Research article Special Issues

Spatial patterns for a predator-prey system with Beddington-DeAngelis functional response and fractional cross-diffusion

  • Received: 07 March 2023 Revised: 23 May 2023 Accepted: 28 May 2023 Published: 08 June 2023
  • MSC : 35B32, 35J65, 92D25

  • In this paper, we investigate a predator-prey system with fractional type cross-diffusion incorporating the Beddington-DeAngelis functional response subjected to the homogeneous Neumann boundary condition. First, by using the maximum principle and the Harnack inequality, we establish a priori estimate for the positive stationary solution. Second, we study the non-existence of non-constant positive solutions mainly by employing the energy integral method and the Poincaré inequality. Finally, we discuss the existence of non-constant positive steady states for suitable large self-diffusion $ d_2 $ or cross-diffusion $ d_4 $ by using the Leray-Schauder degree theory, and the results reveal that the diffusion $ d_2 $ and the fractional type cross-diffusion $ d_4 $ can create spatial patterns.

    Citation: Pan Xue, Cuiping Ren. Spatial patterns for a predator-prey system with Beddington-DeAngelis functional response and fractional cross-diffusion[J]. AIMS Mathematics, 2023, 8(8): 19413-19426. doi: 10.3934/math.2023990

    Related Papers:

  • In this paper, we investigate a predator-prey system with fractional type cross-diffusion incorporating the Beddington-DeAngelis functional response subjected to the homogeneous Neumann boundary condition. First, by using the maximum principle and the Harnack inequality, we establish a priori estimate for the positive stationary solution. Second, we study the non-existence of non-constant positive solutions mainly by employing the energy integral method and the Poincaré inequality. Finally, we discuss the existence of non-constant positive steady states for suitable large self-diffusion $ d_2 $ or cross-diffusion $ d_4 $ by using the Leray-Schauder degree theory, and the results reveal that the diffusion $ d_2 $ and the fractional type cross-diffusion $ d_4 $ can create spatial patterns.



    加载中


    [1] W. Chen, M. Wang, Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion, Math. Comput. Model., 42 (2005), 31–44. http://dx.doi.org/10.1016/j.na.2006.08.022 doi: 10.1016/j.na.2006.08.022
    [2] R. S. Cantrell, C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 257 (2001), 206–222. https://doi.org/10.1006/jmaa.2000.7343 doi: 10.1006/jmaa.2000.7343
    [3] D. T. Dimitrov, H. V. Kojouharov, Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis, Appl. Math. Comput., 162 (2005), 523–538. https://doi.org/10.1016/j.amc.2003.12.106 doi: 10.1016/j.amc.2003.12.106
    [4] D. Luo, Q. Wang, Global bifurcation and pattern formation for a reaction-diffusion predator-prey model with prey-taxis and double Beddington-DeAngelis functional responses, Nonlinear Anal.-Real, 67 (2022), 103638. https://doi.org/10.1016/j.nonrwa.2022.103638 doi: 10.1016/j.nonrwa.2022.103638
    [5] Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157
    [6] Y. Lou, W. M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differ. Equations, 154 (1999), 157–190. https://doi.org/10.1006/jdeq.1998.3559 doi: 10.1006/jdeq.1998.3559
    [7] F. Yi, Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling, 281 (2021), 379–410. https://doi.org/10.1016/j.jde.2021.02.006
    [8] Q. Meng, L. Yang, Steady state in a cross-diffusion predator-prey model with the Beddington-DeAngelis functional response, Nonlinear Anal.-Real, 45 (2019), 401–413. https://doi.org/10.1016/j.nonrwa.2018.07.012 doi: 10.1016/j.nonrwa.2018.07.012
    [9] J. F. Zhang, Spatial patterns of a fractional type cross-diffusion Holling-Tanner model, Comput. Math. Appl., 76 (2018), 957–965. https://doi.org/10.1016/j.camwa.2018.05.033 doi: 10.1016/j.camwa.2018.05.033
    [10] P. Xue, Y. Jia, C. Ren, X. Li, Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross- diffusions, Math. Model. Nat. Pheno., 16 (2021), 1–25. https://doi.org/10.1051/mmnp/2021017 doi: 10.1051/mmnp/2021017
    [11] Y. Jia, P. Xue, Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal.-Real, 32 (2016), 229–241. https://doi.org/10.1016/j.nonrwa.2016.04.012 doi: 10.1016/j.nonrwa.2016.04.012
    [12] C. Li, Existence of positive solution for a cross-diffusion predator-prey system with Holling type-II functional response, Chaos Soliton. Fract., 99 (2017), 226–232. https://doi.org/10.1016/j.chaos.2017.04.001 doi: 10.1016/j.chaos.2017.04.001
    [13] S. Li, Y. Yamada, Effect of cross-diffusion prey-preydator model with a protection zone II, J. Math. Anal. Appl., 461 (2018), 971–992. https://doi.org/10.1016/j.jmaa.2017.12.029 doi: 10.1016/j.jmaa.2017.12.029
    [14] A. Okubo, Diffusion and ecological problems: Mathematical models, Springer-Verlag, Berlin, 1980.
    [15] J. Cao, H. Sun, P. Hao, P. Wang, Bifurcation and turing instability for a predator-prey model with nonlinear reaction cross-diffusion, Appl. Math. Model., 89 (2021), 1663–1677. https://doi.org/10.1016/j.apm.2020.08.030 doi: 10.1016/j.apm.2020.08.030
    [16] X. Chen, Y. Qi, M. Wang, A strongly coupled predator-prey system with non-monotonic functional response, Nonlinear Anal., 67 (2007), 1966–1979. https://doi.org/10.1016/j.na.2006.08.022 doi: 10.1016/j.na.2006.08.022
    [17] Y. Lou, W. M. Ni, S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Cont. Dyn. Syst., 10 (2004), 435–458.
    [18] J. H. P. Dawes, M. O. Souza, A derivation of Holling's type I, II and III functional responses in predator-prey systems, J. Theor. Biol., 327 (2013), 11–22. https://doi.org/10.1016/j.jtbi.2013.02.017 doi: 10.1016/j.jtbi.2013.02.017
    [19] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equation of second order, Springer-Verlag, Berlin, 2001.
    [20] X. Zeng, Non-constant positive steady states of a prey-predator system with cross-diffusions, J. Math. Anal. Appl., 332 (2007), 989–1009. https://doi.org/10.1006/jmaa.2000.7343
    [21] R. K. Ghaziani, W. Govaerts, C. Sonck, Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response, Nonlinear Anal.-Real, 13 (2012), 1451–1465. https://doi.org/10.1016/j.nonrwa.2011.11.009 doi: 10.1016/j.nonrwa.2011.11.009
    [22] R. Peng, J. P. Shi, Non-existence of non-constant positive steady states of two Holling-type II predator-prey systems: Strong interaction case, J. Differ. Equations, 247 (2009), 866–886. https://doi.org/10.1016/j.jde.2009.03.008 doi: 10.1016/j.jde.2009.03.008
    [23] Y. Jia, A sufficient and necessary condition for the existence of positive solutions for a prey-predator system with Ivlev-type functional response, Appl. Math. Lett., 24 (2011), 1084–1088. https://doi.org/10.1016/j.aml.2011.01.027 doi: 10.1016/j.aml.2011.01.027
    [24] J. Sugie, Two-parameter bifurcation in a predator-prey system of Ivlev type, J. Math. Anal. Appl., 217 (1998), 349–371. https://doi.org/10.1006/jmaa.1997.5700 doi: 10.1006/jmaa.1997.5700
    [25] Y. Jia, J. Wu, H. K. Xu, Positive solutions of a Lotka-Volterra competition model with cross-diffusion, Comput. Math. Appl., 68 (2014), 1220–1228. https://doi.org/10.1016/j.camwa.2014.08.016 doi: 10.1016/j.camwa.2014.08.016
    [26] W. Ko, K. Ryu, A qualitative study on general Gause-type predator-prey models with constant diffusion rates, J. Math. Anal. Appl., 344 (2008), 217–230. https://doi.org/10.1016/j.jmaa.2008.03.006 doi: 10.1016/j.jmaa.2008.03.006
    [27] K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differ. Equations, 250 (2011), 3988–4009. https://doi.org/10.1016/j.jde.2011.01.026 doi: 10.1016/j.jde.2011.01.026
    [28] Y. Peng, T. Zhang, Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect, Appl. Math. Comput., 275 (2016), 1–12. https://doi.org/10.1016/j.amc.2015.11.067 doi: 10.1016/j.amc.2015.11.067
    [29] L. Nirenberg, Topics in nonlinear functional analysis, American Mathematical Socity, Providence, Rhode Island, 2001.
    [30] H. Wang, P. Liu, Pattern dynamics of a predator-prey system with cross-diffusion, Allee effect and generalized Holling IV functional response, Chaos Soliton. Fract., 171 (2023), 113456. https://doi.org/10.1016/j.chaos.2023.113456 doi: 10.1016/j.chaos.2023.113456
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1208) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog