Research article Special Issues

Orientable vertex transitive embeddings of $ {{\sf K}}_p $

  • Received: 07 February 2023 Revised: 27 March 2023 Accepted: 07 April 2023 Published: 23 April 2023
  • MSC : 20B15, 20B30, 05C25, 05C30

  • In [J. Combin. Theory Ser. B, 99 (2009), 447-454)], Li characterized the classification of vertex-transitive embeddings of complete graphs, and proposed how to enumerate such maps. In this paper, we study the counting problem of orientable vertex-transitive embeddings of $ {{\sf K}}_p $, where $ p\geq 5 $ is a prime. Moreover, we obtain the number of non-isomorphic orientable vertex-transitive complete maps with $ p $ vertices.

    Citation: Xue Yu, Qingshan Zhang. Orientable vertex transitive embeddings of $ {{\sf K}}_p $[J]. AIMS Mathematics, 2023, 8(7): 15024-15034. doi: 10.3934/math.2023767

    Related Papers:

  • In [J. Combin. Theory Ser. B, 99 (2009), 447-454)], Li characterized the classification of vertex-transitive embeddings of complete graphs, and proposed how to enumerate such maps. In this paper, we study the counting problem of orientable vertex-transitive embeddings of $ {{\sf K}}_p $, where $ p\geq 5 $ is a prime. Moreover, we obtain the number of non-isomorphic orientable vertex-transitive complete maps with $ p $ vertices.



    加载中


    [1] N. L. Biggs, Cayley maps and symmetrical maps, Proc. Cambridge Philos. Soc., 72 (1972), 381–386. https://doi.org/10.1017/s0305004100047216 doi: 10.1017/s0305004100047216
    [2] N. L. Biggs, Classification of complete maps on orientable surfaces, Rend. Mat.(6), 4 (1971), 645–655.
    [3] N. L. Biggs, A. T. White, Permutation groups and combinatorial structures, vol. 33 of London Mathematical Society Lecture Note Series, Cambridge-New York: Cambridge University Press, 1979.
    [4] A. Devillers, W. Jin, C. H. Li, C. E. Praeger, On normal 2-geodesic transitive Cayley graphs, J. Algebraic Combin., 39 (2014), 903–918. https://doi.org/10.1007/s10801-013-0472-7 doi: 10.1007/s10801-013-0472-7
    [5] J. D. Dixon, B. Mortimer, Permutation groups, vol. 163 of Graduate Texts in Mathematics, New York: Springer-Verlag, 1996. http://dx.doi.org/10.1007/978-1-4612-0731-3
    [6] S. F. Du, J. H. Kwak, R. Nedela, Regular embeddings of complete multipartite graphs, Eur. J. Combin., 26 (2005), 505–519. https://doi.org/10.1016/j.ejc.2004.02.010 doi: 10.1016/j.ejc.2004.02.010
    [7] W. W. Fan, C. H. Li, The complete bipartite graphs with a unique edge-transitive embedding, J. Graph Theory, 87 (2018), 581–586. https://doi.org/10.1002/jgt.22176 doi: 10.1002/jgt.22176
    [8] W. W. Fan, C. H. Li, H. P. Qu, A classification of orientably edge-transitive circular embeddings of ${\rm{K}}_{p^e, p^f}$, Ann. Comb., 22 (2018), 135–146. https://doi.org/10.1007/s00026-018-0373-5 doi: 10.1007/s00026-018-0373-5
    [9] W. W. Fan, C. H. Li, N. E. Wang, Edge-transitive uniface embeddings of bipartite multi-graphs, J. Algebr. Comb., 2 (2019), 125–134. https://doi.org/10.1007/s10801-018-0821-7 doi: 10.1007/s10801-018-0821-7
    [10] Y. Q. Feng, J. H. Kwak, J. X. Zhou, Enumerating reflexible 2-cell embeddings of connected graphs, Sci. China Math., 56 (2013), 933–950. https://doi.org/10.1007/s11425-012-4544-2 doi: 10.1007/s11425-012-4544-2
    [11] R. Jajcay, R. Nedela, Half-regular Cayley maps, Graphs Combin., 31 (2015), 1003–1018. https://doi.org/10.1007/s00373-014-1428-y doi: 10.1007/s00373-014-1428-y
    [12] L. D. James, Imbeddings of the complete graph, Ars Combin., 16 (1983), 57–72.
    [13] L. D. James, Edge-symmetric orientable imbeddings of complete graphs, European J. Combin., 11 (1990), 133–144. https://doi.org/10.1016/S0195-6698(13)80067-4 doi: 10.1016/S0195-6698(13)80067-4
    [14] L. D. James, G. A. Jones, Regular orientable imbeddings of complete graphs, J. Combin. Theory Ser. B, 39 (1985), 353–367. https://doi.org/10.1016/0095-8956(85)90060-7 doi: 10.1016/0095-8956(85)90060-7
    [15] V. P. Korzhik, H. J. Voss, On the number of nonisomorphic orientable regular embeddings of complete graphs, J. Combin. Theory Ser. B, 81 (2001), 58–76. https://doi.org/10.1006/jctb.2000.1993 doi: 10.1006/jctb.2000.1993
    [16] V. P. Korzhik, H. J. Voss, Exponential families of non-isomorphic non-triangular orientable genus embeddings of complete graphs, J. Combin. Theory Ser. B, 86 (2002), 186–211. https://doi.org/10.1006/jctb.2002.2122 doi: 10.1006/jctb.2002.2122
    [17] C. H. Li, Vertex transitive embeddings of complete graphs, J. Combin. Theory Ser. B, 99 (2009), 447–454. https://doi.org/10.1016/j.jctb.2008.09.002 doi: 10.1016/j.jctb.2008.09.002
    [18] B. P. Mull, R. G. Rieper, A. T. White, Enumerating $2$-cell imbeddings of connected graphs, Proc. Amer. Math. Soc., 103 (1988), 321–330. https://doi.org/10.2307/2047573 doi: 10.2307/2047573
    [19] R. B. Richter, J. Širáň, R. Jajcay, T. W. Tucker, M. E. Watkins, Cayley maps, J. Combin. Theory Ser. B, 95 (2005), 189–245. https://doi.org/10.1016/j.jctb.2005.04.007 doi: 10.1016/j.jctb.2005.04.007
    [20] J. Širáň, T. W. Tucker, Characterization of graphs which admit vertex-transitive embeddings, J. Graph Theory, 55 (2007), 233–248. https://doi.org/10.1002/jgt.20239 doi: 10.1002/jgt.20239
    [21] M. Škoviera, J. Širáň, Regular maps from Cayley graphs. Ⅰ. Balanced Cayley maps, Proc. Discrete Math., 109 (1992), 265–276. https://doi.org/ 10.1016/0012-365X(92)90296-R doi: 10.1016/0012-365X(92)90296-R
    [22] X. Yu, B. G. Lou, The edge-regular complete maps, Open Math., 18 (2020), 1719–1726. https://doi.org/10.1515/math-2020-0115 doi: 10.1515/math-2020-0115
    [23] X. Yu, Enumeration of orientable vertex-transitive embeddings of ${{\sf K}}_{p^d}$. Submitted.
    [24] X. Yu, C. H. Li, B. G. Lou, Orientable vertex primitive complete maps. Submitted.
    [25] X. Yu, B. G. Lou, W. W. Fan, The complete bipartite graphs which have exactly two orientably edge-transitive embeddings, Ars Math. Contemp., 18 (2020), 371–379. https://doi.org/10.26493/1855-3974.1900.cc1 doi: 10.26493/1855-3974.1900.cc1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1062) PDF downloads(51) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog