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Abstract: Due to factors such as climate change, natural disasters, and deforestation, most
measurement processes and initial data may have errors. Therefore, models with imprecise parameters
are more realistic. This paper constructed a new predator-prey model with an interval biological
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of the fractional order model without a diffusion term and the Hopf bifurcation of the fractional order
α were analyzed theoretically. Then, taking the diffusion coefficient of prey as the key parameter, the
Turing stability at the equilibrium point was discussed. The amplitude equation near the threshold
of the Turing instability was given by using the weak nonlinear analysis method, and different mode
selections were classified by using the amplitude equation. Finally, we numerically proved that the
dispersal rate of the prey population suppressed the spatiotemporal chaos of the model.
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1. Introduction

With the development of human civilization, maintaining ecological balance has become a major
challenge facing mankind. The predator-prey model is a mathematical model for studying the
interaction between predators and prey in ecosystems [1, 2]. It can be used to analyze the impact
of environmental changes or the introduction of new species. At present, about 28% of the assessed
species in the world are at risk of extinction [3]. In response to this situation, the implementation of
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a reasonable policy for the development of biological resources can protect populations from possible
extinction [4].

Yan [5] studied the global stability of a delayed diffusion predator-prey model with Michaelis-
Menten-type prey capture. Ou [6] obtained the parameter conditions for the stability and bifurcation
of two delayed predator-prey systems. Yao [7] studied the dynamics of a Leslie-Gower predator-prey
system with proportionally dependent Holling IV functional response and a constant prey capture rate.
Zhang [8] applied a delayed predator-prey model with non-constant mortality and a constant prey
capture rate to investigate the effect of time delay on equilibrium stability. Chen [9] studied the pattern
dynamics of a harvested predator-prey model with no-flux boundary conditions. Cui [10] proposed a
new Lotka-Volterra commensal symbiosis system accompanying delay. Therefore, motivated by the
above discussion, we consider the following predator-prey model with a harvesting term:{

∂u
∂t = d1∆u + u (1 − u) − auv

u+v − bu,
∂v
∂t = d2∆v + βuv

u+v − αv,
(1.1)

where u (x, t) and v (x, t) represent the densities of the prey and predators at location x and time t,
respectively. ∆ is the Laplacian operator. d1 and d2 represent the diffusion rates of prey u and predator
v, respectively. a and β are two positive constants. bu implies harvesting of the prey population, and
αv denotes harvesting of the predator population.

It can be seen from the existing literature that the parameters in most biological models are
considered to be accurate. However, due to factors such as climate change, natural disasters, and
deforestation, most measurement processes and initial data may have errors [11]. Therefore, models
with imprecise parameters are more realistic. A model with imprecise biological parameters can
be reflected by random, fuzzy, and interval methods. In fuzzy methods, imprecise parameters
are represented in the form of fuzzy sets or fuzzy numbers. Nowadays there are many studies on
fuzzy parameters of dynamical systems [12, 13]. In the stochastic method, imprecise parameters are
represented by random variables with appropriate probability distribution [14, 15]. Different from
random and fuzzy methods, Pal [16] first proposed the concept of an interval to describe the imprecise
parameters of ecological models. This method is easier and more effective than the first two methods.
Since then, many scholars have used an interval method to study ecological models with inaccurate
parameters. Pal uses the exponential form of interval parameters, and Ramezanadeh uses the linear
form of interval parameters [17, 18].

Fractional derivatives have memory and nonlocality. In biological systems, memory refers to
the ability of the system to retain the information of past events and use it to influence future
behavior [19–22]. Due to the fact that most populations have long-term memory [23, 24], integer
order population systems ignore the influence of memory. Therefore, we consider a fractional order
predator-prey model. There are many ways to solve fractional differential equations, for example, the
fractional reduced differential transform method [25], the Adomian decomposition sumudu transform
method [26], the Fourier spectral method [27–30], and the piecewise reproducing kernel method [31].
In this paper, the Euler discrete method is used. It can describe the ecological process of the reaction-
diffusion equation on a long time scale and has the advantage of fast calculation speed.

The main contributions of this paper are as follows:

1) Due to other factors, most measurement processes and initial data may have errors. In this paper,
a more realistic interval parameter model is used.
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2) The Turing pattern is theoretically classified and verified by numerical methods. Some different
results are obtained.

3) We numerically prove that the dispersal rate of the prey population will suppress the
spatiotemporal chaos of the model.

The rest of this article is organized as follows: In Section 2, we establish a model and explore the
positivity and uniqueness of solutions for models without diffusion terms. In Section 3, we discuss
the stability of the model and Hopf bifurcation. In Section 4, the Turing instability of the model is
discussed. In Section 5, weak nonlinear analysis is used to derive the amplitude equation. In Section
6, we conduct numerical simulations. Conclusions are given in Section 7.

2. Model and preliminaries

2.1. Model formation

To establish our model, we introduce the following two definitions.

Definition 2.1. ( [16, 18, 32]) An interval number A is defined by A = [á, à] = {y|á ≤ y ≤ à, y ∈ R}.
Moreover, each real number a ∈ R can be represented by [a, a]. Let A = [á, à] and B = [á, à]. Define
the following algorithms:

1) A + B = [á, à] + [b́, b̀] = [á + b́, à + b̀] for á + b́ > 0;
2) A − B = [á, à] − [b́, b̀] = [á − b́, à − b̀] for á − b́ > 0;
3) ρA = ρ [á, à] =

[
ρá, ρà

]
for ρ ≥ 0;

4) ρA = ρ [á, à] =
[
ρà, ρá

]
for ρ < 0.

Definition 2.2. ( [16, 18, 32]) Let a > 0 and b > 0 have interval [a, b]. The interval-valued function is
presented as f (r) = a1−rbr for r ∈ [0, 1].

Some authors have found that the dynamic behavior of a fractional model [33–36] is much more
complex than that of the corresponding integer model. According to Definition 2.1, we consider the
following fractional predator-prey model with interval biological coefficient Dα

t u = d1∆u + u (1 − u) − [á,à]uv
u+v − [b́, b̀]u,

Dα
t v = d2∆v + [β́,β̀]uv

u+v − [ά, ὰ] v,
(2.1)

where á > 0, b́ > 0, ά > 0, and β́ > 0. Now, there are many types of fractional derivatives [34–
38]. Here, Dα

t represents Caputo fractional differentiation. It has the advantage of relatively simple
calculation, which is defined as follows:

Dα
t u (t) = 1

Γ(1−α)

∫ t

0
(t − τ) u

′ (τ) dτ , t > 0. (2.2)

Using Definition 2.2, we get Dα
t u = d1∆u + u (1 − u) − à1−r áruv

u+v − b̀1−rb́ru,
Dα

t v = d2∆v + β́1−r β̀ruv
u+v − ὰ

1−rάrv,
(2.3)

where 0 ≤ r ≤ 1.
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2.2. Positivity and uniqueness

In this section, we prove the positivity and uniqueness of the solution of the fractional order model
without a diffusion term.

The non-diffusion version of model (2.3) is as follows: Dα
t u = u (1 − u) − à1−r áruv

u+v − b̀1−rb́ru,
Dα

t v = β́1−r β̀ruv
u+v − ὰ

1−rάrv.
(2.4)

Theorem 2.3. All solutions of the model system (2.4) are nonnegative.

Proof. For a similar proof of Theorem (2.3), readers are referred to [19]. □

Theorem 2.4. The fractional system (2.4) has a unique solution under any nonnegative initial
conditions.

Proof. According to the method proposed in [39–41], we define the following operator: f1 (t, u) = u (1 − u) − à1−r áruv
u+v − b̀1−rb́ru,

f2 (t, v) = β́1−r β̀ruv
u+v − ὰ

1−rάrv.
(2.5)

Let

N1 = sup|| f1 (t, u)
Ca,b1

||,N2 = sup|| f2 (t, v)
Ca,b2

||, (2.6)

with

Ca,b1 = [t − a, t + a] × [u − b1, u + b1] = A1 × B1, (2.7)
Ca,b2 = [t − a, t + a] × [v − b2, v + b2] = A2 × B2. (2.8)

Using the Banach fixed point theorem, we can obtain the uniform norm:

|| f (t) ||∞ = sup| f (t) |, t ∈ [t − a, t + a] . (2.9)

The Picardis operator is as follows:

O : C (A1, B1, B2)→ C (A1, B1, B2) . (2.10)

This is defined as:

OX (t) = X0 (t) +
1

Γ (α)

∫ t

0
(t − τ)α−1 F (τ, X (τ)) dτ, (2.11)

where X (t) = [u (t) , v (t)]T , X0 (t) = [u0 (t) , v0 (t)]T , and F (t, X (t)) =
[
f1 (t, u) , f2 (t, v)

]T .
We assume that the solution of the model is bounded in a time period:

||X (t) ||∞ ≤ max {b1, b2} . (2.12)
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We can get:

||OX (t) − X0 (t) || = ||
1

Γ (α)

∫ t

0
(t − τ)α−1 F (τ, X (τ)) dτ|| (2.13)

≤
1

Γ (α)

∫ t

0
(t − τ)α−1

||F (τ, X (τ)) ||dτ ≤
Naα

Γ (α)
≤ aN ≤ b, (2.14)

with N = max {N1,N2} , b = max {b1, b2}, and a < b
N .

||OX1 (t) − OX2 (t) || = ||
1

Γ (α)

∫ t

0
(t − τ)α−1

{F (τ, X1 (τ)) − F (τ, X2 (τ))} dτ|| (2.15)

≤
1

Γ (α)

∫ t

0
(t − τ)α−1

||F (τ, X1 (τ)) − F (τ, X2 (τ)) ||dτ (2.16)

≤
β

Γ (α)

∫ t

0
(t − τ)α−1

||X1 (τ) − X2 (τ) ||dτ (2.17)

≤
βaα

Γ (α)
||X1 (τ) − X2 (τ) || ≤ aβ||X1 (τ) − X2 (τ) ||. (2.18)

Since F is a contraction and β < 1, we obtain aβ < 1, that is, the defined operator O is also a
contraction. Therefore, the uniqueness proof of the system solution is complete. □

3. Stability and Hopf bifurcation analysis

Here, we determine the equilibrium point of the system (2.4). By analyzing the stability of the
equilibrium point and the Hopf bifurcation, the conditions under which different states of the system
appear are given.

3.1. Stability analysis

Before determining the stability of the equilibrium point, we first give the stability criterion of the
fractional differential system.

Theorem 3.1. ( [42, 43]) Consider a fractional differential system

Dα
t x (t) = f (t, x (t)) . (3.1)

Let x∗ be an equilibrium point and the λi, (i = 1, 2, · · · , n) are eigenvalues of Jacobian matrix J =
∂ f
∂x∗

.

1) The equilibrium point x∗ is asymptotically stable if and only if

|arg (λi)| > α
π

2
, i = 1, 2, · · · , n. (3.2)

2) The equilibrium point x∗ is stable if and only if

|arg (λi)| ≥ α
π

2
, i = 1, 2, · · · , n. (3.3)
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3) The equilibrium point x∗ is unstable if and only if

∃ : |arg (λi)| < α
π

2
, i = 1, 2, · · · , n. (3.4)

Definition 3.2. ( [44]) The roots of the equation f (t, x (t)) = 0 are called the equilibria of fractional
differential system

Dα
t x (t) = f (t, x (t)) , (3.5)

where x (t) = (x1 (t) , x2 (t) , · · · , xn (t))T
∈ Rn, f (t, x (t)) ∈ Rn, and Dα

t x (t) =(
Dα1

t x1 (t) , Dα2
t x2 (t) , · · · , Dαn

t xn (t)
)T
, αi ∈ R

+, i = 1, 2, · · · , n.
From a biological perspective, we are only interested in the positive equilibrium point. Obtain the

equilibrium point by solving the following system of equations. f (u, v) = u (1 − u) − à1−r áruv
u+v − b̀1−rb́ru,

g (u, v) = β́1−r β̀ruv
u+v − ὰ

1−rάrv.
(3.6)

Denote by f (u, v) = 0 and g (u, v) = 0. The positive equilibrium point E∗ = (u∗, v∗) is obtained,
where

u∗ =
à1−rár

(
άrβ́rβ̀−rὰ1−r − β́

)
− b̀1−rb́rβ́ + β́

β́
, (3.7)

and

v∗ = −β́1−rβ̀rά−rὰr−1
(
à1−rár + b̀1−rb́r − 1

)
+

(
−árάrβ̀−rὰ1−rβ́r−1 + 2ár

)
à1−r + b́rb̀1−r − 1. (3.8)

We can obtain the Jacobi matrix for system (3.6) at the equilibrium point E∗ as follows:

J =
(
a11 a12

a21 a22

)
=

−ár à1−rv2
∗−(u∗+v∗)2(b́r b̀1−r+2u∗−1)

(u∗+v∗)2
−ár à1−ru2

∗

(u∗+v∗)2

β́1−r β̀rv2
∗

(u∗+v∗)2
−άrὰ1−r(u∗+v∗)2+β́1−r β̀ru2

∗

(u∗+v∗)2

 . (3.9)

As such, the characteristic equation at equilibrium point E∗ is read as follows:

λ2 − tr0λ + det0 = 0, (3.10)

where

tr0 = a11 + a22, det0 = a11a22 − a21a12. (3.11)

Roots of the characteristic equations are

λ1,2 =
tr0 ±

√
tr2

0 − 4 det0

2
. (3.12)

Through Theorem (3.1), we draw the following conclusions:
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Theorem 3.3. ( [45]) The stability of equilibrium point E∗ is determined by tr0, det0, and α.

If tr2
0 − 4 det0 ≥ 0, then,

1) The equilibrium point E∗ is asymptotically stable if and only if tr0 ≤ 0 and det0 > 0;
2) The equilibrium point E∗ is unstable if and only if tr0 > 0 or det0 < 0.

If tr2
0 − 4 det0 < 0, then,

1) The equilibrium point E∗ is stable if and only if απ
2 <

∣∣∣∣ tan−1

( √
4 det0 −tr2

0
tr0

) ∣∣∣∣;
2) The equilibrium point E∗ is unstable if and only if απ

2 >
∣∣∣∣ tan−1

( √
4 det0 −tr2

0
tr0

) ∣∣∣∣.
Proof. The eigenvalues are real when tr2

0 − 4 det0 ≥ 0.
For tr0 = 0, λ1,2 = ±i

√
det0 is obtained, therefore

∣∣∣arg
(
λ1,2

)∣∣∣ = π
2 > α

π
2 implies E∗ is asymptotically

stable; the eigenvalues are negative real when tr0 < 0 and det0 > 0, so
∣∣∣arg

(
λ1,2

)∣∣∣ = π > απ
2 implies E∗

is asymptotically stable.
For tr0 > 0 and det0 > 0, both the eigenvalues are positive real, hence

∣∣∣arg
(
λ1,2

)∣∣∣ = 0 < απ
2 implies

E∗ is unstable; when det0 < 0, the two eigenvalues are real numbers with opposite signs, so there exists
|arg (λ1)| = 0 < απ

2 which implies that E∗ is unstable.
The two eigenvalues are now complex conjugate when tr2

0 − 4 det0 < 0.

|arg (λ)| =
∣∣∣∣ tan−1


√

4 det0 −tr2
0

tr0


∣∣∣∣. (3.13)

Therefore, E∗ is stable if απ
2 <

∣∣∣∣ tan−1

( √
4 det0 −tr2

0
tr0

) ∣∣∣∣ and is unstable for απ
2 >

∣∣∣∣ tan−1

( √
4 det0 −tr2

0
tr0

) ∣∣∣∣. □
3.2. Hopf bifurcation analysis

When tr0 = 0 and det0 > 0, the system (2.4) with α = 1 loses stability through Hopf bifurcation.
Since the stability of system (2.4) is affected by the fractional derivative, the fractional derivative can
be regarded as a parameter of Hopf bifurcation. In the following, we establish the conditions for the
Hopf bifurcation of system (3.1) around E∗ at parameter α = αh [19, 46]:

1) The Jacobian matrix at the equilibrium point E∗ has a pair of complex conjugate eigenvalues
λ1,2 = ai + ibi which become purely imaginary at α = αh;

2) m (αh) = 0 where m (α) = απ
2 − min

1≤i≤2
|arg (λi) |;

3) ∂m(α)
∂α

∣∣∣
α=αh
, 0.

Now, we prove that E∗ has Hopf bifurcation when α goes through αh.

Theorem 3.4. Suppose that the equilibrium point E∗ is unstable when tr2
0 − 4 det0 < 0 and tr0 > 0.

The fractional parameter α passes through the critical value αh , and the system (2.4) undergoes Hopf
bifurcation near E∗, where

αh =
2
π

tan−1


√

4 det0 −tr2
0

tr0

 . (3.14)
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Proof. For tr2
0 − 4 det0 < 0 and tr0 > 0, the eigenvalues are complex conjugates with a positive real

part. Hence,

0 < arg (λ12) = tan−1


√

4 det0 −tr2
0

tr0

 < π

2
, (3.15)

and απ
2 >

∣∣∣∣ tan−1

( √
4 det0 −tr2

0
tr0

) ∣∣∣∣ for some α. Let αh
π
2 =

∣∣∣∣ tan−1

( √
4 det0 −tr2

0
tr0

) ∣∣∣∣, get αh =
2
π

tan−1

( √
4 det0 −tr2

0
tr0

)
.

Moreover, ∂m(α)
∂α

∣∣∣
α=αh
= π

2 , 0. Therefore, all Hopf conditions satisfy. □

4. Turing instability

In this section, we present the Turing instability condition of the system (2.3) at α = 1.
Perturbate the equilibrium point with u = u∗ + ũ, v = v∗ + ṽ, substitute it into system (2.3), expand

it through the Taylor series, and remove higher-order terms to obtain the linear perturbation equation

U̇ = JU + D∆U, (4.1)

where

U =
(

ũ
ṽ

)
,D =

(
d1

d2

)
, (4.2)

and J is a Jacobian matrix about E∗. For convenience, we still denote ũ and ṽ as u and v.

Expanding the perturbation variables in Fourier space and substituting U =
(

c1
k

c2
k

)
eλt+ikr into the

perturbation Eq (4.1) yields the characteristic equation

λ

(
c1

k
c2

k

)
=

(
a11 − k2d1 a12

a21 a22 − k2d2

) (
c1

k
c2

k

)
, (4.3)

where λ is the growth rate, k is the wave number, r is the spatial vector, and c1
k , c

2
k are constants.

Solve characteristic Eq (4.3), and obtain the following dispersion relationship:

λ2 − trkλ + detk = 0, (4.4)

where{
trk = a11 + a22 − k2 (d1 + d2) = tr0 − k2 (d1 + d2) ,
detk = a11a22 − a21a12 − k2 (a11d2 + a22d1) + k4d1d2 = det0 −k2 (a11d2 + a22d1) + k4d1d2.

(4.5)

The solution of characteristic Eq (4.4) is in the following form:

λk =
trk ±

√
tr2

k − 4 detk

2
. (4.6)
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In order to explore the existence conditions of Turing instability at k , 0, we should ensure that
trk < 0 and detk < 0. When árà1−r > β́1−rβ̀r, trk < 0 is easy to satisfy. In order to ensure the occurrence
of detk < 0, the condition of marginal stability min

(
detk2

c

)
= 0 should be satisfied. Here k2

c =
a11d2+a22d1

2d1d2

is the minimum value of detk with respect to k2
c .

From min
(
detk2

c

)
= 0, we can obtain:

a2
22d2

1 + 2d2 (a11a22 − 2det0) d1 + a2
11d2

2 = 0. (4.7)

Let H (d1) = a2
22d2

1 + 2d2 (a11a22 − 2det0) d1 + a2
11d2

2. If there are H (d1) = 0 and H (d1) =
−min

(
detk2

c

)
, then there must be two roots, d+1 and d−1 , where

d+1 =
d2 (2 det0 −a11a22) + 2d2

√
det0 (det0 −a11a22)

a2
22

> 0, (4.8)

d−1 =
d2 (2 det0 −a11a22) − 2d2

√
det0 (det0 −a11a22)

a2
22

> 0. (4.9)

Theorem 4.1. Suppose 0 ≤ r ≤ 1, d1 > 0, d2 > 0, and árà1−r > β́1−rβ̀r are valid.

1) The equilibrium point E∗ is asymptotically stable if and only if d−+ < d1 < d+1 ;
2) The equilibrium point E∗ is unstable if and only if d1 > d−+ or d1 < d−+;

3) Turing bifurcation occurs at d1 = d−+ or d1 = d−+, and the critical wave number is k2
c =

√
det0
d+1 d2

or

k2
c =

√
det0
d−1 d2

.

Proof. The eigenvalues are negative real when d−+ < d1 < d+1 , so |arg (λk)| = π > απ
2 implies E∗ is

asymptotically stable. When d1 > d−+ or d1 < d−+, the two eigenvalues are real numbers with opposite
signs, so there exists |arg (λk)| = 0 < απ

2 which implies that E∗ is unstable. From min
(
det

(
k2

c

))
= 0,

we have k2
c =

√
det0
d+1 d2

or k2
c =

√
det0
d−1 d2

. □

Remark 4.2. Take [á, à] = [1.31, 3.3] , [b́, b̀] = [0.01, 0.04] , [ά, ὰ] = [0.5, 1.5] , [β́, β̀] =
[1.05, 1.5] , r = 1, and d2 = 1.24. We have drawn the stable region of equilibrium point E∗ on the
plane when d1 > 0, d2 > 0. According to Theorem 4.1, the stable region and the unstable region are
distinguished. The critical value d1 = 0.1458 was obtained through fixed parameters in Figure 1(a).
Furthermore, we draw a graph k about the wave number and the real part λ of the eigenvalue as shown
in Figure 1(b).
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(a) Stability domains of the equilibrium
E∗.

(b) The wave number of k corresponding
to Re (λ) under different d1.

Figure 1. Stability domains and wave number.

5. Weakly nonlinear analysis

In this section, we will use weak nonlinear analysis to calculate the amplitude equation near the
Turing instability threshold d1 = dc

1. Write system (2.3) in the following form:

∂U
∂t
= LU + N (U,U) , (5.1)

where L is a linear operator and N is a nonlinear operator

L =
(
a11 + d1∆ a12

a21 a22 + d2∆

)
, (5.2)

and

N =


1
2 fuuu2 + fuvuv + 1

2 fvvv2 + 1
3! fuuuu3

+1
2 fuuvu2v + 1

2 fuvvuv2 + 1
3! fvvvv3

1
2guuu2 + guvuv + 1

2gvvv2 + 1
3!guuuu3

+1
2guuvu2v + 1

2guvvuv2 + 1
3!gvvvv3

 + O (4) , (5.3)

with

fuu =
2árà1−rv2

∗ − 2 (u∗ + v∗)3

(u∗ + v∗)3 , fuv =
−2árà1−ru∗v∗

(u∗ + v∗)3 , fvv =
2árà1−ru2

∗

(u∗ + v∗)3 , (5.4)

fuuu =
−6árà1−rv2

∗

(u∗ + v∗)4 , fuuv =
2árà1−rv∗ (2u∗ − v∗)

(u∗ + v∗)4 , fuvv =
−2árà1−ru∗ (u∗ − 2v∗)

(u∗ + v∗)4 , fvvv =
−6árà1−ru2

∗

(u∗ + v∗)4 , (5.5)

guu =
−2β̀rβ́1−rv2

∗

(u∗ + v∗)3 , guv =
2β̀rβ́1−ru∗v∗
(u∗ + v∗)3 , gvv =

−2β̀rβ́1−ru2
∗

(u∗ + v∗)3 , (5.6)
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guuu =
6β̀rβ́1−rv2

∗

(u∗ + v∗)4 , guuv =
−2β̀rβ́1−rv∗ (2u∗ − v∗)

(u∗ + v∗)4 , guvv =
2β̀rβ́1−ru∗ (u∗ − 2v∗)

(u∗ + v∗)4 , gvvv =
6β̀rβ́1−ru2

∗

(u∗ + v∗)4 . (5.7)

We only consider the behavior of the control parameter near the bifurcation point, so the control
parameter d1 can be expanded as follows:

d1 − dc
1 = εd11 + ε

2d12 + ε
3d13 + O (4) , (5.8)

where ε is a small parameter. At the same time, the variable U and the nonlinear term N are expanded
according to this small parameter:

U =
(

u
v

)
= ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)
+ O (4) , (5.9)

N = ε2N2 + ε
3N3 + O

(
ε4

)
, (5.10)

with

N2 =

( 1
2 fuuu2

1 + fuvu1v1 +
1
2 fvvv2

1
1
2guuu2

1 + guvu1v1 +
1
2gvvv2

1

)
, (5.11)

and

N3 =


fuuu1u2 + fuv (u1v2 + u2v1) + fvvv1v2

+
fuuu
3! u3

1 +
fuuv
2! u2

1v1 +
fuvv
2! u1v2

1 +
fvvv
3! v3

1
guuu1u2 + guv (u1v2 + u2v1) + gvvv1v2

+
guuu
3! u3

1 +
guuv
2! u2

1v1 +
guvv
2! u1v2

1 +
gvvv
3! v3

1

 . (5.12)

The linear operator L can be decomposed into

L = Lc +
(
d1 − dc

1
)

M, (5.13)

where

Lc =

(
a11 + dc

1∆ a12

a21 a22 + d2∆

)
,M =

(
∆ 0
0 0

)
. (5.14)

We set T0 = t,T1 = εt,T2 = ε
2t, and T3 = ε

3t, then the partial derivative of time can be written as
follows:

∂

∂t
= ε

∂

∂T1
+ ε2 ∂

∂T2
+ ε3 ∂

∂T3
+ O (4) . (5.15)

Substitute formulas (5.8)–(5.15) into Eq (5.1), and the left side of the equation becomes:

ε
∂

∂t

(
u1

v1

)
+ ε2 ∂

∂t

(
u2

v2

)
+ ε3 ∂

∂t

(
u3

v3

)
= (5.16)
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ε

[
ε
∂

∂T1

(
u1
v1

)
+ ε2 ∂

∂T2

(
u1
v1

)
+ ε3 ∂

∂T3

(
u1
v1

)]
+ ε2

[
ε
∂

∂T1

(
u2
v2

)
+ ε2 ∂

∂T2

(
u2
v2

)
+ ε3 ∂

∂T3

(
u2
v2

)]
+ ...,

(5.17)

and the right side of the equation becomes:[
Lc +

(
εd11 + ε

2d12 + ε
3d13

)
M

] [
ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)]
+ ε2N2 + ε

3N3. (5.18)

Comparing the order of ε on both sides of the equation, the following three cases are obtained:

ε : Lc

(
u1

v1

)
= 0, (5.19)

ε2 : Lc

(
u2

v2

)
=

∂

∂T1

(
u1

v1

)
− d11M

(
u1

v1

)
− N2, (5.20)

ε3 : Lc

(
u3

v3

)
=

∂

∂T1

(
u2

v2

)
+

∂

∂T2

(
u1

v1

)
− d11M

(
u2

v2

)
− d12M

(
u1

v1

)
− N3. (5.21)

They are discussed separately below. For O (ε):

Lc

(
u1

v1

)
= 0. (5.22)

That is,
(

u1

v1

)
is a linear combination of eigenvectors corresponding to eigenvalues of 0. Therefore,

(
a11 + dc

1k2
c a12

a21 a22 + d2k2
c

) (
u1

v1

)
= 0, (5.23)

and the general solution of Eq (5.19) can be written as:(
u1

v1

)
=

(
ϕ

1

)  3∑
j=1

A jeik jr +

3∑
j=1

Ā je−ik jr

 , (5.24)

where ϕ = −a22+d2k2
c

a21
, |k j| = kc, k2

c =

√
det0
d1d2

, and k j is the amplitude about the mode of e−ik jr. For O
(
ε2

)
:(

Pu

Pv

)
=

∂

∂T1

(
u1

v1

)
− d11M

(
u1

v1

)
− N2. (5.25)

According to the de Fredholm solvability condition, the vector function at the right end of Eq (5.25)
must be orthogonal to the zero eigenvalue of L+c for this equation to have a nontrivial solution.

L+c =
(
a11 + dc

1∆ a21

a12 a22 + d2∆

)
. (5.26)
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The zero eigenvector as: (
1
φ

)
e−ik jr + c.c., j = 1, 2, 3, (5.27)

with φ = − a12
a22+d2k2

c
. According to the orthogonal condition of Eq (5.20), we have

(1, φ)
(

P j
u

P j
v

)
= 0, j = 1, 2, 3, (5.28)

where P j
u and P j

v are the coefficients corresponding to eik jr in Pu and Pv. The system of equations related
to amplitude A j obtained from Eq (5.28) is:

(ϕ + φ) ∂A1
∂T1
= −d11k2

cϕA1 + 2 (h1 + φh2) Ā2Ā3,

(ϕ + φ) ∂A2
∂T1
= −d11k2

cϕA2 + 2 (h1 + φh2) Ā1Ā3,

(ϕ + φ) ∂A3
∂T1
= −d11k2

cϕA3 + 2 (h1 + φh2) Ā1Ā2,

(5.29)

where h1 =
fuu
2 ϕ

2 + fuvϕ +
fvv
2 , and h2 =

guu
2 ϕ

2 + guvϕ +
gvv
2 . Introducing a second-order disturbance term

as: (
u2

v2

)
=

(
U0

V0

)
+

3∑
j=1

(
U j

V j

)
eik jr +

3∑
j=1

(
U j j

V j j

)
e2ik jr +

(
U12

V12

)
ei(k1−k2)r + (5.30)(

U23

V23

)
ei(k2−k3)r +

(
U31

V31

)
ei(k3−k1)r + c.c.,

Substitute formulas (5.24) and (5.30) into Eq (5.20), and we have

U j = ϕV j, j = 1, 2, 3,
(

U0

V0

)
=

(
u0

0
v0

0

) (
|A1|

2 + |A2|
2 + |A3|

2
)
, (5.31)(

U j j

V j j

)
=

(
u1

1
v1

1

)
A2

j , j = 1, 2, 3,
(

Ui j

Vi j

)
=

(
u2

2
v2

2

)
AiĀ j, i , j, i = j = 1, 2, 3, (5.32)

with (
u0

0
v0

0

)
=

 2(a12h2−a22h1)
a11a22−a12a21
2(a21h1−a11h2)
a11a22−a12a21

 ,(
u1

1
v1

1

)
=


a12h2−(a22−4d2k2

c)h1

(a11−4dc
1k2

c)(a22−4d2k2
c)−a12a21

a21h1−(a11−4d1k2
c)h2

(a11−4dc
1k2

c)(a22−4d2k2
c)−a12a21

 ,(
u2

2
v2

2

)
=


2[a12h2−(a22−3d2k2

c)h1]
(a11−3dc

1k2
c)(a22−3d2k2

c)−a12a21
2[a21h1−(a11−3d1k2

c)h2]
(a11−3dc

1k2
c)(a22−3d2k2

c)−a12a21

 .
(5.33)

For O
(
ε3

)
: (

Pu

Pv

)
=

∂

∂T1

(
u2

v2

)
+

∂

∂T2

(
u1

v1

)
− d11M

(
u2

v2

)
− d12M

(
u1

v1

)
− N3. (5.34)
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According to the orthogonal condition of Eq (5.21), we have

(1, φ)
(

P j
u

P j
v

)
= 0, j = 1, 2, 3. (5.35)

Direct calculation produces the amplitude equation:

(ϕ + φ)
(
∂V1
∂T1
+ ∂A1

∂T2

)
= −k2

cϕ (d11V1 + d12A1) + 2 (h1 + φh2)
(
Ā2V̄3 + Ā3V̄2

)
+

[
(H1 + φH3) |A1|

2 + (H2 + φH4)
(
|A2|

2 + |A3|
2
)]

A1,

(ϕ + φ)
(
∂V2
∂T1
+ ∂A2

∂T2

)
= −k2

cϕ (d11V2 + d12A2) + 2 (h1 + φh2)
(
Ā1V̄3 + Ā3V̄1

)
+

[
(H1 + φH3) |A2|

2 + (H2 + φH4)
(
|A1|

2 + |A3|
2
)]

A2,

(ϕ + φ)
(
∂V3
∂T1
+ ∂A2

∂T2

)
= −k2

cϕ (d11V3 + d12A3) + 2 (h1 + φh2)
(
Ā2V̄1 + Ā1V̄2

)
+

[
(H1 + φH3) |A3|

2 + (H2 + φH4)
(
|A2|

2 + |A1|
2
)]

A3,

(5.36)

where

H1 = (ϕ fuu + fuv)
(
u0

0 + u1
1

)
+ (ϕ fuv + fvv)

(
v0

0 + v1
1

)
+

3ϕ3 fuuu
3! +

3ϕ2 fuuv
2! +

3ϕ fuvv
2! +

3 fvvv
3! ,

H2 = (ϕ fuu + fuv)
(
u0

0 + u2
2

)
+ (ϕ fuv + fvv)

(
v0

0 + v2
2

)
+

6ϕ3 fuuu
3! +

6ϕ2 fuuv
2! +

6ϕ fuvv
2! +

6 fvvv
3! ,

H3 = (ϕguu + guv)
(
u0

0 + u1
1

)
+ (ϕguv + gvv)

(
v0

0 + v1
1

)
+

3ϕ3guuu
3! +

3ϕ2guuv
2! +

3ϕguvv
2! +

3gvvv
3! ,

H4 = (ϕguu + guv)
(
u0

0 + u2
2

)
+ (ϕguv + gvv)

(
v0

0 + v2
2

)
+

6ϕ3guuu
3! +

6ϕ2guuv
2! +

6ϕguvv
2! +

6gvvv
3! .

(5.37)

Suppose that the perturbation of amplitude G under ε is as follows:

G = εA j + ε
2V j + O (3) . (5.38)

Then, from formulas (5.15), (5.29), (5.36), and (5.38), we can derive
τ0

∂G1
∂t = µG1 + hḠ2Ḡ3 −

[
g1|G1|

2 + g2

(
|G2|

2 + |G3|
2
)]

G1,

τ0
∂G2
∂t = µG2 + hḠ1Ḡ3 −

[
g1|G2|

2 + g2

(
|G1|

2 + |G3|
2
)]

G2,

τ0
∂G3
∂t = µG3 + hḠ1Ḡ2 −

[
g1|G3|

2 + g2

(
|G1|

2 + |G2|
2
)]

G3,

(5.39)

with

µ =
d1−dc

1

dc
1
, τ0 =

ϕ + φ

dc
1k2

c
, h =

2 (h1 + φh2)
dc

1k2
c

, g1 = −
H1 + φH3

dc
1k2

c
, and g2 = −

H2 + φH4

dc
1k2

c
. (5.40)

Since each amplitude A j = ρ jeiψ j ( j = 1, 2, 3) in Eq (5.39) can be decomposed into mode ρ j = |A j|

and phase angle ψ j, substituting A j into Eq (5.39) to separate the real and imaginary parts yields the
following equation: 

∂ψ

∂t = −hρ2
1ρ

2
2+ρ

2
1ρ

2
3+ρ

2
2ρ

2
3

ρ1ρ2ρ3
sinψ,

∂ρ1
∂t = µρ1 + hρ2ρ3 cosψ − g1ρ

3
1 − g2

(
ρ2

2 + ρ
2
3

)
ρ1,

∂ρ1
∂t = µρ1 + hρ2ρ3 cosψ − g1ρ

3
1 − g2

(
ρ2

2 + ρ
2
3

)
ρ1,

∂ρ1
∂t = µρ1 + hρ2ρ3 cosψ − g1ρ

3
1 − g2

(
ρ2

2 + ρ
2
3

)
ρ1,

(5.41)

where ψ = ψ1 + ψ2 + ψ3. We can infer from Eq (5.41) that the solution to the equation is stable when
h > 0, ψ = 0 and h < 0, ψ = π. Eq (5.41) has the following solutions:
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1) Stationary state:

ρ1 = ρ2 = ρ3 = 0, (5.42)

stable when µ < µ2 = 0, and unstable when µ > µ2 = 0.
2) Strip pattern:

ρ1 =

√
µ

g1
, 0, ρ2 = ρ3 = 0, (5.43)

stable when µ > µ3 =
h2g1

(g2−g1)2 , and unstable when µ < µ3 =
h2g1

(g2−g1)2 .
3) Hexagon pattern:

When µ > µ1 =
−h2

4(g1+2g2) is satisfied, there exists

ρ1 = ρ2 = ρ3 =
|h| ±

√
h2 + 4 (g1 + 2g2) µ
2 (g1 + 2g2)

. (5.44)

When µ < µ4 =
(2g1+g2)h2

(g2−g1)2 , ρ+ = |h|+
√

h2+4(g1+2g2)µ
2(g1+2g2) is stable, and ρ− =

|h|−
√

h2+4(g1+2g2)µ
2(g1+2g2) is always

unstable.
4) Mixed state:

When µ > µ3 =
h2g1

(g2−g1)2 is satisfied, there exists

ρ1 =
|h|

g2 − g1
, ρ2 = ρ3 =

√
µ − g1ρ

2
1

g1 + g2
. (5.45)

It is always unstable with g1 < g2.

6. Numerical simulation

In this section, we use the Euler discrete method for numerical simulation in two-dimensional space
Ω = [0, Lx] ×

[
0, Ly

]
. Choose Lx = 200, Ly = 200, t = 1000, time step ∆t = 0.9, and space step ∆h = 2.

We define un
pq = u

(
xp, yq, n∆t

)
and vn

pq = v
(
xp, yq, n∆t

)
where p, q = 1, 2, · · · , Lx

∆h . System (2.3) is
discretized by the Euler method as follows:

un+1
pq −un

pq

∆t = d1∆un
pq + un

pq

(
1 − un

pq

)
−

à1−r árun
pqvn

pq

un
pq+vn

pq
− b̀1−rb́run

pq,
vn+1

pq −vn
pq

∆t = d2∆vn
pq +

β́1−r β̀run
pqvn

pq

un
pq+vn

pq
− ὰ1−rάrvn

pq,

where

∆upq =
up+1,q + up−1,q + up,q+1 + up,q−1 − 4upq

h2 ,

∆vpq =
vp+1,q + vp−1,q + vp,q+1 + vp,q−1 − 4vpq

h2 .

The parameters in system (2.3) are selected as follows:

[á, à] = [1.31, 3.3] , [b́, b̀] = [0.01, 0.04] , [ά, ὰ] = [0.5, 1.5] , [β́, β̀] = [1.05, 1.5] ,

AIMS Mathematics Volume 9, Issue 7, 18506–18527.



18521

r = 1, d1 = 0.1, d2 = 1.24, dc
1 = 0.1458,

and then, we obtain

E∗ = (0.11667, 0.23333) , µ = −0.31413, µ1 = 0.13029, µ2 = 0, µ3 = −2.59739, µ4 = −6.23184,
g1 = −294.62990, and g2 = −117.63726.

The initial data are as follows:

u (x, y, 0) = u∗ (1 + 0.1 (rand − 0.5)) , v (x, y, 0) = v∗ (1 + 0.1 (rand − 0.5)) .

The numerical simulation results show that there is a mixed structure solution under this set of
parameters, and there are spots and stripe patterns in the graphics, as shown in Figure 2.

(a) r = 1. (b) r = 1.

Figure 2. Asymmetric mixed pattern solutions of u and v. Here [á, à] = [1.31, 3.3] , [b́, b̀] =
[0.01, 0.04] , [ά, ὰ] = [0.5, 1.5] , [β́, β̀] = [1.05, 1.5] , d1 = 0.1, d2 = 1.24, and dc

1 = 0.1458.

Under the same parameters, changing r = 0.6 yields E∗ = (0.21788, 0.14732) , µ = −0.31413, µ3 =

−4.52393, g1 = −15680.19532, and g2 = −20512.90109. The numerical results show that there are
also mixed structure solutions under this set of parameters, as seen in Figure 3.
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(a) r = 0.6 (b) r = 0.6

Figure 3. Asymmetric mixed pattern solutions of u and v. Here [á, à] = [1.31, 3.3] , [b́, b̀] =
[0.01, 0.04] , [ά, ὰ] = [0.5, 1.5] , [β́, β̀] = [1.05, 1.5] , d1 = 0.1, d2 = 1.24, and dc

1 = 0.1458.

Although we only change the interval variable r in the graph, it can still be seen that the interval
variable r will affect the positive equilibrium point E∗ and the critical value dc

1 of the Turing instability.
Therefore, these two spatial patterns are slightly different and also prove the correctness of the theory.

Select the following symmetric initial conditions:

u (x, y, 0) =
{

u∗ + 0.5, x, y ∈ (80, 120) ,
u∗ − 0.001, other.

v (x, y, 0) =
{

v∗ + 0.25, x, y ∈ (80, 120) ,
v∗ − 0.001, other.

Applying symmetric initial conditions, numerical simulations are performed with varying the
parameters r, t, and d1 while other parameters remain constant, and the results show the existence
of a symmetric hybrid structure solution, as seen in Figure 4. The figure shows the detailed pattern
evolution of symmetric mixed patterns under different parameters. At first, circular patterns begin to
appear under the initial conditions. As time t progresses, the bounded domain is gradually destroyed
and the circular pattern decomposes into striped and spotted patterns. It is found that as the diffusion
rate d1 of the prey population increases, the spatiotemporal chaos of the model is gradually suppressed.
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r = 1, t = 200,
d1 = 0.1

r = 1, t = 300,
d1 = 0.1

r = 1, t = 500,
d1 = 0.1

r = 1, t = 1000,
d1 = 0.1

r = 1, t = 200,
d1 = 0.13

r = 1, t = 300,
d1 = 0.13

r = 1, t = 500,
d1 = 0.13

r = 1, t = 1000,
d1 = 0.13

r = 0.8, t = 200,
d1 = 0.13

r = 0.8, t = 300,
d1 = 0.13

r = 0.8, t = 500,
d1 = 0.13

r = 0.8, t = 1000,
d1 = 0.13

Figure 4. The evolution of u under different parameters. Here [á, à] = [1.31, 3.3] , [b́, b̀] =
[0.01, 0.04] , [ά, ὰ] = [0.5, 1.5] , [β́, β̀] = [1.05, 1.5] , d2 = 1.24, and dc

1 = 0.1458.

7. Conclusions

In this paper, the predator-prey model with an interval biological coefficient was analyzed
theoretically and simulated numerically. We proved the existence and uniqueness of the model solution,
discussed the stability of the positive equilibrium point, studied the Hopf bifurcation around the
equilibrium point related to the fractional parameter α, and discussed the Turing instability of the
model at the starting point d1 = d−1 . It was found that the fractional α and the diffusion term d1

played an important role in controlling the existence of the Hopf bifurcation and Turing instability.
Then, the amplitude equation near the threshold of the Turing instability was given by using the
weak nonlinear analysis method, and different mode selections were classified by using the amplitude
equation. Finally, through numerical simulation, we showed the symmetric and asymmetric patterns of
the model, and found that the diffusion rate of the prey population inhibited the spatiotemporal chaos
of the model.
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