Positive definite polynomials are important in the field of optimization. $ \mathcal{H} $-tensors play an important role in identifying the positive definiteness of an even-order homogeneous multivariate form. In this paper, we propose some new criterion for identifying $ \mathcal{H} $-tensor. As applications, we give new conditions for identifying positive definiteness of the even-order homogeneous multivariate form. At last, some numerical examples are provided to illustrate the efficiency and validity of new methods.
Citation: Dongjian Bai, Feng Wang. New methods based $ \mathcal{H} $-tensors for identifying the positive definiteness of multivariate homogeneous forms[J]. AIMS Mathematics, 2021, 6(9): 10281-10295. doi: 10.3934/math.2021595
Positive definite polynomials are important in the field of optimization. $ \mathcal{H} $-tensors play an important role in identifying the positive definiteness of an even-order homogeneous multivariate form. In this paper, we propose some new criterion for identifying $ \mathcal{H} $-tensor. As applications, we give new conditions for identifying positive definiteness of the even-order homogeneous multivariate form. At last, some numerical examples are provided to illustrate the efficiency and validity of new methods.
[1] | Q. Ni, L. Qi, F. Wang, An eigenvalue method for the positive definiteness identification problem, IEEE T. Automat. Contr., 53 (2008), 1096–1107. doi: 10.1109/TAC.2008.923679 |
[2] | Y. Yang, Q. Yang, Further results for Perron-Frobenius Theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517–2530. doi: 10.1137/090778766 |
[3] | H. Chen, L. Qi, Positive deniteness and semi-deniteness of even order symmetric Cauchy tensors, J. Ind. Manag. Optim., 11 (2015), 1263–1274. |
[4] | Y. Song, L. Qi, Necessary and sufficient conditions for copositive tensors, Linear Multilinear A., 63 (2015), 120–131. doi: 10.1080/03081087.2013.851198 |
[5] | K. Zhang, Y. Wang, An H-tensor based iterative scheme for identifying the positive deniteness of multivariate homogeneous forms, J. Comput. Appl. Math., 305 (2016), 1–10. doi: 10.1016/j.cam.2016.03.025 |
[6] | N. Bose, A. Modaress, General procedure for multivariable polynomial positivity with control applications, IEEE T. Automat. Control., 21 (1976), 596–601. |
[7] | C. Li, F. Wang, J. Zhao, Y. Zhu, Y, Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1–14. doi: 10.1016/j.cam.2013.04.022 |
[8] | L. Zhang, L. Qi, G. Zhou, $\mathcal {M}$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437–542. doi: 10.1137/130915339 |
[9] | M. Kannana, N. Mondererb, A. Bermana, Some properties of strong $\mathcal{H}$-tensors and general $\mathcal{H}$-tensors, Linear Algebra Appl., 476 (2015), 42–55. doi: 10.1016/j.laa.2015.02.034 |
[10] | W. Ding, L. Qi, Y. Wei, $\mathcal {M}$-tensors and nonsingular $\mathcal {M}$-tensors, Linear Algebra Appl., 439 (2013), 3264–3278. doi: 10.1016/j.laa.2013.08.038 |
[11] | F. Wang, D. Sun, New criteria for $\mathcal {H}$-tensors and an application, J. Inequal. Appl., 96 (2016), 1–12. |
[12] | F. Wang, D. Sun, J. Zhao, C. Li, New practical criteria for $\mathcal{H}$-tensors and its application, Linear Multilinear A., 2 (2017), 269–283. |
[13] | K. Zhang, Y. Wang, An $\mathcal{H}$-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Comput. Appl. Math., 305 (2016), 1–10. doi: 10.1016/j.cam.2016.03.025 |
[14] | Y. Wang, G. Zhou, L. Caccetta, Nonsingular $\mathcal {H}$-tensor and its criteria, J. Ind. Manag. Optim., 12 (2016), 1173–1186. doi: 10.3934/jimo.2016.12.1173 |
[15] | Y. Wang, K. Zhang, H. Sun, Criteria for strong $\mathcal{H}$-tensors, Front. Math. China, 11 (2016), 577–592. doi: 10.1007/s11464-016-0525-z |
[16] | Y. Li, Q. Liu, L. Qi, Programmable criteria for strong $\mathcal{H}$-tensors, Numer. Algorithms, 74 (2017), 1–12. doi: 10.1007/s11075-016-0135-6 |
[17] | L. Qi, Y. Song, An even order symmetric $\mathcal {B}$-tensor is positive definite, Linear Algebra Appl., 457 (2014), 303–312. doi: 10.1016/j.laa.2014.05.026 |
[18] | C. Li, Y. Li, Double $\mathcal {B}$-tensors and quasi-double $\mathcal {B}$-tensors, Linear Algebra Appl., 466 (2015), 343–356. doi: 10.1016/j.laa.2014.10.027 |