Research article Special Issues

Complicate dynamical analysis of a discrete predator-prey model with a prey refuge

  • Received: 12 January 2023 Revised: 01 April 2023 Accepted: 12 April 2023 Published: 23 April 2023
  • MSC : 70K50, 92D25, 40A05

  • In this paper, some complicated dynamic characteristics are formulated for a discrete predator-prey model with a prey refuge. After studying the local dynamical properties about fixed points, our main purpose is to investigate condition(s) for the occurrence of flip and hopf bifurcations, respectively. Further, by the bifurcation theory, we have studied flip bifurcation at boundary fixed point, and flip and hopf bifurcations at interior fixed point of the discrete model. We have also studied chaos by state feedback control strategy. Furthermore, theoretical results are numerically verified. Finally, we have also discussed the influence of prey refuge in the discrete model.

    Citation: A. Q. Khan, Ibraheem M. Alsulami. Complicate dynamical analysis of a discrete predator-prey model with a prey refuge[J]. AIMS Mathematics, 2023, 8(7): 15035-15057. doi: 10.3934/math.2023768

    Related Papers:

  • In this paper, some complicated dynamic characteristics are formulated for a discrete predator-prey model with a prey refuge. After studying the local dynamical properties about fixed points, our main purpose is to investigate condition(s) for the occurrence of flip and hopf bifurcations, respectively. Further, by the bifurcation theory, we have studied flip bifurcation at boundary fixed point, and flip and hopf bifurcations at interior fixed point of the discrete model. We have also studied chaos by state feedback control strategy. Furthermore, theoretical results are numerically verified. Finally, we have also discussed the influence of prey refuge in the discrete model.



    加载中


    [1] M. Onana, B. Mewoli, J. J. Tewa, Hopf bifurcation analysis in a delayed Leslie-Gower predator-prey model incorporating additional food for predators, refuge and threshold harvesting of preys, Nonlinear Dyn., 100 (2020), 3007–3028. https://doi.org/10.1007/s11071-020-05659-7 doi: 10.1007/s11071-020-05659-7
    [2] E. González-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166 (2003), 135–146. https://doi.org/10.1016/S0304-3800(03)00131-5 doi: 10.1016/S0304-3800(03)00131-5
    [3] L. Chen, F. Chen, L. Chen, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a constant prey refuge, Nonlinear Anal.: Real World Appl., 11 (2010), 246–252. https://doi.org/10.1016/j.nonrwa.2008.10.056 doi: 10.1016/j.nonrwa.2008.10.056
    [4] V. Křivan, Effects of optimal antipredator behavior of prey on predator-prey dynamics: the role of refuges, Theor. Popul. Biol., 53 (1998), 131–142. https://doi.org/10.1006/tpbi.1998.1351 doi: 10.1006/tpbi.1998.1351
    [5] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342
    [6] P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16–31. https://doi.org/10.2307/2333042 doi: 10.2307/2333042
    [7] F. Chen, L. Chen, X. Xie, On a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal.: Real World Appl., 10 (2009), 2905–2908. https://doi.org/10.1016/j.nonrwa.2008.09.009 doi: 10.1016/j.nonrwa.2008.09.009
    [8] J. D. Murray, Mathematical biology Ⅱ: spatial models and biomedical applications, New York: Springer, 2001.
    [9] R. P. Agarwal, P. J. Wong, Advanced topics in difference equations, Springer Science and Business Media, 2013.
    [10] C. Celik, O. Duman, Allee effect in a discrete-time predator-prey system, Chaos Solitons Fract., 40 (2009), 1956–1962. https://doi.org/10.1016/j.chaos.2007.09.077 doi: 10.1016/j.chaos.2007.09.077
    [11] W. Ko, K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, J. Differ. Equ., 231 (2006), 534–550. https://doi.org/10.1016/j.jde.2006.08.001 doi: 10.1016/j.jde.2006.08.001
    [12] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006
    [13] Y. Huang, F. Chen, L. Zhong, Stability analysis of a prey-predator model with Holling type Ⅲ response function incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672–683. https://doi.org/10.1016/j.amc.2006.04.030 doi: 10.1016/j.amc.2006.04.030
    [14] S. M. S. Rana, Chaotic dynamics and control of discrete ratio-dependent predator-prey system, Discrete Dyn. Nat. Soc., 2017 (2017), 1–13. https://doi.org/10.1155/2017/4537450 doi: 10.1155/2017/4537450
    [15] K. S. Al-Basyouni, A. Q. Khan, Discrete-time predator-prey model with bifurcations and chaos, Math. Probl. Eng., 2020 (2020), 1–14. https://doi.org/10.1155/2020/8845926 doi: 10.1155/2020/8845926
    [16] O. Mehrjooee, S. Fathollahi Dehkordi, M. Habibnejad Korayem, Dynamic modeling and extended bifurcation analysis of flexible-link manipulator, Mech. Based Des. Struct. Mach., 48 (2020), 87–110. https://doi.org/10.1080/15397734.2019.1665542 doi: 10.1080/15397734.2019.1665542
    [17] P. Chakraborty, U. Ghosh, S. Sarkar, Stability and bifurcation analysis of a discrete prey-predator model with square-root functional response and optimal harvesting, J. Biol. Syst., 28 (2020), 91–110. https://doi.org/10.1142/S0218339020500047 doi: 10.1142/S0218339020500047
    [18] W. Liu, D. Cai, Bifurcation, chaos analysis and control in a discrete-time predator-prey system, Adv. Differ. Equ., 2019 (2019), 1–22. https://doi.org/10.1186/s13662-019-1950-6 doi: 10.1186/s13662-019-1950-6
    [19] J. R. Beddington, C. A. Free, J. H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature, 255 (1975), 58–60. https://doi.org/10.1038/255058a0 doi: 10.1038/255058a0
    [20] F. Chen, Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems, Appl. Math. Comput., 182 (2006), 3–12. https://doi.org/10.1016/j.amc.2006.03.026 doi: 10.1016/j.amc.2006.03.026
    [21] Q. Fang, X. Li, M. Cao, Dynamics of a discrete predator-prey system with Beddington-DeAngelis function response, Appl. Math., 3 (2012), 389–394. https://doi.org/10.4236/am.2012.34060 doi: 10.4236/am.2012.34060
    [22] H. N. Agiza, E. M. Elabbasy, H. El-Metwally, A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type Ⅱ, Nonlinear Anal.: Real World Appl., 10 (2009), 116–129. https://doi.org/10.1016/j.nonrwa.2007.08.029 doi: 10.1016/j.nonrwa.2007.08.029
    [23] K. Zhuang, Z. Wen, Dynamical behaviors in a discrete predator-prey model with a prey refuge, Int. J. Math. Comput. Sci., 5 (2011), 1149–1151.
    [24] E. A. Grove, G. Ladas, Periodicities in nonlinear difference equations, Chapman and Hall/CRC, 2004. https://doi.org/10.1201/9781420037722
    [25] A. Wikan, Discrete dynamical systems with an introduction to discrete optimization problems, London, UK, 2013.
    [26] M. R. S. Kulenović, G. Ladas, Dynamics of second order rational difference equations: with open problems and conjectures, Chapman and Hall/CRC, 2001.
    [27] E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, CRC Press, 2007.
    [28] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2
    [29] Y. A. Kuznetsov, Elements of applied bifurcation theorey, New York: Springer, 2004. https://doi.org/10.1007/978-1-4757-3978-7
    [30] W. B. Zhang, Discrete dynamical systems, bifurcations and chaos in economics, Elsevier, 2006.
    [31] C. Lei, X. Han, W. Wang, Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor, Math. Biosci. Eng., 19 (2022), 6659–6679. https://doi.org/10.3934/mbe.2022313 doi: 10.3934/mbe.2022313
    [32] X. Han, C. Lei, Bifurcation and turing instability analysis for a space-and time-discrete predator-prey system with smith growth function, Chaos Solitons Fract., 166 (2023), 112910. https://doi.org/10.1016/j.chaos.2022.112910 doi: 10.1016/j.chaos.2022.112910
    [33] S. N. Elaydi, An introduction to difference equations, New York: Springer, 1996. https://doi.org/10.1007/978-1-4757-9168-6
    [34] S. Lynch, Dynamical systems with applications using Mathematica, Boston: Birkhäuser, 2007.
    [35] D. Auerbach, C. Grebogi, E. Ott, J. A. Yorke, Controlling chaos in high dimensional systems, Phys. Rev. Lett., 69 (1992), 3479. https://doi.org/10.1103/PhysRevLett.69.3479 doi: 10.1103/PhysRevLett.69.3479
    [36] F. J. Romeiras, C. Grebogi, E. Ott, W. P. Dayawansa, Controlling chaotic dynamical systems, Phys. D: Nonlinear Phenom., 58 (1992), 165–192. https://doi.org/10.1016/0167-2789(92)90107-X doi: 10.1016/0167-2789(92)90107-X
    [37] X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Solitons Fract., 18 (2003), 775–783. https://doi.org/10.1016/S0960-0779(03)00028-6 doi: 10.1016/S0960-0779(03)00028-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1065) PDF downloads(95) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog