In this paper, we introduced $ s $-index weakly positive tensors and discussed the calculation of the spectral radius of this kind of nonnegative tensors. Using the diagonal similarity transformation of tensor and Perron-Frobenius theory of nonnegative tensor, the calculation method of the maximum $ H $-eigenvalue of $ s $-index weakly positive tensors was given. A variable parameter was introduced in each iteration of the algorithm, which is equivalent to a translation transformation of the tensor in each iteration to improve the calculation speed. At the same time, it was proved that the algorithm is linearly convergent for the calculation of the spectral radius of $ s $-index weakly positive tensors. The final numerical example shows the effectiveness of the algorithm.
Citation: Panpan Liu, Hongbin Lv. An algorithm for calculating spectral radius of $ s $-index weakly positive tensors[J]. AIMS Mathematics, 2024, 9(1): 205-217. doi: 10.3934/math.2024012
In this paper, we introduced $ s $-index weakly positive tensors and discussed the calculation of the spectral radius of this kind of nonnegative tensors. Using the diagonal similarity transformation of tensor and Perron-Frobenius theory of nonnegative tensor, the calculation method of the maximum $ H $-eigenvalue of $ s $-index weakly positive tensors was given. A variable parameter was introduced in each iteration of the algorithm, which is equivalent to a translation transformation of the tensor in each iteration to improve the calculation speed. At the same time, it was proved that the algorithm is linearly convergent for the calculation of the spectral radius of $ s $-index weakly positive tensors. The final numerical example shows the effectiveness of the algorithm.
[1] | C. V. Loan, Future dirctions in tensor-based computation and modeling, Workshop Report in Arlington, 2009. |
[2] | L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007 doi: 10.1016/j.jsc.2005.05.007 |
[3] | L. H. Lim, Singular value and and eigenvalue of tensors: a variational approach, In: IEEE International Workshop on Computational Advances in multi Sensor Adaptive Processing, 2005,129–132. https://doi.org/10.1109/CAMAP.2005.1574201. |
[4] | S. Friedland, S. Gaubert, L. Han, Perron-Frobenius theorems for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), 738–749. https://doi.org/10.1016/j.laa.2011.02.042 doi: 10.1016/j.laa.2011.02.042 |
[5] | M. Ng, L. Qi, G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. A., 31 (2010), 1090–1099. https://doi.org/10.1137/09074838X doi: 10.1137/09074838X |
[6] | K. C. Chang, K. J. Pearson, T. Zhang, Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors, SIAM J. Matrix Anal. A., 32 (2011), 806–819. https://doi.org/10.1137/100807120 doi: 10.1137/100807120 |
[7] | L. Zhang, L. Qi, Linear convergence of the an algorithm for computing the largest eigenvalue of a nonnegative tensors, Numer. Linear Algebra, 19 (2012), 830–841. https://doi.org/10.1002/nla.822 doi: 10.1002/nla.822 |
[8] | Y. Liu, G. Zhou, N. F. Ibrahim, An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor, J. Comput. Appl. Math., 235 (2010), 286–292. https://doi.org/10.1016/j.cam.2010.06.002 doi: 10.1016/j.cam.2010.06.002 |
[9] | L. Zhang, L. Qi, Y. Xu, Linear convergence of the LZI algorithm for weakly positive tensors, J. Comput. Math., 30 (2012), 24–33. https://doi.org/10.4208/jcm.1110-m11si09 doi: 10.4208/jcm.1110-m11si09 |
[10] | W. Yang, Q. Ni, A cubically convergent method for solving the largest eigenvalue of a nonnegative irreducible tensor, Numer. Algor., 77 (2018), 1183–1197. https://doi.org/10.1007/s11075-017-0358-1 doi: 10.1007/s11075-017-0358-1 |
[11] | J. Zhang, C. Bu, An iterative method for finding the spectral radius of an irreducible nonnegative tensor, Comput. Appl. Math., 40 (2021), 8. https://doi.org/10.1007/s40314-020-01375-5 doi: 10.1007/s40314-020-01375-5 |
[12] | K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507–520. https://doi.org/10.4310/CMS.2008.v6.n2.a12 doi: 10.4310/CMS.2008.v6.n2.a12 |
[13] | K. J. Pearson, Essentially positive tensors, Int. J. Algebra, 4 (2010), 421–427. |
[14] | Y. Li, Q. Yang, X. He, A method with parameter for solving the spectral radius of nonnegative tensor, J. Oper. Res. Soc. China, 5 (2017), 3–25. https://doi.org/10.1007/s40305-016-0132-4 doi: 10.1007/s40305-016-0132-4 |
[15] | S. Hu, Z. Huang, L. Qi, Strictly nonnegative tensor and nonnegative tensor partition, Sci. China Math., 57 (2014), 181–195. https://doi.org/10.1007/s11425-013-4752-4 doi: 10.1007/s11425-013-4752-4 |
[16] | Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. A., 31 (2010), 2517–2530. https://doi.org/10.1137/090778766 doi: 10.1137/090778766 |
[17] | J. Shao, A general product of tensors with applications, Linear Algebra Appl., 439 (2013), 2350–2366. https://doi.org/10.1016/j.laa.2013.07.010 doi: 10.1016/j.laa.2013.07.010 |
[18] | W. Bunse, A class of diagonal transformation methods for the computation of the spectral radius of a nonnegative irreducible matrix, SIAM J. Numer. Anal., 18 (1981), 693–704. https://doi.org/10.1137/0718046 doi: 10.1137/0718046 |
[19] | H. Lv, Numerical algorithm for spectral radius of irreducibly nonnegative matrix, J. Jilin Univ. Sci. Edit., 46 (2008), 6–12. https://doi.org/10.3321/j.issn:1671-5489.2008.01.002 doi: 10.3321/j.issn:1671-5489.2008.01.002 |