Research article

Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture

  • Received: 05 April 2024 Revised: 03 May 2024 Accepted: 13 May 2024 Published: 03 June 2024
  • MSC : 65L10, 65R20

  • Due to factors such as climate change, natural disasters, and deforestation, most measurement processes and initial data may have errors. Therefore, models with imprecise parameters are more realistic. This paper constructed a new predator-prey model with an interval biological coefficient by using the interval number as the model parameter. First, the stability of the solution of the fractional order model without a diffusion term and the Hopf bifurcation of the fractional order $ \alpha $ were analyzed theoretically. Then, taking the diffusion coefficient of prey as the key parameter, the Turing stability at the equilibrium point was discussed. The amplitude equation near the threshold of the Turing instability was given by using the weak nonlinear analysis method, and different mode selections were classified by using the amplitude equation. Finally, we numerically proved that the dispersal rate of the prey population suppressed the spatiotemporal chaos of the model.

    Citation: Xiao-Long Gao, Hao-Lu Zhang, Xiao-Yu Li. Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture[J]. AIMS Mathematics, 2024, 9(7): 18506-18527. doi: 10.3934/math.2024901

    Related Papers:

  • Due to factors such as climate change, natural disasters, and deforestation, most measurement processes and initial data may have errors. Therefore, models with imprecise parameters are more realistic. This paper constructed a new predator-prey model with an interval biological coefficient by using the interval number as the model parameter. First, the stability of the solution of the fractional order model without a diffusion term and the Hopf bifurcation of the fractional order $ \alpha $ were analyzed theoretically. Then, taking the diffusion coefficient of prey as the key parameter, the Turing stability at the equilibrium point was discussed. The amplitude equation near the threshold of the Turing instability was given by using the weak nonlinear analysis method, and different mode selections were classified by using the amplitude equation. Finally, we numerically proved that the dispersal rate of the prey population suppressed the spatiotemporal chaos of the model.



    加载中


    [1] Z. M. Bi, S. T. Liu, M. Ouyang, Spatial dynamics of a fractional predator-prey system with time delay and Allee effect, Chaos Soliton. Fract., 162 (2022), 112434. https://doi.org/10.1016/j.chaos.2022.112434 doi: 10.1016/j.chaos.2022.112434
    [2] M. X. Chen, R. C. Wu, Steady states and spatiotemporal evolution of a diffusive predator-prey model, Chaos Soliton. Fract., 170 (2023), 113397. https://doi.org/10.1016/j.chaos.2023.113397 doi: 10.1016/j.chaos.2023.113397
    [3] M. Y. Qian, Y. T. Huang, Y. R. Cao, J. Y. Wu, Y. M. Xiong, Ecological network construction and optimization in Guangzhou from the perspective of biodiversity conservation, J. Environ. Manage., 336 (2023), 117692. https://doi.org/10.1016/j.jenvman.2023.117692 doi: 10.1016/j.jenvman.2023.117692
    [4] J. Bhattacharyya, A. Chatterjee, Dynamics of a fishery model with contions therhold harvesting policy and its leverage for conservation and management, J. Biol. Syst., 30 (2022), 913–943. https://doi.org/10.1142/S0218339022500334 doi: 10.1142/S0218339022500334
    [5] X. P. Yan, C. H. Zhang, Global stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type, Appl. Math. Lett., 114 (2021), 106904. https://doi.org/10.1016/j.aml.2020.106904 doi: 10.1016/j.aml.2020.106904
    [6] W. Ou, C. J. Xu, Q. Y. Cui, Y. C. Pang, Z. X. Liu, J. W. Shen, et al., Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Mathematics, 9 (2024), 1622–1651. https://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
    [7] Y. Yao, Bifurcations of a Leslie Gower predator-prey system with ratiodependent Holling IV functional response and prey harvesting, Math. Method. Appl. Sci., 43 (2020), 2137–2170. https://doi.org/10.1002/mma.5944 doi: 10.1002/mma.5944
    [8] F. R. Zhang, X. H. Zhang, Y. Li, C. P. Li, Hopf bifurcation of a delayed predator-prey model with nonconstant death rate and constant-rate prey harvesting, Int. J. Bifurcat. Chaos, 28 (2018), 1850179. https://doi.org/10.1142/S0218127418501791 doi: 10.1142/S0218127418501791
    [9] M. X. Chen, S. Ham, Y. Choi, H. Kim, J. Kim, Pattern dynamics of a harvested predator-prey model, Chaos Soliton. Fract., 176 (2023), 114153. https://doi.org/10.1016/j.chaos.2023.114153 doi: 10.1016/j.chaos.2023.114153
    [10] Q. Y. Cui, C. J. Xu, W. Ou, Y. C. Pang, Z. X. Liu, P. L. Li, et al., Bifurcation behavior and hybrid controller design of a 2D Lotka-Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 4808. https://doi.org/10.3390/math11234808 doi: 10.3390/math11234808
    [11] Q. L. Wang, Z. J. Liu, X. G. Zhang, R. A. Cheke, Incorporating prey refuge into a predator-prey system with imprecise parameter estimates, Comp. Appl. Math., 36 (2017), 1067–1084. https://doi.org/10.1007/s40314-015-0282-8 doi: 10.1007/s40314-015-0282-8
    [12] D. Pal, G. S. Mahapatra, G. P. Samanta, A study of bifurcation of prey-predator model with time delay and harvesting using fuzzy parameters, J. Biol. Syst., 26 (2018), 339–372. https://doi.org/10.1142/S021833901850016X doi: 10.1142/S021833901850016X
    [13] X. Y. Meng, Y. Q. Wu, Dynamical analysis of a fuzzy phytoplankton-zooplankton model with refuge, fishery protection and harvesting, J. Appl. Math. Comput., 63 (2020), 361–389. https://doi.org/10.1007/s12190-020-01321-y doi: 10.1007/s12190-020-01321-y
    [14] M. Liu, M. Fan, Permanence of stochastic Lotka-Volterra systems, J. Nonlinear Sci., 27 (2017), 425–452. https://doi.org/10.1007/s00332-016-9337-2 doi: 10.1007/s00332-016-9337-2
    [15] A. Hening, D. H. Nguyen, Stochastic Lotka-Volterra food chains, J. Math. Biol., 77 (2018), 135–163. https://doi.org/10.1007/s00285-017-1192-8 doi: 10.1007/s00285-017-1192-8
    [16] D. Pal, G. S. Mahaptra, G. P. Samanta, Optimal harvesting of prey-predator system with interval biological parameters: A bioeconomic model, Math. Biosci., 241 (2013), 181–187. https://doi.org/10.1016/j.mbs.2012.11.007 doi: 10.1016/j.mbs.2012.11.007
    [17] M. Ramezanadeh, M. Heidari, O. S. Fard, A. H. Borzabadi, On the interval differential equation: novel solution methodology, Adv. Differ. Equ., 2015 (2015), 338. https://doi.org/10.1186/s13662-015-0671-8 doi: 10.1186/s13662-015-0671-8
    [18] U. Ghosh, B. Mondal, M. S. Rahman, S. Sarkar, Stability analysis of a three species food chain model with linear functional response via imprecise and parametric approach, J. Comput. Sci.-Neth., 54 (2021), 101423. https://doi.org/10.1016/j.jocs.2021.101423 doi: 10.1016/j.jocs.2021.101423
    [19] E. Balci, Predation fear and its carry-over effect in a fractional order prey-predator model with prey refuge, Chaos Soliton. Fract., 175 (2023), 114016. https://doi.org/10.1016/j.chaos.2023.114016 doi: 10.1016/j.chaos.2023.114016
    [20] C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
    [21] C. Han, Y. L. Wang, Z. Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simulat., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
    [22] J. Ning, Y. L. Wang, Fourier spectral method for solving fractional-in-space variable coefficient KdV-Burgers equation, Indian J. Phys., 98 (2024), 1727–1744. https://doi.org/10.1007/s12648-023-02934-2 doi: 10.1007/s12648-023-02934-2
    [23] Y. Galviz, G. M. Souza, U. Lüttge, The biological concept of stress revisited: relations of stress and memory of plants as a matter of space-time, Theor. Exp. Plant Physiol., 34 (2022), 239–264. https://doi.org/10.1007/s40626-022-00245-1 doi: 10.1007/s40626-022-00245-1
    [24] C. J. Xu, M. X. Liao, P. L. Li, L. Y. Yao, Q. W. Qin, Y. L. Shang, Chaos control for a fractional-order Jerk system via time delay feedback controller and mixed controller, Fractal Fract., 5 (2021), 257. https://doi.org/10.3390/fractalfract5040257 doi: 10.3390/fractalfract5040257
    [25] T. Patel, H. Patel, An analytical approach to solve the fractional-order $(2+1)$-dimensional Wu-Zhang equation, Math. Method. Appl. Sci., 46 (2023), 479–489. https://doi.org/10.1002/mma.8522 doi: 10.1002/mma.8522
    [26] T. Patel, R. Meher, Adomian decomposition sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation, SpringerPlus, 5 (2016), 489. https://doi.org/10.1186/s40064-016-2106-8 doi: 10.1186/s40064-016-2106-8
    [27] C. Han, Y. L. Wang, Z. Y. Li, Numerical solutions of space fractional variable-coefficient kdv-modified kdv equation by Fourier spectral method, Fractals, 29 (2021), 2150246. https://doi.org/10.1142/S0218348X21502467 doi: 10.1142/S0218348X21502467
    [28] X. Y. Li, C. Han, Y. L. Wang, Novel patterns in fractional-in-space nonlinear coupled fitzHugh-Nagumo models with Riesz fractional derivative, Fractal Fract., 6 (2022), 136. https://doi.org/10.3390/fractalfract6030136 doi: 10.3390/fractalfract6030136
    [29] F. Z. Tian, Y. L. Wang, Z. Y. Li, Numerical simulation of soliton propagation behavior for the fractional-in-space NLSE with variable coefficients on unbounded domain, Fractal Fract., 8 (2024), 163. https://doi.org/10.3390/fractalfract8030163 doi: 10.3390/fractalfract8030163
    [30] C. Han, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fract., 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207
    [31] Y. L. Wang, L. N. Jia, H. L. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 1544367. https://doi.org/10.1080/00207160.2018.1544367 doi: 10.1080/00207160.2018.1544367
    [32] M. X. Chen, Q. Q. Zheng, Diffusion-driven instability of a predator-prey model with interval biological coefficients, Chaos Soliton. Fract., 172 (2023), 113494. https://doi.org/10.1016/j.chaos.2023.113494 doi: 10.1016/j.chaos.2023.113494
    [33] X. L. Gao, H. L. Zhang, Y. L. Wang, Z. Y. Li, Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment, Fractal Fract., 8 (2024), 264. https://doi.org/10.3390/fractalfract8050264 doi: 10.3390/fractalfract8050264
    [34] W. F. Tang, Y. L. Wang, Z. Y. Li, Numerical simulation of fractal wave propagation of a multi-dimensional nonlinear fractional-in-space Schrödinger equation, Phys. Scr., 98 (2023), 045205. https://doi.org/10.1088/1402-4896/acbdd0 doi: 10.1088/1402-4896/acbdd0
    [35] X. L. Gao, Y. L. Wang, Z. Y. Li, Chaotic dynamic behavior of a fractional-order financial systems with constant inelastic demand, in press.
    [36] Z. Y. Li, Q. T. Chen, Y. L. Wang, X. Y. Li, Solving two-sided fractional super-diffusive partial differential equations with variable coefficients in a class of new reproducing kernel spaces, Fractal Fract., 6 (2022), 492. https://doi.org/10.3390/fractalfract6090492 doi: 10.3390/fractalfract6090492
    [37] A. Khan, H. Khan, J. F. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. https://doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026
    [38] A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Stability analysis of solutions and existence theory of fractional Lagevin equation, Alex. Eng. J., 60 (2021), 3641–3647. https://doi.org/10.1016/j.aej.2021.02.011 doi: 10.1016/j.aej.2021.02.011
    [39] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton. Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
    [40] A. Devi, A. Kumar, D. Baleanu, A. Khan, On stability analysis and existence of positive solutions for a general non-linear fractional differential equations, Adv. Differ. Equ., 2020 (2020), 300. https://doi.org/10.1186/s13662-020-02729-3 doi: 10.1186/s13662-020-02729-3
    [41] X. R. Lin, Y. C. Wang, J. F. Wang, W. X. Zeng, Dynamic analysis and adaptive modified projective synchronization for systems with Atangana-Baleanu-Caputo derivative: A financial model with nonconstant demand elasticity, Chaos Soliton. Fract., 160 (2022), 112269. https://doi.org/10.1016/j.chaos.2022.112269 doi: 10.1016/j.chaos.2022.112269
    [42] K. Baisad, S. Moonchai, Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-III functional response, Adv. Differ. Equ., 2018 (2018), 82. https://doi.org/10.1186/s13662-018-1535-9 doi: 10.1186/s13662-018-1535-9
    [43] I. Petráš, Fractional-order nonlinear systems: modeling, analysis and simulation, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18101-6
    [44] W. H. Deng, J. H. Lü, Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system, Phys. Lett. A, 369 (2007), 438–443. https://doi.org/10.1016/j.physleta.2007.04.112 doi: 10.1016/j.physleta.2007.04.112
    [45] U. Ghosh, S. Pal, M. Banerjee, Memory effect on Bazykin's prey-predator model: Stability and bifurcation analysis, Chaos Soliton. Fract., 143 (2021), 110531. https://doi.org/10.1016/j.chaos.2020.110531 doi: 10.1016/j.chaos.2020.110531
    [46] D. Barman, J. Roy, H. Alrabaiah, P. Panja, S. P. Mondal, S. Alam, Impact of predator incited fear and prey refuge in a fractional order prey predator model, Chaos Soliton. Fract., 142 (2021), 110420. https://doi.org/10.1016/j.chaos.2020.110420 doi: 10.1016/j.chaos.2020.110420
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(143) PDF downloads(21) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog