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1. Introduction

If a graph can be embedded in a surface, then naturally there will be a problem: how many non-
isomorphic ways can it be done. One of the main aims of topological graph theory is to enumerate
all the symmetrical embeddings of a given class of graphs in closed surfaces, see [10, 14, 15]. We will
restrict our attention here to the orientable vertex-transitive embeddings of Kp, where p ≥ 5 is a prime.

An orientable map is a 2-cell embedding of a finite graph in an orientable surface. That is, ‘drawing’
a graph Γ = (V, E) into an orientable surface S such that both any two edges do not intersect except
for the end point and E divides the surface S into discs. So an embedding divides the surface into
open discs, called faces, the set of faces is denoted by F, and the map is denoted byM = (V, E, F).
The graph of a map is called the underlying graph, and the orientable surface is called the supporting
surface of the map. For convenience, a mapM is called a complete map if its underlying graph is a
complete graph Kn.

An incident triple (v, e, f ) is called a flag. An automorphism of a mapM is a permutation of the flags
which preserves the incident relation. So it is exactly an automorphism of the underlying graph which
preserves the supporting surface. All automorphisms ofM form the automorphism group Aut(M).

A mapM is said to be G-vertex-transitive (or a vertex-transitive embedding of its underlying graph)
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if G ≤ Aut(M) is transitive on the vertex set V; if in addition G also preserves the orientation of the
supporting surface, thenM is called orientable vertex-transitive. Similarly, orientable arc-transitive
maps are defined.

Recent development of the theory of maps was closely related to the theory of map colorings,
with the topic of highly ‘symmetrical’ maps always at the center of interest and recent investigation
began with Biggs [1, 2]. In the past fifty years, plenty of results about ‘symmetrical’ maps have been
obtained, see [14, 19–21] and references therein. Particularly, see [1, 6, 14, 15] for arc transitive maps,
see [17,20,23,24] for vertex transitive maps, see [13,22] for edge transitive maps. Very recently, some
special families of edge-transitive maps underlying complete bipartite graphs are classified in [7–9,25],
and for more information about the embeddings of complete graphs, see [12, 16, 18].

Two maps M1 and M2 are isomorphic, denoted by M1 � M2, if there is a one-to-one
correspondence from the vertices of M1 to the vertices of M2 that maps flags to flags. It follows
that AutM1 � AutM2 if M1 � M2. Recall that ϕ(n) is the Euler phi-function, i.e. the number of
positive integers which is less than and coprime to n, where n is a positive integer.

The purpose of this paper is to enumerate the number of orientable vertex-transitive maps with
underlying graphs being complete graphs Kp, where p ≥ 5 is a prime. The following theorem is the
main result.

Theorem 1.1. LetM be an orientable vertex transitive map with underlying graph Kp, where p ≥ 5 is
a prime. Let G = Aut(M). ThenM is a Cayley map of Zp, G � Zp : Gα is a Frobenius group, where
Gα is a cyclic group for each α ∈ V.

Further, if Gα � Zk acting on the neighborhood of α has r orbits with (k, p) = 1, rk = p − 1 and
r ≥ 2 a prime, then the number of non-isomorphic orientable vertex transitive maps of Kp equals

|Ar| − |A1|

r

where |Ar| = (r − 1)!kr−1ϕ(k) and |A1| = ϕ(p − 1).

With regard to the Theorem 1.1, we can deduce the following similar conclusions when r is a
composite integer.

Corollary 1.2. If r = p1 p2 with pi different prime and i = 1, 2, then the number of non-isomorphic
orientable vertex transitive maps of Kp equals

|Ap1 p2 |−|Ap1 |−|Ap2 |+|A1 |

p1 p2
.

Corollary 1.3. If r = p2
1 p2 with pi different prime and i = 1, 2, then the number of non-isomorphic

orientable vertex transitive maps of Kp equals
|Ap2

1 p2
|−|Ap1 p2 |−|Ap2

1
|+|Ap1 |

p2
1 p2

.

This paper is organized as follows. After this introductory section, some preliminary results
are given in Section 2, then the enumeration of the different and non-isomorphic orientable vertex-
transitive complete maps is given in Section 3 and Section 4, respectively. We give the complete proof
of Theorem 1.1 in Section 5. Finally, we present conclusions for the paper in Section 6.

2. Preliminaries

In this section, we need some notations for convenience which will be used in the following
discussion.
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Let F = Fp be the field of order p with p ≥ 5 a prime. Let F+ = F+p and F× = F×p be the additive
group and the multiplicative group of F, respectively. It follows that

F+ � Zp, F× � Zp−1.

Let 0 be the identity of F+. Let F# be the set of all non-identity elements of F+, namely, F# =

F+ \ {0}. Then the complete graph Kp may be represented as a Cayley graph

Kp = Cay(F+, F#).

A Cayley mapM is an embedding of a Cayley graph Σ = Cay(H, S ) into a surface such that Aut(M)
contains a subgroup N acting regularly on the vertices, andM is called a Cayley map of N (or a Cayley
embedding of Σ with respect to N).

For a vertex v, a cyclic permutation of the neighbor set Γ(v) of v is called a rotation at v and
denoted by Rv. A rotation system R(Γ) of a graph Γ is the set of rotations at all vertices, that is
R(Γ) = {Rv}v∈V . Hence each rotation system R(Γ) defines an orientable embedding of Γ, refer to [3,
pp.104-108]. Noting that the vertex rotations Rv can be regarded as permutations not only of the
neighborhood Γ(v) but also the generating set S , so Cayley maps have another equivalent definitions
[11]. A map with underlying graph being Cayley graph Σ = Cay(H, S ) is a Cayley map if the induced
local cyclic permutations of S are all the same. Moreover, each circular permutation ρ of F# gives rise
to a unique orientable Cayley embedding of Kp with the underlying graph Γ = Cay(F+, F#).

3. Enumeration of different embeddings

In this section, we determine enumeration of different vertex transitive embeddings of Kp. Now, we
begin by citing the well-known conclusion about vertex transitive maps.

Lemma 3.1. ( [17, Lemma 2.2]) LetM be an orientable vertex transitive map. Let G = Aut(M). Then
the stabilizer Gα � Zk or D2k for a vertex α, and each orbit of Gα acting on the neighborhood of α has
length k.

Next, by [17, Theorem 1.1] and [3, Lemma 5.4.1], we can obtain the following lemma.

Lemma 3.2. Let M be an orientable vertex transitive embedding with underlying graph Kp, where
p ≥ 5 is a prime. Let G = Aut(M). ThenM is a Cayley map of Zp, G � Zp:Zk is a Frobenius group,
and Gα � Zk such that (k, p) = 1.

Assume that Gα � Zk := ⟨a⟩ with o(a) ≥ 2. Then by Lemma 3.2, G � F+:⟨a⟩ is a Frobenius group.
It follows that ⟨a⟩ is half-transitive on F+, and |⟨a⟩| = k is a divisor of |F+|−1 = p−1. Let r = (p−1)/k.
Thus Gα acting on Γ(α) has r orbits with r ≥ 2, and we get the lemma as follows.

Lemma 3.3. If G � F+:Zk, then there are exactly (r − 1)!kr−1ϕ(k) different orientable vertex-transitive
embeddings of Kp.

Proof. Taking α = 0 for convenience with 0 the identity element of F+, then G0 partitions Γ(0) into r
orbits, and by Lemma 3.1, the length of each orbit is k. Since F# be the set of all non-identity elements
of F+, we have |F#| = p − 1 and

F# = ∆1∪̇∆2∪̇ · · · ∪̇∆r,
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where ∆i is an orbit of G0 acting on Γ(0), |∆i| = k with 1 ≤ i ≤ r and r ≥ 2.

Note that the vertex 0 and the neighbors can be lied on a disc such that 0 is in the centre and the
neighbors of 0 are around 0. Without loss of generality, we may assume that the p − 1 neighbors of 0
(i.e. all the elements of F# ) are in clockwise order around 0, say β1, β2, · · · , βp−1. Viewing

ρ := (β1, β2, · · · , βp−1)

as a circular permutation of F#. Since the number of the circular permutations of F# equals the number
of arrangements of βi, we can obtain that to determine the number of the orientable vertex transitive
complete maps is only need to determine the different choices of βi with 1 ≤ i ≤ p − 1.

Setting β1 = 1 and β1 ∈ ∆1 for convenience, where 1 is the identity element of F×. If β2 ∈ ∆1, then
1a j
= β2 for some a j, where 0 < j < k. Correspondingly, a j : β2 7→ β3 7→ β4 7→ · · · 7→ 1. Then G0

acting on Γ(0) has only one orbit which is a contradiction. Thus β2 < ∆1. Hence β2 ∈ ∆i with 2 ≤ i ≤ r.
It follows that β2 has (r − 1)k different choices.

Setting β2 ∈ ∆2 for convenience. If β3 ∈ ∆2, then βas

2 = β3 for some as, where 0 < s < k.
Correspondingly, there has as : β2 7→ β3 7→ β4 7→ · · · 7→ 1. Then β1 ∈ ∆2, and G0 acting on Γ(0) has
only one orbit which is a contradiction. Thus β3 < ∆2.

If β3 ∈ ∆1, then 1at
= β3 for some at, where 0 < t < k. Correspondingly, there are at : 1 7→ β3 7→

β5 7→ · · · 7→ 1, and at : β2 7→ β4 7→ β6 7→ · · · 7→ β2. Thus G0 acting on Γ(0) has two orbits, namely,
r = 2. Since the number of generators of G0 is ϕ(k), we obtain that at has ϕ(k) different choices. Notice
that G0 is cyclic, then except 1, β2, the remaining vertices of ∆1, ∆2 can be obtained by 1, β2 through
the conjugate action of a, a2, · · · , ak−1, respectively. So

ρ|r=2 := (1, β2, 1a, βa
2, · · · , 1

ak−1
, βak−1

2 )

is a circular permutation of F#. It follows that the number of ρ|r=2 is determined by the choices of 1,
β2, a. Thus the number of ρ|r=2 equals (r − 1)k · ϕ(k) = kϕ(k). Let the corresponding maps generated
by ρ|r=2 be

M2(1, β2, a).

Hence the number of vertex transitive maps of Kp equals kϕ(k) if r = 2.

Now, suppose that r ≥ 3. Then β3 < ∆1, β3 < ∆2 and β3 ∈ ∆i with 3 ≤ i ≤ r. Taking β3 ∈ ∆3

for convenience, and β3 has (r − 2)k different choices. If β4 ∈ ∆3, then βal

3 = β4 for some al, where
0 < l < k. It follows that there has al : β3 7→ β4 7→ β5 7→ · · · 7→ 1. So G0 acting on Γ(0) has one orbit
which is a contradiction as r ≥ 3. Thus β4 < ∆3.

If β4 ∈ ∆2, then βal′

2 = β4 for some al′ , where 0 < l′ < k. Correspondingly, there have al′ : β2 7→

β4 7→ β6 7→ · · · 7→ β2 and al′ : 1 7→ β3 7→ β5 7→ · · · 7→ 1. We obtain that G0 acting on Γ(0) has two
orbits which is a contradiction as r ≥ 3. Thus β4 < ∆2.

If β4 ∈ ∆1, then 1al′′

= β4 for some al′′ , where 0 < l′′ < k. Correspondingly, there have al′′ : 1 7→
β4 7→ β7 7→ · · · 7→ 1, al′′ : β2 7→ β5 7→ β8 7→ · · · 7→ β2 and al′′ : β3 7→ β6 7→ β9 7→ · · · 7→ β3. Thus
G0 acting on Γ(0) has three orbits, that is, r = 3. Note that G0 is cyclic, then except 1, β2 and β3, the
remaining vertices of ∆1, ∆2 and ∆3 can be obtained by 1, β2 and β3 through the conjugate action of a,
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a2, · · · , ak−1, respectively. So

ρ|r=3 := (1, β2, β3, 1a, βa
2, β

a
3, · · · , 1

ak−1
, βak−1

2 , β
ak−1

3 )

is a circular permutation of F#. It follows that the number of ρ|r=3 is determined by the choices of 1,
β2, β3 and a. Further, the number of ρ|r=3 equals

(r − 1)k · (r − 2)k · ϕ(k) = 2!k2ϕ(k).

Let the corresponding maps generated by ρ|r=3 be

M3(1, β2, β3, a).

Thus the number of orientable vertex transitive maps of Kp equals 2!k2ϕ(k) if r = 3.

Next, suppose that r ≥ 4. Then β4 < ∆1, β4 < ∆2, β4 < ∆3 and β4 ∈ ∆i with 4 ≤ i ≤ r. Taking β4 ∈ ∆4

for convenience, and β4 has (r − 3)k different choices. If β5 ∈ ∆4, then βam

4 = β5 for some am, where
0 < m < k. It follows that there has am : β4 7→ β5 7→ β6 7→ · · · 7→ 1. So G0 acting on Γ(0) has one orbit
which is a contradiction as r ≥ 5. Thus β5 < ∆4.

If β5 ∈ ∆3, then βam′

3 = β5 for some am′ , where 0 < m′ < k. Correspondingly, there have am′ : β3 7→

β5 7→ β7 7→ · · · 7→ 1 and am′ : β2 7→ β4 7→ β6 7→ · · · 7→ β2. It is easy to see that G0 acting on Γ(0) has
two orbits which is a contradiction as r ≥ 5. Thus β5 < ∆3.

If β5 ∈ ∆2, then βam′′

2 = β5 for some am′′ , where 0 < m′′ < k. Correspondingly, there have am′′ : β2 7→

β5 7→ β8 7→ · · · 7→ β2, am′′ : β3 7→ β6 7→ β9 7→ · · · 7→ β3 and am′′ : β4 7→ β7 7→ β10 7→ · · · 7→ 1. Then we
have that G0 acting on Γ(0) has three orbits which is a contradiction as r ≥ 5. Thus β5 < ∆2.

If β5 ∈ ∆1, then 1as
= β5 for some as, where 0 < s < k. Correspondingly, there have as : 1 7→

β5 7→ β9 7→ · · · 7→ 1, as : β2 7→ β6 7→ β10 7→ · · · 7→ β2, as : β3 7→ β7 7→ β11 7→ · · · 7→ β3 and
as : β4 7→ β8 7→ β12 7→ · · · 7→ β4. Thus G0 acting on Γ(0) has four orbits, equivalently, r = 4. So

ρ|r=4 := (1, β2, β3, β4, 1a, βa
2, β

a
3, β

a
4, · · · , 1

ak−1
, βak−1

2 , β
ak−1

3 , β
ak−1

4 )

is a circular permutation of F#, and the number of ρ|r=4 is determined by the choices of 1, β2, β3, β4

and a. It follows that the number of ρ|r=4 equals

(r − 1)k · (r − 2)k · (r − 3)k · ϕ(k) = 3!k3ϕ(k).

Let the corresponding maps generated by ρ|r=4 be

M4(1, β2, β3, β4, a).

Thus the number of orientable vertex transitive complete maps of Kp equals 3!k3ϕ(k) if r = 4.

Here r can be generalized to any integer. Similarly, if Gα = ⟨a⟩ acting on Γ(α) has r orbits, then
βi ∈ ∆i such that β1 = 1 and 1 ≤ i ≤ r, and

ρ|r := (1, β2, · · · , βr, 1a, βa
2, · · · , β

a
r , · · · , 1

ak−1
, βak−1

2 , · · · , β
ak−1

r )

AIMS Mathematics Volume 8, Issue 7, 15024–15034.



15029

is a circular permutation of F#. Since βi has (r − i+ 1)k different choices with 2 ≤ i ≤ r, and a has ϕ(k)
different choices, it follows that the number of ρ|r equals

(r − 1)k · (r − 2)k · · · (r − r + 1)k · ϕ(k) = (r − 1)!kr−1ϕ(k).

Let the corresponding maps generated by ρ|r be

Mr(1, β2, β3, · · · , βr, a).

Hence if Gα � Zk, then the number of different orientable vertex transitive maps of Kp equals (r −
1)!kr−1ϕ(k). □

Recall that a Cayley map CayM(G, S ) is called balanced if s and −s are placed on the antipodal
points for all elements s ∈ S , see [21]. The mapMr(1, β2, β3, · · · , βr, a) is a Cayley map of the group
F+. Let η be the unique involution of GL(1, p) � Zp−1. Then

η : x 7→ −x, for all x ∈ F+

is an automorphism ofMr(1, β2, β3, · · · , βr, a).

Lemma 3.4. A mapMr(1, β2, β3, · · · , βr, a) is balanced if and only if β−1
i = βi+ p−1

2
with 1 ≤ i ≤ r.

Proof. Assume thatMr(1, β2, β3, · · · , βr, a) is balanced. Then the vertex β−1
i is placed at the antipodal

position of the vertex βi with p an odd prime and 1 ≤ i ≤ p−1
2 . Thus β−1

i = βi+ p−1
2

with 1 ≤ i ≤ r.

Conversely, assume that β−1
i = βi+ p−1

2
with p odd prime and 1 ≤ i ≤ r. Then for any 1 ≤ l ≤ k − 1,

we have
β−1

i+lr = (β−1
i )al
= (βi+ p−1

2
)al
= β p−1

2 +i+lr,

reading the subscripts modulo (p − 1). So β−1
j = β p−1

2 + j is at the antipodal position of β j for all j with

1 ≤ j ≤ p−1
2 , and thereforeMr(1, β2, β3, · · · , βr, a) is balanced. □

4. Enumeration of non-isomorphic embeddings

We notice that many different orientable vertex transitive maps of Kp may be isomorphic. The
complete Cayley maps (that is, complete map and its automorphism group is regular on the vertices)
of non-isomorphic groups were not isomorphic. However, to determine the number of non-isomorphic
maps, we need the following lemma.

Lemma 4.1. Let M be an orientable vertex transitive map with underlying graph Kp and p ≥ 5 a
prime. Let G = Aut(M). If G � Zp:Gα, where Gα is a cyclic group for any α ∈ V, thenMσ � M for
each σ ∈ Aut(G). On the contrary, σ ∈ Aut(G) ifMσ �M.

Proof. Since G � Zp:Gα such that Gα is a cyclic group for any α ∈ V , it follows that by [4, Lemma
4.5],

Aut(G) = Zp:NAut(Zp)(Gα) � Zp:NZp−1(Gα) = Zp:Zp−1.

AIMS Mathematics Volume 8, Issue 7, 15024–15034.



15030

Suppose that σ fixes α for each σ ∈ Aut(G). Since Zp is a regular and normal subgroup of Aut(G), we
have that for any 1 , x ∈ Zp,

αx =

αx, if x is the right multiplication.
x−1α, if x is the left multiplication.

So αx , α, namely, x does not fix α. It follows that σ ∈ Zp−1, and then Gσα = Gα for each σ ∈ Zp−1.
Further, for each τ ∈ Aut(G), since

Mτ =Mxσ =Mσ �M

such that τ = xσ, where x ∈ Zp and σ ∈ Zp−1. HenceMσ �M for each σ ∈ Aut(G) by arbitrariness
of x.

On the contrary, ifMσ � M, then Aut(Mσ) � Aut(M) = G. It follows that (Aut(M))σ = Gσ =
G � Aut(Mσ) for each σ ∈ Aut(M). Note that Z(G) = 1, then G = G/Z(G) � Inn(G) ◁ Aut(G). Hence
σ ∈ Aut(G). □

Now, we determine the number of non-isomorphic vertex transitive embeddings of Kp if Gα � Zk.
Let

Ar = {Mr :=Mr(1, β2, β3, · · · , βr, a)|β1 = 1, βi ∈ ∆i, β
a
i = βi+r,

where 1 ≤ i ≤ r, o(a) = k ≥ 2, and read the subscripts modulo p − 1}.

ThenAr is a finite non-empty set, and |Ar| = (r − 1)!kr−1ϕ(k). Let X = Aut(G). Then

X � Zp:NAut(Zp)(Zk) � Zp:Zp−1.

Let ⟨z⟩ = Zp−1. Since Zp ◁ X, and Zp acting on V is regular, we by the ‘Frattini Argument’ (or [5,
Exercise 1.4.1]) have that Xα � Zp−1 = ⟨z⟩, and further G ◁ X.

Lemma 4.2. If r is a prime, then the number of non-isomorphic orientable vertex transitive maps of
Kp equals

(r − 1)!kr−1ϕ(k) − ϕ(p − 1)
r

.

Proof. Since o(a) = k = p−1
r , it follows that zr = a. Let

(1, β2, β3, · · · , βr, 1a, βa
2, β

a
3, · · · , β

a
r , · · · , 1

ak−1
, βak−1

2 , β
ak−1

3 , · · · , β
ak−1

r )

be a circular permutation of F# such that βi = 1zi
and 2 ≤ i ≤ r. Then there have zi : 1 7→ βi 7→

β2i · · · 7→ 1, zi : β2 7→ βi+2 7→ β2i+2 · · · 7→ β2, · · · , zi : βi−1 7→ β2i−1 7→ β3i−1 · · · 7→ βi−1. Furthermore, zi

can be identified with the permutation

zi = (1βiβ2i · · · βp−i)(β2βi+2β2i+2 · · · βp−i+1) · · · (βi−1β2i−1β3i−1 · · · βp−1).

Thus Gα = ⟨zi⟩ and a = zr ∈ ⟨zi⟩, which is a contradiction as i ̸ |r.
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Let (1, β2, β3, · · · , βr, 1a, βa
2, β

a
3, · · · , β

a
r , · · · , 1

ak−1
, βak−1

2 , β
ak−1

3 , · · · , β
ak−1

r ) be a circular permutation of
F# such that β2 = 1z, and gives rise to a unique Cayley embeddingM1 of Kp. Then there have

z : 1 7→ β2 7→ β3 7→ · · · 7→ βr 7→ 1a
7→ βa

2 7→ · · · 7→ β
a
r 7→ · · · 7→ 1.

and zi can be identified with the permutation

z = (1, β2, · · · βr, 1a, βa
2, · · · β

a
r , 1

ak−1
, βak−1

2 , · · · β
ak−1

r ).

It follows that Aut(M1) = F+:⟨z⟩ = G.r > G, andM1 is arc transitive. ThusM1 ∈ A1,A1 ⊂ Ar and

|Ar \ A1| = |Ar| − |A1| = (r − 1)!kr−1ϕ(k) − ϕ(p − 1).

So X \G contains no element which is an automorphism ofM′r forM′r ∈ Ar \ A1. Since G ◁ X and

(X/G)M′r = {xG ∈ X/G|(M′r)
xG = (M′r)

Gx = (M′r)
x =M′r} = G,

we have that X/G � Zr acting onAr \A1 is semiregular. Let X act onAr \A1. Then (M′r)
X is an orbit

of this action, and the length of this orbit equals

|(M′r)
X | =

|X|
|XM′r |

=
|X|

|Aut(M′r)|
=
|X|
|G|
= r.

It follows that by Lemma 4.1, there are

|Ar \ A1|

r
=
|Ar| − |A1|

r
=

(r − 1)!kr−1ϕ(k) − ϕ(p − 1)
r

non-isomorphic orientable vertex transitive maps of Kp. □

Furthermore, we can obtain the following results by the proof of Lemma 4.2.

Lemma 4.3. If r = p1 p2 with pi different primes and i = 1, 2, then the number of non-isomorphic
vertex-transitive maps of Kp equals

|Ap1 p2 \ (Ap1 ∪Ap2)|
p1 p2

=
|Ap1 p2 | − |Ap1 | − |Ap2 | + |A1|

p1 p2
.

For example, when r = 15 = 3 · 5, then the number of non-isomorphic vertex-transitive complete
maps equals |A15\(A3∪A5)|

15 =
|A15 |−|A3 |−|A5 |+|A1 |

15 .

Lemma 4.4. If r = p2
1 p2 with pi different prime and i = 1, 2, then the number of non-isomorphic

vertex-transitive maps of Kp equals

|Ap2
1 p2
\ (Ap1 p2 ∪Ap2

1
)|

p2
1 p2

=
|Ap2

1 p2
| − |Ap1 p2 | − |Ap2

1
| + |Ap1 |

p2
1 p2

.

For example, when r = 28 = 22 · 7, then the number of non-isomorphic vertex-transitive complete
maps equals |A28\(A14∪A4)|

28 = |A28 |−|A14 |−|A4 |+|A2 |

28 .

Furthermore, if r = pl1
1 pl2

2 · · · p
lt
t , where pi are different from each other primes, 1 ≤ li and 1 ≤ i ≤ t,

then here can obtain generalization of the above results.
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5. Proof of Theorem

In this section, we complete the proof of Theorem 1.1 in view of the above series of results.

Proof of Theorem 1.1.

LetM = (V, E, F) be an orientable vertex transitive map with underlying graph Kp = (V, E), where
p ≥ 5 is a prime. Let G = Aut(M). We by Lemma 3.2 have that M is a Cayley map of Zp, and
G = Zp:Gα is a Frobenius group, where Gα is a cyclic group for each α ∈ V . Further, if Gα � Zk acting
on the neighborhood of α has r orbits with (k, p) = 1, rk = p − 1 and r ≥ 2 a prime, then by Lemma
3.3 and Lemma 4.2 there are exactly

[(r − 1)!kr−1ϕ(k) − ϕ(p − 1)]/r

non-isomorphic orientable vertex transitive maps of Kp. □

6. Conclusions

Determining and enumerating all the 2-cell embeddings of a given class of graphs is one of the main
research topics in topological graph theory. Complete maps have always been a focus of attention
for many scholars. Li characterized the classification of vertex-transitive embeddings of complete
graphs in [17]. The manuscript obtained accurate counting results of non-isomorphic orientable vertex-
transitive complete maps with p vertices, where p ≥ 5 is a prime.
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