In this paper, we prove that every local Lie derivation on von Neumann algebras is a Lie derivation; and we show that if $ \mathcal M $ is a type I von Neumann algebra with an atomic lattice of projections, then every local Lie derivation on $ LS(\mathcal M) $ is a Lie derivation.
Citation: Guangyu An, Xueli Zhang, Jun He, Wenhua Qian. Characterizations of local Lie derivations on von Neumann algebras[J]. AIMS Mathematics, 2022, 7(5): 7519-7527. doi: 10.3934/math.2022422
In this paper, we prove that every local Lie derivation on von Neumann algebras is a Lie derivation; and we show that if $ \mathcal M $ is a type I von Neumann algebra with an atomic lattice of projections, then every local Lie derivation on $ LS(\mathcal M) $ is a Lie derivation.
[1] | S. Albeverio, Sh. Ayupov, K. Kudaybergenov, Derivations on the algebra of measurable operators affiliated with a type I von Neumann algebra, Sib. Adv. Math., 18 (2008), 86. http://dx.doi.org/10.3103/s1055134408020028 |
[2] | S. Albeverio, Sh. Ayupov, K. Kudaybergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Funct. Anal., 256 (2009), 2917–2943. http://dx.doi.org/10.1016/j.jfa.2008.11.003 doi: 10.1016/j.jfa.2008.11.003 |
[3] | S. Albeverio, Sh. Ayupov, K. Kudaybergenov, B. Nurjanov, Local derivations on algebras of measurable operators, Commun. Contemp. Math., 13 (2011), 643–657. http://dx.doi.org/10.1142/S0219199711004270 doi: 10.1142/S0219199711004270 |
[4] | D. Benkovi$\check{c}$, Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra, 63 (2015), 141–165. http://dx.doi.org/10.1080/03081087.2013.851200 doi: 10.1080/03081087.2013.851200 |
[5] | A. Ber, V. Chilin, F. Sukochev, Non-trivial derivation on commutative regular algebras, Extracta Mathematicae, 21 (2006), 107–147. |
[6] | A. Ber, V. Chilin, F. Sukochev, Continuity of derivations of algebras of locally measurable operators, Integr. Equ. Oper. Theory, 75 (2013), 527–557. http://dx.doi.org/10.1007/s00020-013-2039-3 doi: 10.1007/s00020-013-2039-3 |
[7] | A. Ber, V. Chilin, F. Sukochev, Continuous derivations on algebras of locally measurable operators are inner, Proc. London Math. Soc., 109 (2014), 65–89. http://dx.doi.org/10.1112/plms/pdt070 doi: 10.1112/plms/pdt070 |
[8] | L. Chen, F. Lu, Local Lie derivations of nest algebras, Linear Algebra Appl., 475 (2015), 62–72. http://dx.doi.org/10.1016/j.laa.2015.01.039 doi: 10.1016/j.laa.2015.01.039 |
[9] | L. Chen, F. Lu, T. Wang, Local and 2-local Lie derivations of operator algebras on Banach spaces, Integr. Equ. Oper. Theory, 77 (2013), 109–121. http://dx.doi.org/10.1007/s00020-013-2074-0 doi: 10.1007/s00020-013-2074-0 |
[10] | W. S. Cheung, Lie derivations of triangular algebra, Linear Multilinear Algebra, 51 (2003), 299–310. http://dx.doi.org/10.1080/0308108031000096993 doi: 10.1080/0308108031000096993 |
[11] | V. Chilin, I. Juraev, Lie derivations on the algebras of locally measurable operators, arXiv: 1608. 03996v1. |
[12] | E. Christensen, Derivations of nest algebras, Math. Ann., 229 (1977), 155–161. http://dx.doi.org/10.1007/BF01351601 doi: 10.1007/BF01351601 |
[13] | H. Du, J. Zhang, Derivations on nest-subalgebras of von Neumann algebras, Chinese Ann. Math. A, 17 (1996), 467–474. |
[14] | H. Du, J. Zhang, Derivations on nest-subalgebras of von Neumann algebras II, Acta Mathematica Sinica, 40 (1997), 357–362. |
[15] | D. Hadwin, J. Li, Local derivations and local automorphisms, J. Math. Anal. Appl., 290 (2004), 702–714. http://dx.doi.org/10.1016/j.jmaa.2003.10.015 doi: 10.1016/j.jmaa.2003.10.015 |
[16] | D. Hadwin, J. Li, Local derivations and local automorphisms on some algebras, J. Operator Theory, 60 (2008), 29–44. http://dx.doi.org/10.2307/24715835 doi: 10.2307/24715835 |
[17] | D. Hadwin, J. Li, Q. Li, X. Ma, Local derivations on rings containing a von Neumann algebra and a question of Kadison, arXiv: 1311.0030v1. |
[18] | J. He, J. Li, G. An, W. Huang, Characterizations of 2-local derivations and local Lie derivations on some algebras, Sib. Math. J., 59 (2018), 721–730. http://dx.doi.org/10.1134/S0037446618040146 doi: 10.1134/S0037446618040146 |
[19] | J. He, J. Li, D. Zhao, Derivations, local and 2-local derivations on some algebras of operators on Hilbert C*-bodules, Mediterr. J. Math., 14 (2017), 230. http://dx.doi.org/10.1007/s00009-017-1032-5 doi: 10.1007/s00009-017-1032-5 |
[20] | B. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge, 120 (1996), 455–473. http://dx.doi.org/10.1017/S0305004100075010 doi: 10.1017/S0305004100075010 |
[21] | B. Johnson, Local derivations on $C^*$-algebras are derivations, Trans. Amer. Math. Soc., 353 (2001), 313–325. http://dx.doi.org/10.1090/S0002-9947-00-02688-X doi: 10.1090/S0002-9947-00-02688-X |
[22] | R. Kadison, Local derivations, J. Algebra, 130 (1990), 494–509. http://dx.doi.org/10.1016/0021-8693(90)90095-6 doi: 10.1016/0021-8693(90)90095-6 |
[23] | R. Kadison, J. Ringrose, Fundamentals of the theory of operator algebras, New York: Academic Press, 1983. |
[24] | D. Larson, A. Sourour, Local derivations and local automorphisms of B(X), Proceedings of Symposia in Pure Mathematics, 1990,187–194. |
[25] | D. Liu, J. Zhang, Local Lie derivations on certain operator algebras, Ann. Funct. Anal., 8 (2017), 270–280. http://dx.doi.org/10.1215/20088752-0000012x doi: 10.1215/20088752-0000012x |
[26] | D. Liu, J. Zhang, Local Lie derivations of factor von Neumann algebras, Linear Algebra Appl., 519 (2017), 208–218. http://dx.doi.org/10.1016/j.laa.2017.01.004 doi: 10.1016/j.laa.2017.01.004 |
[27] | F. Lu, Lie derivation of certain CSL algebras, Isr. J. Math., 155 (2006), 149–156. http://dx.doi.org/10.1007/BF02773953 doi: 10.1007/BF02773953 |
[28] | M. Mathieu, A. Villena, The structure of Lie derivations on $C^*$-algebras, J. Funct. Anal., 202 (2003), 504–525. http://dx.doi.org/10.1016/S0022-1236(03)00077-6 doi: 10.1016/S0022-1236(03)00077-6 |
[29] | M. Muratov, V. Chilin, Algebras of measurable and locally measurable operators, Kiev: Institute of Mathematics Ukrainian Academy of Sciences, 2007. |
[30] | M. Muratov, V. Chilin, Central extensions of *-algebras of measurable operators, Reports of the National Academy of Science of Ukraine, 7 (2009), 24–28. |
[31] | S. Sakai, Derivations of $W^{*}$-algebras, Ann. Math., 83 (1966), 273–279. http://dx.doi.org/10.2307/1970432 doi: 10.2307/1970432 |
[32] | I. Segal, A non-commutative extension of abstract integration, Ann. Math., 57 (1953), 401–457. http://dx.doi.org/10.2307/1969729 doi: 10.2307/1969729 |
[33] | H. Sunouchi, Infinite Lie rings, Tohoku Math. J., 8 (1956), 291–307. http://dx.doi.org/10.2748/tmj/1178244954 doi: 10.2748/tmj/1178244954 |