: 10.1016/j.jmaa.2018.02.023
    [12] S. Khoutir, Least energy sign-changing solutions for a class of Schrödinger-Poisson system on bounded domains, J. Math. Phys., 62 (2021), 031509. http://dx.doi.org/10.1063/5.0040741 doi: 10.1063/5.0040741
    [13] G. Kirchhoff, Mechanik, Teubner: Leipzig, 1883.
    [14] F. Y. Li, C. Gao, X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 448 (2017), 60–80. http://dx.doi.org/10.1016/j.jmaa.2016.10.069 doi: 10.1016/j.jmaa.2016.10.069
    [15] G. B. Li, P. Luo, S. J. Peng, C. H. Wang, C. L. Xiang, A singularly perturbed Kirchhoff problem revisited, J. Differ. Equations, 268 (2020), 541–589. http://dx.doi.org/10.1016/j.jde.2019.08.016 doi: 10.1016/j.jde.2019.08.016
    [16] G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equations, 257 (2014), 566–600. http://dx.doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011
    [17] Q. Li, X. Du, Z. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 477 (2019), 174–186. http://dx.doi.org/10.1016/j.jmaa.2019.04.025 doi: 10.1016/j.jmaa.2019.04.025
    [18] Y. H. Li, F. Y. Li, J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equations, 253 (2012), 2285–2294. http://dx.doi.org/10.1016/j.jde.2012.05.017 doi: 10.1016/j.jde.2012.05.017
    [19] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284–346. http://dx.doi.org/10.1016/s0304-0208(08)70870-3 doi: 10.1016/s0304-0208(08)70870-3
    [20] S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl., 432 (2015), 965–982. http://dx.doi.org/10.1016/j.jmaa.2015.07.033 doi: 10.1016/j.jmaa.2015.07.033
    [21] B. B. V. Maia, On a class of p(x)-Choquard equations with sign-changing potential and upper critical growth, Rend. Circ. Mat. Palermo., 70 (2021), 1175–1199. http://dx.doi.org/10.1007/s12215-020-00553-y doi: 10.1007/s12215-020-00553-y
    [22] A. M. Mao, S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239–243. http://dx.doi.org/10.1016/j.jmaa.2011.05.021 doi: 10.1016/j.jmaa.2011.05.021
    [23] A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the $P. S.$ condition, Nonlinear Anal., 70 (2009), 1275–1287. http://dx.doi.org/ 10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011
    [24] D. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Amer., 32 (1960), 1529–1538. http://dx.doi.org/10.1121/1.1907948 doi: 10.1121/1.1907948
    [25] M. Shao, A. Mao, Signed and sign-changing solutions of Kirchhoff type problems, J. Fix. Point Theory A., 20 (2018), 1–20. http://dx.doi.org/10.1007/s11784-018-0486-9 doi: 10.1007/s11784-018-0486-9
    [26] W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equations, 259 (2015), 1256–1274. http://dx.doi.org/10.1016/j.jde.2015.02.040 doi: 10.1016/j.jde.2015.02.040
    [27] J. Sun, L. Li, M. Cencelj, B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^{3}$, Nonlinear Anal., 186 (2019), 33–54. http://dx.doi.org/10.1016/j.na.2018.10.007 doi: 10.1016/j.na.2018.10.007
    [28] X. H. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equations, 261 (2016), 2384–2402. http://dx.doi.org/10.1016/j.jde.2016.04.032 doi: 10.1016/j.jde.2016.04.032
    [29] X. H. Tang, S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Dif., 56 (2017), 1–25. http://dx.doi.org/10.1007/s00526-017-1214-9 doi: 10.1007/s00526-017-1214-9
    [30] C. Vetro, Variable exponent p(x)-Kirchhoff type problem with convection, J. Math. Anal. Appl., 506 (2022), 125721. http://dx.doi.org/10.1016/J.JMAA.2021.125721 doi: 10.1016/J.JMAA.2021.125721
    [31] D. B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501. http://dx.doi.org/10.1063/1.5074163 doi: 10.1063/1.5074163
    [32] J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equations, 253 (2012), 2314–2351. http://dx.doi.org/10.1016/j.jde.2012.05.023 doi: 10.1016/j.jde.2012.05.023
    [33] L. Wang, B. L. Zhang, K. Cheng, Ground state sign-changing solutions for the Schrödinger-Kirchhoff equation in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 466 (2018), 1545–1569. http://dx.doi.org/10.1016/j.jmaa.2018.06.071 doi: 10.1016/j.jmaa.2018.06.071
    [34] M. Willem, Minimax Theorems, Bosten: Birkhäuser, 1996.
    [35] Q. L. Xie, S. W. Ma, X. Zhang, Bound state solutions of Kirchhoff type problems with critical exponent, J. Differ. Equations, 261 (2016), 890–924. http://dx.doi.org/10.1016/j.jde.2016.03.028 doi: 10.1016/j.jde.2016.03.028
    [36] H. Ye, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 431 (2015), 935–954. http://dx.doi.org/10.1016/j.jmaa.2015.06.012 doi: 10.1016/j.jmaa.2015.06.012
    [37] H. Zhang, Ground state and nodal solutions for critical Schrödinger-Kirchhoff-type Laplacian problems, J. Fix. Point Theory A., 23 (2021), 1–16. http://dx.doi.org/10.1007/s11784-021-00870-4 doi: 10.1007/s11784-021-00870-4
    [38] Z. T. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descentow, J. Math. Anal. Appl., 317 (2006), 456–463. http://dx.doi.org/10.1016/j.jmaa.2005.06.102 doi: 10.1016/j.jmaa.2005.06.102
    [39] X. Zhong, C. L. Tang, The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem, Commun. Pur. Appl. Anal., 16 (2017), 611–628. http://dx.doi.org/10.3934/CPAA.2017030 doi: 10.3934/CPAA.2017030
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1423) PDF downloads(90) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog