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Abstract: In this paper, we investigate a predator-prey system with fractional type cross-diffusion
incorporating the Beddington-DeAngelis functional response subjected to the homogeneous Neumann
boundary condition. First, by using the maximum principle and the Harnack inequality, we establish a
priori estimate for the positive stationary solution. Second, we study the non-existence of non-constant
positive solutions mainly by employing the energy integral method and the Poincaré inequality. Finally,
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1. Introduction

In this paper, we investigate the following predator-prey system with cross-diffusion incorporating
the Beddington-DeAngelis functional response subjected to the homogeneous Neumann boundary
condition 

ut − d1∆[(1 + d3v)u] = u
(
1 − u − v

1+au+bv

)
, (x, t) ∈ Ω × (0,∞),

vt − d2∆
[(

1 + d4
1+u

)
v
]

= v
(
− d + cu

1+au+bv

)
, (x, t) ∈ Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

∂νu = ∂νv = 0, (x, t) ∈ ∂Ω × (0,∞),

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, N ≥ 1 is an integer, ∆ =
∑N

i=1 is the
Laplace operator in RN , ν represents the outward unit normal vector on the boundary ∂Ω with ∂ν = ∂

∂ν
,

and the homogeneous Neumann boundary condition means that the individuals do not cross the habitat
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boundary, u and v represent the densities of prey and predator, respectively. The parameters a, b, c and
d are all positive constants. The interaction between the prey and the predator of system (1.1) is the
most usually used the Beddington-DeAngelis functional response

p(u, v) =
u

1 + au + bv
,

which was introduced by Beddington and DeAngelis, where, the parameters a, b, c > 0 are the
saturation constant for an alternative prey, the predator interference and the consumption rate,
respectively. The term au in the denominator describing mutual interference among the preys while
the term bv describing that among the predators. It is well known that the Beddington-DeAngelis
functional response has desirable qualitative features of ratio-dependent form but takes care of their
controversial behaviors at low densities. Compared with Holling-II functional response, Beddington
and DeAngelis response, which considered both the mutual interference among the predator and
the handing time of each prey, is more reasonable. One can refer to [1–4] for more details on the
background of this functional response.

In view of the inhomogeneous distribution of the predator and prey in different spatial locations
with a fixed domain Ω at any given time and the natural tendency of each species to diffuse, we take
into account the predator-prey system (1.1), with self- and cross-diffusions. The role of diffusion into
the modelling has been extensively studied. Generally speaking, the diffusion process usually gives
rise to a stabilizing effect so that generates a constant equibrium state, namely, the spatial pattern of
morphogen or chemical concentration. System (1.1) implies that, in addition to the dispersive force,
the diffusion also depends population pressure from other species. The flux of diffusion to the predators
of the system is

−O
(
1 +

d4

1 + u
)
v = −

(
1 +

d4

1 + u
)
Ov +

d4v
(1 + u)2Ou.

The part d4v
(1+u)2Ou of the diffusion flux is directed toward the increasing densities of the prey, which

implies the preys respond to attack of team for the movement of predators. The part −
(
1 + d4

1+u

)
Ov

of the diffusion flux is directed toward the decreasing densities of the predators, which indicates
that the predators move towards the preys. The interplay between these diffusion terms and the
population dynamics given by (1.1) can lead to complex spatial patterns in the predator-prey system.
For example, it may be possible for regions with high predator density to drive local extinction of
the prey, leading to further reduction in predator density and eventual recolonization of the area by
prey. This kind of spatial dynamics is often observed in natural ecological systems, and can have
important implications for conservation efforts and management of ecosystems. For more details about
the biological significance, one can see [5–7,14,15] for references, in which the predator-prey system
with self- and cross-diffusions were considered.

In [8], by employing the Fixed point index theory, the authors studied the existence of the non-
constant steady state of a predator-prey with the Beddington-DeAngelis functional response, in which
the cross-diffusions are linear. Paper [9] considers the stationary problem of the Holling-Tanner
prey-predator model with fractional type cross-diffusion terms, and result reveals that the large cross-
diffusion can create spatial patterns. Papers [10,11] mainly consider the existence of the non-constant
positive solutions by making use of the Leray-Schauder degree theory, Furthermore, the authors also
discussed the Turing instability of a Gause-type predator-prey system with self-and cross-diffusions
mainly by considering the influence of the diffusion terms.
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Although lots of researchers have investigated the predator-prey system with nonlinear
diffusions(see[12–15] for reference), there are still many open problem on the spatial patterns cased
by the linear and nonlinear cross-diffusions. To our knowledge, there are few works focused on
system (1.1), which included the Beddington-DeAngelis functional response and a fractional cross-
diffusion for the predator. Paper [16] considers a strongly coupled partial differential equation model
with a non-monotonic functional response—a Holling type-IV function in a bounded domain with
no flux boundary condition. The authors proved a number of existence and non-existence results
concerning non-constant steady states of the underlying system. The main purpose of this paper
is to research into the effect of the self- and cross-diffusions on the non-constant positive solutions
of system (1.1), namely, we investigate the existence and non-existence of the non-constant positive
solutions to the following elliptic system

−d1∆[(1 + d3v)u] = u
(
1 − u − v

1+au+bv

)
, x ∈ Ω,

−d2∆
[(

1 + d4
1+u

)
v
]

= v
(
− d + cu

1+au+bv

)
, x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω.

(1.2)

In system (1.2), the cross-diffusions implies that the movement of the species at any spatial location
is influenced by the gradient of the concentration of the interacting species at that location. By taking
these facts into account, the system can capture much more richer phenomena, and this deserves our
careful study and discussion.

The organization of this article is as follows. In Section 2, we give a priori estimate for the positive
stationary solution by using the maximum principle and the Harnack inequality. In Section 3, we
study the non-existence of non-constant positive solutions mainly by employing the energy integral
method and the Poincaré inequality. Moreover, we also discuss the existence of non-constant positive
steady states for suitable self- and cross-diffusion coefficients by employing the Leray-Schauder degree
theory. The results reveal that the diffusion d2 and the fractional type cross-diffusion d4 can create
spatial patterns.

2. The priori estimate of non-constant positive solutions

We know that there exist three non-negative constant solutions (0, 0),(1, 0) and (u∗, v∗) for
system (1.1), where

u∗ =
1

2bc
[
ad + bc − c +

√
(ad + bc − c)2 + 4bcd

]
, v∗ =

c
d

(1 − u∗)u∗,

and u∗ < 1 provided by the condition c > d(1+a). Therefore, it is necessary to assume that c > d(1+a)
holds throughout this paper so as to (u∗, v∗) is the unique positive constant solution of system (1.2). For
convenience, we denote Θ = Θ(a, b, c, d) in the sequel.

In this section, in order to obtain a priori estimates of the positive solution of system (1.2), we
first present the following lemmas, named the Maximum principle and Harnack inequality[17,18],
respectively.
Lemma 2.1. Let φ(u, x) ∈ C(Ω × R1). If u ∈ C2(Ω) ∩C1(Ω) satisfies ∆u(x) + φ(u, x) ≥ 0 in Ω, ∂νu = 0
on ∂Ω and achieves its maximum at a point x0 ∈ Ω, then −∆u(x0) ≥ 0.
Lemma 2.2. Assume that c(x) ∈ C(Ω) and let ω(x) ∈ C2(Ω) ∩C1(Ω) be a positive solution to

∆ω(x) + c(x)ω(x) = 0, x ∈ Ω, ∂νω = 0, x ∈ ∂Ω.
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Then there exists a positive constant C∗ = C∗(||c||∞,Ω), such that maxΩ ω ≤ C∗minΩ ω.
Theorem 2.3. Let C1, D1,D2,D3 be given positive constants. Then there exists a positive constant
C = C(Θ,D1,D2,D3,Ω) which is independent of di(i = 1, 2, 3, 4), such that every positive solution
(u, v) of system (1.2), satisfies C−1 < u(x), v(x) < C for d1 ≥ D1, d2 ≥ D2, d3 ≤ D3, C1 >

1
a+c and b < 1.

Proof. Let φ1 = d1[(1 + d3v)u], φ2 = d2
[(

1 + d4
1+u

)
v
]
. Assume that there exists a point x0 ∈ Ω such that

φ1(x0) = maxΩ φ1. According to Lemma 2.1, we obtain u(x0) < 1, v(x0) ≤ 1+a
1−b , then

max
Ω

u ≤
1
d1

max
Ω

φ1 ≤
1
d1

(1 + d3v(x0))u(x0) ≤
1

D1

(
1 + D3

1 + a
1 − b

)
, C1,

where b < 1, D1 and D3 are given positive constants with d1 ≥ D1, d3 ≤ D3. Let x1 ∈ Ω be a point such
that φ2(x1) = maxΩ φ2. Then, by the maximum principle, we have

v(x1) ≤
(a + c)C1 − 1

b
,

where C1 >
1

a+c . Therefore, we can obtain

max
Ω

v ≤
1
d2

maxΩ φ2

minΩ

(
1 + d4

1+u(x)

) =
1 + d4

1 + d4
1+C1

v(x1) ≤ (1 + C1)
(a + c)C1 − 1

b
, C2.

as 1+d4

1+
d4

1+C1

is strictly increasing with respect to d4 and satisfies limd4→+∞
1+d4

1+
d4

1+C1

= 1+C1. Thus, we obtain

the upper bounds of the solution (u, v).
Hereinafter, we show that (u, v) has a lower bound. For convenience, we set

c1(x) =
1

d1(1 + d3v)
(
1 − u −

v
1 + au + bv

)
, c2(x) =

1

d2
(
1 + d4

1+u

)( − d +
cu

1 + au + bv
)
.

Then, system (1.2) can be written as
−∆φ1(x) = c1(x)φ1(x), x ∈ Ω,

−∆φ2(x) = c2(x)φ2(x), x ∈ Ω,

∂νφ1 = ∂νφ2 = 0, x ∈ ∂Ω.

(2.1)

Since ||c1(x)||∞ < C3(Θ,D1,D2,D3,Ω), according to Lemma 2.2, we know that there exists a positive
constant C4 = C4(Θ,D1,D2,D3,Ω) and C5 = C5(Θ,D1,D2,D3,Ω) such that

max
Ω

φ1 ≤ C4 min
Ω

φ1,

and
maxΩ u
minΩ u

≤
maxΩ φ1

minΩ φ1
·

1 + d3 maxΩ v
1 + d3 minΩ v

≤ C4(1 + d3 max
Ω

v) ≤ C4(1 + D3C2) , C5. (2.2)

Similarly, as ||c2(x)||∞ < 1
D2

(d + c
a ) , C6, Lemma 2.2 holds for φ2, that is,

max
Ω

φ2 ≤ C7 min
Ω

φ2,
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for some positive constant C7. Therefore, we have

maxΩ v
minΩ v

≤
maxΩ φ2

minΩ φ2
·

maxΩ

(
1 + d4

1+u

)
minΩ

(
1 + d4

1+u

) ≤ C7
1 + d4

1 + d4
1+C1

≤ C7(1 + C1) , C8, (2.3)

for some positive constant C8. Thus, if the positive solution (u, v) does not have positive lower bound,
then there exists a sequence {(d1i, d2i, d3i, d4i)} satisfying d1i ≥ D1, d2i ≥ D3 and d3i ≤ D3 such that the
corresponding solutions of system (1.2) satisfy minΩ ui → 0, or minΩ vi → 0 as i → ∞. Due to the
Harnack inequality, we have maxΩ ui → 0, or maxΩ vi → 0 as i→ ∞.

By integrating the second equation of system (1.2) over Ω, we obtain
∫

Ω
v
(
− d + cu

1+au+bv

)
dx = 0.

Thus, there must exists a point x1 ∈ Ω such that cu(x1)
1+au(x1)+bv(x1) = d, which implies u(x1) ≥ d

c . Thus,
combined with (2.2), we have

min
Ω

u ≥
maxΩ u

C5
=

d
cC5

.

Similarly, by integrating the first equation of system (1.2) over Ω, we obtain∫
Ω

u
(
1 − u −

v
1 + au + bv

)
dx = 0.

Thus, there must exists a point x2 ∈ Ω such that

1 − u(x2) −
v(x2)

1 + au(x2) + bv(x2)
= 0.

Furthermore, we get

max
Ω

v ≥ v(x2) ≥
v(x2)

1 + au(x2) + bv(x2)
= 1 − u(x2) > 0.

According to the inequality (2.3), if minΩ v→ 0, we have maxΩ v→ 0. Hence, we get a contradiction.
This shows v has a positive lower bound. This completes the proof.
Remark 2.4. Theorem 2.3 shows that if d1 is not too large or not too small, d2 is not too small and d3

is not too large, then the solutions of system (1.2) are bounded, that is to say, there exists a ball B(C)
such that all the positive solution (u, v) of (1.2) satisfying (u, v) ∈ B(C). We can also conclude that the
bound of the solution is not constrained by the cross diffusion d4.

3. Non-existence and existence of the non-constant positive stationary solutions

The purpose of this section is to study the non-existence and existence of non-constant positive
stationary solutions of system (1.2) by taking the self- and cross-diffusions as parameters. The main
method used to prove the existence of non-constant positive solutions is the Leray-Schauder degree.
The results show that the the self-diffusion d2 and the fractional type cross-diffusion d4 can create
spatial patterns while d1 and d3 failed.
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3.1. Non-existence of the non-constant positive stationary solutions

This subsection is devoted to investigating the non-existence of non-constant positive solutions of
system (1.2). We mainly use the energy integral method and the well-known Poincaré inequality.
Let µ1 be the smallest positive eigenvalue of the operator −∆ subject to the homogeneous Neumann
boundary condition. For convenience, we set

ũ =
1
|Ω|

∫
Ω

udx and ṽ =
1
|Ω|

∫
Ω

vdx.

Through some calculations and analysis, we obtain the following result.
Theorem 3.1. Let d1, d2, d4 be fixed positive constants and d3 = 0. If there exists a positive constant
C̃ = C̃(Θ,D1,Ω), such that d1 > max{D1, C̃(1 + d2

2d2
4)}, d2 > D2 and d4 < D4, then system (1.2) has no

non-constant positive solution.
Proof. Assume that (u, v) is a positive solution of system (1.2). We multiply u−ũ

u and v−ṽ
v to the equations

of system (1.2), respectively, and integrate the equation by parts in Ω. Then, we have

d1

∫
Ω

ũ
u2 (1 + d3v)|Ou|2dx + d2

∫
Ω

ṽ
v2

(
1 +

d4

1 + u
)
|Ov|2dx − d2d4

∫
Ω

ṽ
v(1 + u)2OuOvdx

=

∫
Ω

[
− 1 +

aṽ
(1 + aũ + bṽ)(1 + au + bv)

]
(u − ũ)2dx

−

∫
Ω

[ bcũ
(1 + aũ + bṽ)(1 + au + bv)

]
(v − ṽ)2dx

+

∫
Ω

[ bṽ − (1 + aũ + bṽ)
(1 + aũ + bṽ)(1 + au + bv)

+
c(1 + aũ + bṽ) − acũ

(1 + aũ + bṽ)(1 + au + bv)

]
(u − ũ)(v − ṽ)dx.

According to Theorem 2.3, for d1 with a fixed small D1, there exists a large enough positive constant
C1 = C1(Θ,D1,D2,D4,Ω), such that

C1
−1 < u(x), v(x), ũ, ṽ < C1.

Therefore, we have

d1

C3
1

∫
Ω

|Ou|2dx +
d2

C3
1

∫
Ω

|Ov|2dx

≤

∫
Ω

aC1(u − ũ)2dx −
∫

Ω

bc
(1 + aC1 + bC1)2C1

(v − ṽ)2dx

+

∫
Ω

(bcC1 + c)|u − ũ||v − ṽ|dx + d2d4C2
1

∫
Ω

|Ou||Ov|dx.

It follows the Young’s inequality[19–21],

d1

C3
1

∫
Ω

|Ou|2dx +
d2

C3
1

∫
Ω

|Ov|2dx

≤

∫
Ω

[
aC1 +

(bcC1 + c)2

4K

]
(u − ũ)2dx +

∫
Ω

[
K −

bc
(1 + aC1 + bC1)2C1

]
(v − ṽ)2dx

AIMS Mathematics Volume 8, Issue 8, 19413–19426.
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+
d2

2d2
4C4

1

4K

∫
Ω

|Ou|2dx + K
∫

Ω

|Ov|2dx,

where K is a arbitrary small positive constant. For convenience, we take d3 = 0 and K =

min{ d2
C3

1
, bc

(1+aC1+bC1)2C1
}. By employing the Cauchy inequality and Poincaré inequality[22,23], we have

d1

C3
1

∫
Ω

|Ou|2dx ≤
∫

Ω

[
aC1 +

(bcC1 + c)2

4K

]
(u − ũ)2dx +

d2
2d2

4C4
1

4K

∫
Ω

|Ou|2dx

≤ C2(Θ,D1,D2,D4,Ω)
∫

Ω

(u − ũ)2dx + d2
2d2

4C3(Θ,D1,D2,D4,Ω)
∫

Ω

|Ou|2dx

≤
(C2(Θ,D1,D2,D4,Ω)

µ1
+ d2

2d2
4C3(Θ,D1,D2,D4,Ω)

) ∫
Ω

|Ou|2dx

≤ C4(Θ,D1,D2,D4,Ω)(1 + d2
2d2

4)
∫

Ω

|Ou|2dx.

Therefore, we can assert that u ≡ ũ, v ≡ ṽ if d1 > max{D1, C̃(1 + d2
2d2

4)}, d2 > D2 and d4 < D4.

3.2. Existence of non-constant positive solutions

In this subsection, we mainly consider the existence of non-constant positive solution of
system (1.2) by taking the self- and cross- diffusion coefficients as parameters. Particularly, combing
with Theorems 2.3 and 3.1, we consider the cases that the self-diffusion d2 or the cross-diffusion d4 is
large enough. The key method used in this subsection to prove the existence of non-constant positive
solutions is the well-known Leray-Schauder degree theory [24–26], which has been extensively used
in many different papers. In order to establish the existence of stationary patterns of system (1.2), for
convenience, we first introduce some notations and definitions. We define

ω = (u, v)T , G(ω) =
(
u
(
1 − u −

v
1 + au + bv

)
, v

(
− d +

cu
1 + au + bv

))T
,

Φ(ω) = (φ1(ω), φ2(ω))T =
(
d1(1 + d3v)u, d2

(
1 +

d4

1 + u
)
v
)T
, Λ = (d1, d2, d3, d4)

and set
X = {ω = (u, v)T ∈ (C2(Ω) ∩C1(Ω))2|∂νu = ∂νv = 0 on ∂Ω},

X+ = {ω ∈ X|u > 0, v > 0 on Ω}.

B(C) = {(u, v)T ∈ X|C−1 < u, v < C},

where C is a positive constant provided by Theorem 2.3. Let 0 = µ0 < µ1 < µ2 < · · · be the
eigenvalues of the operator −∆ and {µi, ψi}

∞
i=0 be a complete set of eigenpairs for the operator −∆ in

Ω under homogeneous Neumann boundary condition. Moreover, we can decompose X = ⊕∞i=0Xi and
Xi = ⊕

dim E(µi)
j=1 Xi j, where Xi is the eigenspace corresponding to the eigenvalue µi.

Therefore, system (1.2) can be rewritten as{
−∆Φ(ω) = G(ω), x ∈ Ω,

∂νω = 0, x ∈ ∂Ω.
(3.1)

AIMS Mathematics Volume 8, Issue 8, 19413–19426.
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It is clear that system (3.1), as well as system (1.2), has a constant positive equilibrium point, denoted
by ω∗ = (u∗, v∗)T , where u∗, v∗ are given in Section 2.

By direct computation, we obtain ∂Φ(u,v)
∂(u,v) =

[
d1 + d1d3v d1d3u
−d2d4v
(1+u)2 d2 + d2d4

1+u

]
and it is easy to show that

det
[
∂Φ(u,v)
∂(u,v)

]
> 0 for all non-negative solutions (u, v)T . Therefore, we know that Φ−1

ω exists and

det
[
∂Φ(u,v)
∂(u,v)

]−1
is positive. Then, system (1.2) can also be rewritten as

F(Λ;ω) , ω − (I − ∆)−1{Φ−1
ω (ω)[G(ω) + ∇ωΦωω(ω)∇ω] + ω} = 0, (3.2)

where I is the identity operator and (I − ∆)−1 is the inverse of the operator I − ∆ on X with the
homogeneous Neumann boundary condition. Since F(Λ; ·) is a compact perturbation of the identity
operator, the Leray-Schauder degree deg(F(Λ; ·), 0, B) is well-defined if F(Λ;ω) , 0 for all ω ∈ ∂B.
Furthermore, we notice that the linearizition of the operator F(Λ;ω) at the equilibrium point ω∗ is

DωF(Λ;ω∗) = I − (I − ∆)−1[Φ−1
ω (ω∗)Gω(ω∗) + I],

and Xi is invariant under DωF(Λ;ω∗) for every integer i ≥ 0. What’s more, one can check that λ is an
eigenvalue of the operator DωF(Λ;ω∗) on Xi if and only if λ is an eigenvalue of the matrix

I −
1

1 + µi
[Φω−1(ω∗)Gω(ω∗) + I] =

1
1 + µi

[µiI −Φω−1(ω∗)Gω(ω∗)].

Denote

H(Λ,ω∗; µi) , det[µiI −Φω−1(ω∗)Gω(ω∗)] = det{[Φω(ω∗)]−1} det[µΦω(ω∗) − Gω(ω∗)].

As the sign of the

det{I −
1

1 + µi
[Φω−1(ω∗)Gω(ω∗) + I]}

is determined by the number of negative eigenvalue of the matrix

I −
1

1 + µi
[Φω−1(ω∗)Gω(ω∗) + I],

then both H(Λ,ω∗; µi) and det{I − 1
1+µi

[Φω−1(ω∗)Gω(ω∗) + I]} have the same sign. Hence, if
H(Λ,ω∗; µi) , 0, the number of eigenvalues with negative real parts of DωF(Λ;ω∗) on Xi is odd
if and only if H(Λ,ω∗; λi) < 0.

If H(Λ,ω∗; µi) , 0 for all integer i ≥ 0, then 0 is not an eigenvalue of the operator DωF(Λ;ω∗).
This indicates that DωF(Λ;ω∗) is a homeomorphism operator from the space X to X. Then the
implicit function theorem shows that the equilibrium point ω = ω∗ is an isolated solution of equation
F(Λ;ω) = 0. In summary, according to Leray-Schauder degree theory, we present the following results
(One can refer to [27,28]).
Lemma 3.3. Assume that the matrix µiI −Φω−1(ω∗)Gω(ω∗) is non-singular for each i > 0. Then

index(F(Λ; ·),ω∗) = (−1)τ, τ =
∑

i≥0,H(D,ω∗;µi)<0

dim E(µi).
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In order to calculate index(F(Λ; ·),ω∗), we will consider the sign of H(Λ,ω∗; µi) in detail. Notice that
det{Φω(ω∗)−1} > 0, so we only need to consider det[µΦω(ω∗) − Gω(ω∗)]. Review that{

u∗ = 1
2bc

[
ad + bc − c +

√
(ad + bc − c)2 + 4bcd

]
,

v∗ = c
d (1 − u∗)u∗

and
1 − u∗ −

v∗

1 + au∗ + bv∗
= 0, −d +

cu∗

1 + au∗ + bv∗
= 0.

Then, by direct calculation, we obtain

Φω(ω∗) =

[
d1(1 + d3v∗) d1d3u∗
−d2d4v∗

(1+u∗)2 d2 + d2d4
1+u∗

]
,

Gω(ω∗) =

 1 − 2u∗ − v∗(1+bv∗)
(1+au∗+bv∗)2 −

u∗(1+au∗)
(1+au∗+bv∗)2

cv∗(1+bv∗)
(1+au∗+bv∗)2 − bcu∗v∗

(1+au∗+bv∗)2


=

[
1 − 2u∗ − (1 − u∗)2(b + 1

v∗
)
−d2

c2 (a + 1
u∗ )

c(1 − u∗)2(b + 1
v∗
)

bd(u∗ − 1)

]
and

det[µΦω(ω∗) − Gω(ω∗)] = Aµ2 + Bµ + C , ψ(µ), (3.3)

where

A = d1(1 + d3v∗)
(
d2 +

d2d4

1 + u∗
)

+ d1d2d3d4
u∗v∗

(1 + u∗)2 > 0,

B = (1 − u∗)
[
d1d3du∗(1 + bv∗) +

d2d4c(1 − u∗)(1 + bv∗)
(1 + u∗)2

+d1bd(1 + d3v∗) −
(
d2 +

d2d4

1 + u∗
) c(1 + bv∗)
1 + au∗ + bv∗

]
,

C =
d2

c2 (a +
1
u∗

)c(1 − u∗)2(b +
1
v∗

)
−

[
1 − 2u∗ − (1 − u∗)2

(
b +

1
v∗

)]
bd(1 − u∗).

Denote µ1(Λ) and µ2(Λ) be the two roots of the equation Aµ2 + Bµ + C = 0 with Reµ1(Λ) ≤ Reµ2(Λ).
We notice that C > 0 guaranteed by 2u∗ + (1 − u∗)2

(
b + 1

v∗

)
> 1 , and we obtain

µ1(Λ)µ2(Λ) =
C
A
> 0.

Moreover, we have

lim
d2→+∞

ψ(µ)
d2

= A1µ
2 + B1µ, lim

d4→+∞

ψ(µ)
d4

= A2µ
2 + B2µ,

where

A1 = lim
d2→+∞

A
d2

= d1(1 + d3v∗)
(
1 +

d4

1 + u∗
)

+ d1d3d4
u∗v∗

(1 + u∗)2 > 0,
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B1 = lim
d2→+∞

B
d2

= (1 − u∗)
[d4c(1 − u∗)(1 + bv∗)

(1 + u∗)2 −
(
1 +

d4

1 + u∗
) c(1 + bv∗)
1 + au∗ + bv∗

]
,

A2 = lim
d4→+∞

A
d4

= d1d2(1 + d3v∗)
1

1 + u∗
+ d1d2d3

u∗v∗

(1 + u∗)2 > 0,

B2 = lim
d4→+∞

B
d4

= B = (1 − u∗)
[d2c(1 − u∗)(1 + bv∗)

(1 + u∗)2 −
d2

1 + u∗
c(1 + bv∗)

1 + au∗ + bv∗
]
.

We notice that A1, A2 are always positive while B1, B2 may change the sign. In conclusion, we can
obtain the following lemmas.
Lemma 3.4. Assume that di(i = 1, 3, 4) are all fixed and B1 < 0. Then there exists a positive constant
d̂2, such that for d2 ≥ d̂2, the two roots µ̃1(d2) and µ̃2(d2) of the equation ψ(µ) = 0 are all real and
satisfy

lim
d2→+∞

µ̃1(d2) = 0, lim
d2→+∞

µ̃2(d2) = −
B1

A1
,

where {
ψ(µ, d2) < 0, i f µ ∈ (µ̃1(d2), µ̃2(d2)),
ψ(µ, d2) > 0, i f µ ∈ (−∞, µ̃1(d2)) ∪ (µ̃2(d2),+∞).

(3.4)

Lemma 3.5. Assume that di(i = 1, 2, 3) are all fixed and B2 < 0. Then there exists a positive constant
d̂4, such that for d4 ≥ d̂4, the two roots µ̃1(d4) and µ̃2(d4) of the equation ψ(µ) = 0 are all real and
satisfy

lim
d4→+∞

µ̃1(d4) = 0, lim
d4→+∞

µ̃2(d4) = −
B2

A2
,

where {
ψ(µ, d4) < 0, i f µ ∈ (µ̃1(d4), µ̃2(d4)),
ψ(µ, d4) > 0, i f µ ∈ (−∞, µ̃1(d4)) ∪ (µ̃2(d4),+∞).

(3.5)

In the following, by using Leray-Schauder degree theory [29,30], we investigate the existence of
non-constant positive solutions to system (1.2) with respect to the diffusion coefficients di, i = 1, 2, 3, 4.
We mainly consider the cases that d2 or d4 is large enough and in view of Lemmas 3.4 and 3.5, we can
obtain the following theorems. We only prove Theorems 3.6 and 3.7 can be finished similarly.
Theorem 3.6. Assume that di(i = 1, 2, 3) are all fixed and B1 < 0. For µ̃ be given by the limit of
Lemma 3.5, if µ̃ ∈ (µn, µn+1) for some integer n ≥ 1 and the sum τn =

∑n
i=1 dim E(µi) is odd, then there

exists a positive constant d̂4 such that system (1.2) has at least one non-constant positive solution when
d4 ≥ d̂4.

Proof. According to Lemma 3.4, there exists a positive constant d̂4, such that (3.4) holds and 0 = µ0 <

µ̃1 < µ̃2, µ̃2 ∈ (µn, µn+1) when d4 ≥ d̂4.
We shall prove the result by contradiction. Suppose on the contrary that the result is not true for

some d4 = d̃4 ≥ d̂4, that is, system (1.2) does not have any positive non-constant positive solution and
index(F(Λ; ·),ω∗) = 1 when d4 ≥ d̂4. If we take Λ∗ = (d̂1, d2, d3, d̂4), then,

deg(F(Λ∗; ·), 0, B) = 1, (3.6)

where, d̂1 is a moderately large constant provided by Theorem 2.3.
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For t ∈ [0, 1], we define a homotopy as
−∆[(td1 + (1 − t)d̂1 + td1d3v)u] = u

(
1 − u − v

1+au+bv

)
, x ∈ Ω,

−∆
[(

td2 + ((1 − t)d̂4 + td4) d2
1+u

)
v
]

= v
(
− d + cu

1+au+bv

)
, x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω.

(3.7)

Thus, ω is a non-constant positive solution of system (3.7) if and only if ω is a non-constant positive
solution of the following problem

F̃(t,Λ;ω) , ω − (I − ∆)−1{Φ̃ω}
−1(ω, t)[G(ω) + ∇ωΦ̃ωω(ω, t)∇ω] + ω} = 0, (3.8)

on X, where Φ̃ =
(
(td1 + (1 − t)d̂1 + td1d3v)u,

(
td2 + ((1 − t)d̂4 + td4) d2

1+u

)
v
)
. It is clear that

Φ(ω) = Φ̃(ω, 1), F(Λ;ω) = F̃(1,Λ;ω), F(Λ∗;ω) = F̃(0,Λ;ω).

Theorem 3.1 shows that F̃(0,Λ;ω) = 0 only has the constant positive solution ω∗ in X. Through some
calculation, we obtain

DωF̃(t,ω∗) = I − (I − ∆)−1[Φω−1(t,ω∗)Gω(ω∗) + I].

Furthermore, in view of Lemma 3.5, for t = 1, we have{
H(Λ,ω∗; µi) < 0, when 1 ≤ i ≤ n,
H(Λ,ω∗; µi) > 0, when i > n.

Then, 0 is not an eigenvalue of the matrix µiI − [Φω]−1Gω(ω∗), and τn =
∑n

i=1 dim E(µi) is odd.
Moreover, in view of Lemma 3.3, we know that

index(F̃(1,Λ; ·),ω∗) = (−1)τ = −1.

According to Theorem 2.3, we know that all the positive solutions (u, v) of the system (1.2) are in
B(C) for large enough constant C. Therefore, system (3.6) has no solution on ∂B for any t ∈ [0, 1],
and deg(F̃(t,Λ; ·), 0, B) is well defined. According to the homotopy invariance of the Leray-Schauder
degree, we obtain

deg(F̃(0,Λ; ·), 0, B) = deg(F̃(1,Λ; ·), 0, B). (3.9)

Therefore, we have

deg(F̃(0,Λ; ·), 0, B) = deg(F(Λ∗; ·), 0, B) = index(F(Λ; ·),ω∗) = 1, (3.10)

deg(F̃(1,Λ; ·), 0, B) = deg(F(Λ; ·), 0, B) = index(F̃(1,Λ; ·),ω∗) = −1. (3.11)

From (3.9)–(3.11), we obtain a contradiction. Hence, system (1.2) has at least one non-constant
positive solution and the proof is finished.
Theorem 3.7. Assume that di(i = 1, 3, 4) are all fixed and B2 < 0. For µ̃

′

be given by the limit of
Lemma 3.4, if µ̃

′

∈ (µn, µn+1) for some integer n ≥ 1 and the sum τn =
∑n

i=1 dim E(µi) is odd, then there
exists a positive constant d̂2 such that system (1.2) has at least one non-constant positive solution when
d2 ≥ d̂2.
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4. Conclusions

This paper investigates the existence of positive stationary solutions of a predator-prey system
with Beddington-DeAngelis functional response and fractional cross-diffusion d4 subjected to the
homogeneous Neumann boundary condition. The priori estimate result shows that if d1 is not too
large or not too small, d2 is not too small and d3 is not too large, then the solutions of system (1.2) are
bounded and we can assert that the bound of the solution is not constrained by the cross diffusion d4.

Moreover, from the proof the non-existence of non-constant positive solution, we obtain the sufficient
condition for the non-existence, that is, d2d4 is small enough. Finally, we discuss the existence of
non-constant positive solution and the results indicate that the system admits a non-constant positive
solution provided by the self-diffusion d2 or the cross-diffusion d4 is large enough, which means the
diffusion d2 and the fractional type cross-diffusion d4 can create spatial patterns.

Furthermore, this study contributes to the growing field of fractional diffusion models in ecology.
Fractional diffusion is a generalization of classical diffusion that allows for non-local interactions and
has been shown to better capture the long-range effects observed in many ecological systems. The
results of this paper demonstrate the potential for fractional cross-diffusion to play an important role in
determining the existence and properties of positive solutions in predator-prey systems.
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