Research article

Some new criteria for judging $ \mathcal{H} $-tensors and their applications

  • Received: 07 November 2022 Revised: 20 December 2022 Accepted: 29 December 2022 Published: 17 January 2023
  • MSC : 15A15, 15A48, 65F05, 65F40

  • $ \mathcal{H} $-tensors play a key role in identifying the positive definiteness of even-order real symmetric tensors. Some criteria have been given since it is difficult to judge whether a given tensor is an $ \mathcal{H} $-tensor, and their range of judgment has been limited. In this paper, some new criteria, from an increasing constant $ k $ to scale the elements of a given tensor can expand the range of judgment, are obtained. Moreover, as an application of those new criteria, some sufficient conditions for judging positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical examples are presented to illustrate those new results.

    Citation: Wenbin Gong, Yaqiang Wang. Some new criteria for judging $ \mathcal{H} $-tensors and their applications[J]. AIMS Mathematics, 2023, 8(4): 7606-7617. doi: 10.3934/math.2023381

    Related Papers:

  • $ \mathcal{H} $-tensors play a key role in identifying the positive definiteness of even-order real symmetric tensors. Some criteria have been given since it is difficult to judge whether a given tensor is an $ \mathcal{H} $-tensor, and their range of judgment has been limited. In this paper, some new criteria, from an increasing constant $ k $ to scale the elements of a given tensor can expand the range of judgment, are obtained. Moreover, as an application of those new criteria, some sufficient conditions for judging positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical examples are presented to illustrate those new results.



    加载中


    [1] Y. Yang, Q. Yang, Further results for Perron Frobenius theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517–2530. https://doi.org/10.1137/090778766 doi: 10.1137/090778766
    [2] C. Lv, C. Ma, An iterative scheme for identifying the positive semi-definiteness of even-order real symmetric H-tensor, J. Comput. Appl. Math., 392 (2021), 113498. https://doi.org/10.1016/j.cam.2021.113498 doi: 10.1016/j.cam.2021.113498
    [3] C. Li, F. Wang, J. Zhao, Y. Zhu, Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1–14. https://doi.org/10.1016/j.cam.2013.04.022 doi: 10.1016/j.cam.2013.04.022
    [4] G. Wang, F. Tan, Some Criteria for H-Tensors, in Chinese, Com. Appl. Math. Comput., 2 (2020), 1–11.
    [5] K. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507–520.
    [6] R. Zhao, L. Gao, Q. Liu, Y. Li, Criterions for identifying $H$-tensors, Front. Math. China, 3 (2016), 661–678. https://doi.org/10.1007/s11464-016-0519-x doi: 10.1007/s11464-016-0519-x
    [7] C. Li, Y. Li, K. Xu, New eigenvalue inclusion sets for tensor, Numer. Algebra App., 21 (2014), 39–50. https://doi.org/10.1002/nla.1858 doi: 10.1002/nla.1858
    [8] F. Wang, D. Sun, New criteria for $H$-tensors and an application, J. Inequal. Appl., 20 (2016), 96–106. https://doi.org/10.1515/math-2015-0058 doi: 10.1515/math-2015-0058
    [9] Y. Li, Q. Liu, L. Qi, Programmable criteria for strong $H$-tensors, Numer. Algor., 74 (2017), 199–221. https://doi.org/10.1007/s11075-016-0145-4 doi: 10.1007/s11075-016-0145-4
    [10] F. Wang, D. Sun, J. Zhao, C. Li, New practical criteria for $H$-tensors and its application, Linear Multilinear A., 65 (2017), 269–283. https://doi.org/10.1080/03081087.2016.1183558 doi: 10.1080/03081087.2016.1183558
    [11] M. Kannan, N. Shaked, A. Berman, Some properties of strong $H$-tensors and general $H$-tensors, Linear Algebra Appl., 476 (2015), 42–55. https://doi.org/10.1016/j.laa.2015.02.034 doi: 10.1016/j.laa.2015.02.034
    [12] J. Cui, G. Peng, Q. Lu, Z. Huang, New iterative criteria for strong $H$-tensors and an application, J. Inequal Appl., 2017 (2017), 49. https://doi.org/10.1186/s13660-017-1323-1 doi: 10.1186/s13660-017-1323-1
    [13] Y. Wang, G. Zhou, L. Caccetta, Nonsingular $H$-tensor and its criteria, J. Ind. Manag. Optim., 4 (2016), 1173–1186. https://doi.org/10.3934/jimo.2016.12.1173 doi: 10.3934/jimo.2016.12.1173
    [14] G. Li, Y. Zhang, Y. Feng, Criteria for nonsingular $H$-tensors, Adv. Appl. Math., 2 (2018), 66–72.
    [15] Y. Xu, R. Zhao, B. Zheng, Some criteria for identifying strong $H$-tensors, Numer Algor., 80 (2019), 1121–1141. https://doi.org/10.1007/s11075-018-0519-x doi: 10.1007/s11075-018-0519-x
    [16] F. Wang, D. Sun, Y. Xu, Some criteria for identifying $H$-tensors and its applications, Calcolo, 56 (2019), 2–17.
    [17] W. Ding, L. Qi, Y. Wei, $M$-tensors and nonsingular $M$-tensors, Linear Algebra Appl., 439 (2013), 3264–3278. https://doi.org/10.1016/j.laa.2013.08.038 doi: 10.1016/j.laa.2013.08.038
    [18] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007 doi: 10.1016/j.jsc.2005.05.007
    [19] L. Qi, Y. Song, An even order symmetric $B$-tensor is positive definite, Linear Algebra Appl., 457 (2014), 303–312. https://doi.org/10.1016/j.laa.2014.05.026 doi: 10.1016/j.laa.2014.05.026
    [20] L. Qi, G. Yu, Y. Xu, Nonnegative diffusion orientation distribution function, J. Math. Imaging Vis., 45 (2013), 103–113. https://doi.org/10.1007/s10851-012-0346-y doi: 10.1007/s10851-012-0346-y
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1129) PDF downloads(169) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog