The biharmonic equation/eigenvalue problem is one of the fundamental model problems in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue problem, based on the work of Gudi [Numer. Methods Partial Differ. Equ., 27 (2011), 315-328], we study the a posteriori error estimates of the approximate eigenpairs obtained by the Ciarlet-Raviart mixed finite element method. We prove the reliability and efficiency of the error estimator of the approximate eigenfunction and analyze the reliability of the error estimator of the approximate eigenvalues. We also implement the adaptive calculation and exhibit the numerical experiments which show that our method is efficient and can get an approximate solution with high accuracy.
Citation: Jinhua Feng, Shixi Wang, Hai Bi, Yidu Yang. The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem[J]. AIMS Mathematics, 2024, 9(2): 3332-3348. doi: 10.3934/math.2024163
The biharmonic equation/eigenvalue problem is one of the fundamental model problems in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue problem, based on the work of Gudi [Numer. Methods Partial Differ. Equ., 27 (2011), 315-328], we study the a posteriori error estimates of the approximate eigenpairs obtained by the Ciarlet-Raviart mixed finite element method. We prove the reliability and efficiency of the error estimator of the approximate eigenfunction and analyze the reliability of the error estimator of the approximate eigenvalues. We also implement the adaptive calculation and exhibit the numerical experiments which show that our method is efficient and can get an approximate solution with high accuracy.
[1] | P. G. Ciarlet, P. A. Raviart, A mixed finite element method for the biharmonic equation, In: Mathematical aspects of finite elements in partial differential equations, Academic Press, 1974,125–145. https://doi.org/10.1016/B978-0-12-208350-1.50009-1 |
[2] | P. G. Ciarlet, The finite element method for elliptic problems, SIAM, 2002. https://doi.org/10.1137/1.9780898719208 |
[3] | B. Mercier, Numerical solution of the biharmonic problems by mixed finite elements of class $C^{0}$, Boll. Unione Mat. Ital., 10 (1974), 133–149. |
[4] | R. Scholz, Interior error estimates for a mixed finite element method, Numer. Funct. Anal. Optim., 1 (1979), 415–429. https://doi.org/10.1080/01630567908816025 doi: 10.1080/01630567908816025 |
[5] | I. Babuška, J. Osborn, J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comput., 35 (1980), 1039–1062. |
[6] | T. Gudi, N. Nataraj, A. K. Pani, Mixed discontinuous Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 37 (2008), 139–161. https://doi.org/10.1007/s10915-008-9200-1 doi: 10.1007/s10915-008-9200-1 |
[7] | C. G. Xiong, R. Becker, F. S. Luo, X. L. Ma, A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems, Numer. Methods Partial Differ. Equ., 33 (2017), 318–353. https://doi.org/10.1002/num.22090 doi: 10.1002/num.22090 |
[8] | I. Babuška, J. Osborn, Eigenvalue problems, Handb. Numer. Anal., 2 (1991), 641–787. https://doi.org/10.1016/S1570-8659(05)80042-0 doi: 10.1016/S1570-8659(05)80042-0 |
[9] | J. G. Sun, A. H. Zhou, Finite element methods for eigenvalue problems, Chapman and Hall/CRC, 2016. https://doi.org/10.1201/9781315372419 |
[10] | L. Wang, C. G. Xiong, H. B. Wu, F. S. Luo, A priori and a posteriori analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems, Adv. Comput. Math., 45 (2019), 2623–2646. https://doi.org/10.1007/s10444-019-09689-7 doi: 10.1007/s10444-019-09689-7 |
[11] | Y. Zhang, H. Bi, Y. D. Yang, The two-grid discretization of Ciarlet-Raviart mixed method for biharmonic eigenvalue problems, Appl. Numer. Math., 138 (2019), 94–113. https://doi.org/10.1016/j.apnum.2018.12.007 doi: 10.1016/j.apnum.2018.12.007 |
[12] | J. Meng, L. Q. Mei, The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem, J. Comput. Appl. Math., 402 (2022), 113783. https://doi.org/10.1016/j.cam.2021.113783 doi: 10.1016/j.cam.2021.113783 |
[13] | Y. D. Yang, H. Bi, H. Li, J. Y. Han, Mixed methods for the Helmholtz transmission eigenvalues, SIAM J. Sci. Comput., 38 (2016), A1383–A1403. |
[14] | Y. D. Yang, J. Y. Han, H. Bi, H. Li, Y. Zhang, Mixed methods for the elastic transmission eigenvalue problem, Appl. Math. Comput., 374 (2020), 125081. https://doi.org/10.1016/j.amc.2020.125081 doi: 10.1016/j.amc.2020.125081 |
[15] | M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Eng., 142 (1997), 1–88. https://doi.org/10.1016/S0045-7825(96)01107-3 doi: 10.1016/S0045-7825(96)01107-3 |
[16] | R. Verfürth, A posteriori error estimation techniques for finite element methods, Oxford University Press, 2013. https://doi.org/10.1093/acprof:oso/9780199679423.001.0001 |
[17] | L. Chamoin, F. Legoll, An introductory review on a posteriori error estimation in finite element computations, SIAM Rev., 65 (2023), 963–1028. https://doi.org/10.1137/21M1464841 doi: 10.1137/21M1464841 |
[18] | H. Li, Y. D. Yang, $C^0$IPG adaptive algorithms for the biharmonic eigenvalue problem, Numer. Algorithms, 78 (2018), 553–567. https://doi.org/10.1007/s11075-017-0388-8 doi: 10.1007/s11075-017-0388-8 |
[19] | J. H. Feng, S. X. Wang, H. Bi, Y. D. Yang, An hp-mixed discontinuous Galerkin method for the biharmonic eigenvalue problem, Appl. Math. Comput., 459 (2023), 127969. https://doi.org/10.1016/j.amc.2023.127969 doi: 10.1016/j.amc.2023.127969 |
[20] | A. Charbonneau, K. Dossou, R. Pierre, A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem, Numer. Methods Partial Differ. Equ., 13 (1997), 93–111. |
[21] | T. Gudi, Residual-based a posteriori error estimator for the mixed finite element approximation of the biharmonic equation, Numer. Methods Partial Differ. Equ., 27 (2011), 315–328. https://doi.org/10.1002/num.20524 doi: 10.1002/num.20524 |
[22] | P. Grisvard, Singularities in bondary value problems, Masson and Springer-Verlag, 1992. |
[23] | H. Blum, R. Rannacher, R. Leis, On the boundary value problem of biharmonic operator on domains with angular corners, Math. Methods Appl. Sci., 2 (1980), 556–581. https://doi.org/10.1002/mma.1670020416 doi: 10.1002/mma.1670020416 |
[24] | S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, 3 Eds., New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75934-0 |
[25] | S. C. Brenner, $C^0$ interior penalty methods, In: Frontiers in numerical analysis-Durham 2010, Berlin, Heidelberg: Springer, 2012, 79–147. https://doi.org/10.1007/978-3-642-23914-4_2 |
[26] | P. E. Bjørstad, B. P. Tjøstheim, High precision solutions of two fourth order eigenvalue problems, Computing, 63 (1999), 97–107. https://doi.org/10.1007/s006070050053 doi: 10.1007/s006070050053 |
[27] | L. Chen, iFEM: an integrated finite element methods package in MATLAB, Technical Report, University of California at Irvine, 2009. |
[28] | T. Gustafsson, G. D. McBain, scikit-fem: A Python package for finite element assembly, J. Open Source Software, 5 (2020), 2369. https://doi.org/10.21105/joss.02369 doi: 10.21105/joss.02369 |