Processing math: 49%
Research article Special Issues

The a posteriori error estimate in fractional differential equations using generalized Jacobi functions

  • Received: 05 August 2023 Revised: 08 October 2023 Accepted: 11 October 2023 Published: 26 October 2023
  • MSC : 34A08, 42C10, 65L05, 65L10, 65L70

  • In this work, we study a posteriori error analysis of a general class of fractional initial value problems and fractional boundary value problems. A Petrov-Galerkin spectral method is adopted as the discretization technique in which the generalized Jacobi functions are utilized as basis functions for constructing efficient spectral approximations. The unique solvability of the weak problems is established by verifying the Babuška-Brezzi inf-sup condition. Then, we introduce some residual-type a posteriori error estimators, and deduce their efficiency and reliability in properly weighted Sobolev space. Numerical examples are given to illustrate the performance of the obtained error estimators.

    Citation: Bo Tang, Huasheng Wang. The a posteriori error estimate in fractional differential equations using generalized Jacobi functions[J]. AIMS Mathematics, 2023, 8(12): 29017-29041. doi: 10.3934/math.20231486

    Related Papers:

    [1] Nadiyah Hussain Alharthi, Mdi Begum Jeelani . Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators. AIMS Mathematics, 2023, 8(11): 27009-27032. doi: 10.3934/math.20231382
    [2] Huda Alsaud, Muhammad Owais Kulachi, Aqeel Ahmad, Mustafa Inc, Muhammad Taimoor . Investigation of SEIR model with vaccinated effects using sustainable fractional approach for low immune individuals. AIMS Mathematics, 2024, 9(4): 10208-10234. doi: 10.3934/math.2024499
    [3] Maria M. Martignoni, Proton Rahman, Amy Hurford . Rotational worker vaccination provides indirect protection to vulnerable groups in regions with low COVID-19 prevalence. AIMS Mathematics, 2022, 7(3): 3988-4003. doi: 10.3934/math.2022220
    [4] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [5] Moh. Mashum Mujur Ihsanjaya, Nanang Susyanto . A mathematical model for policy of vaccinating recovered people in controlling the spread of COVID-19 outbreak. AIMS Mathematics, 2023, 8(6): 14508-14521. doi: 10.3934/math.2023741
    [6] Asma Hanif, Azhar Iqbal Kashif Butt, Tariq Ismaeel . Fractional optimal control analysis of Covid-19 and dengue fever co-infection model with Atangana-Baleanu derivative. AIMS Mathematics, 2024, 9(3): 5171-5203. doi: 10.3934/math.2024251
    [7] Mdi Begum Jeelani, Abeer S Alnahdi, Rahim Ud Din, Hussam Alrabaiah, Azeem Sultana . Mathematical model to investigate transmission dynamics of COVID-19 with vaccinated class. AIMS Mathematics, 2023, 8(12): 29932-29955. doi: 10.3934/math.20231531
    [8] Sara Salem Alzaid, Badr Saad T. Alkahtani . Real-world validation of fractional-order model for COVID-19 vaccination impact. AIMS Mathematics, 2024, 9(2): 3685-3706. doi: 10.3934/math.2024181
    [9] Shao-Wen Yao, Muhammad Farman, Maryam Amin, Mustafa Inc, Ali Akgül, Aqeel Ahmad . Fractional order COVID-19 model with transmission rout infected through environment. AIMS Mathematics, 2022, 7(4): 5156-5174. doi: 10.3934/math.2022288
    [10] Salah Boulaaras, Ziad Ur Rehman, Farah Aini Abdullah, Rashid Jan, Mohamed Abdalla, Asif Jan . Coronavirus dynamics, infections and preventive interventions using fractional-calculus analysis. AIMS Mathematics, 2023, 8(4): 8680-8701. doi: 10.3934/math.2023436
  • In this work, we study a posteriori error analysis of a general class of fractional initial value problems and fractional boundary value problems. A Petrov-Galerkin spectral method is adopted as the discretization technique in which the generalized Jacobi functions are utilized as basis functions for constructing efficient spectral approximations. The unique solvability of the weak problems is established by verifying the Babuška-Brezzi inf-sup condition. Then, we introduce some residual-type a posteriori error estimators, and deduce their efficiency and reliability in properly weighted Sobolev space. Numerical examples are given to illustrate the performance of the obtained error estimators.



    In 1965, Zadeh [56] presented fuzzy set theory. Later, Atanasov [10] generalized the notion of a fuzzy set and added the notion of an intuitionistic fuzzy set. One of the underlying issues of fuzzy arithmetic and fuzzy decision-making is the ranking of fuzzy numbers. Before the decision-maker can act, fuzzy numbers should be ranked. Real numbers can be ordered linearly by the connection or , however, and fuzzy numbers do not have this type of disparity. Because a probable distribution depicts fuzzy numbers, they could also overlap, making it challenging to determine whether one fuzzy number is either larger or smaller than another. A ranking component, which outlines each fuzzy number further into a real line in which a natural order persists, is an efficient method to order the fuzzy numbers. Ramesh [49] compares the notion of ranking function for making comparisons of normal fuzzy numbers.

    Abbasbandy and Hajjari [1] developed an innovative method for classifying trapezoidal fuzzy numbers. Wang and Kerre [52] proposed ordering features for fuzzy quantities. Angelov [8] adhered the Bellman and Zadeh [12] fuzzy optimization approach to intuitionistic fuzzy optimization. Numerous authors, including Jana and Roy [30], Mahapatra et al. [35], Dubey et al. [20], Mukherjee and Basu [39] have investigated the issue of optimization in an intuitionistic fuzzy background. One initiative to model the decision-making challenge with ambiguous quantities is to treat such imprecise quantities as intuitionistic fuzzy numbers. Consequently, the analogy of fuzzy numbers is required in the intuitionistic fuzzy optimisation problem. To create ranking systems for intuitionistic fuzzy numbers, comparisons of these erroneous numbers are necessary.

    Between intuitionistic fuzzy sets, Atanassov identified four fundamental distances: "The Hamming, normalised Hamming, Euclidean, and normalised Euclidean distances". Szmidt and Kacprzyk [51] added to this principle and suggested a new definition of distance between intuitionistic fuzzy sets. Wang and Xin [53] also investigated the striking similarities and detachments between intuitionistic fuzzy sets by presenting some new axioms. Besides this, Nayagam et al. [41] and Nehi [42] also have investigated the ranking of intuitionistic fuzzy numbers. Li [34] defined and implemented a ratio methodology for triangular intuitionistic fuzzy numbers to MADM. In literature, there are additional ranking techniques that have been developed by authors like Kumar and Kaur [33], Zhang and Yu [57], Esmailzadeh and Esmailzadeh [22] and Papakostas et al. [44]. By adding the valuation and ambiguity indexes of a trapezoidal intuitionistic fuzzy number, De and Das [19] were capable of describing a ranking function.

    The centroid approach of ranking intuitionistic fuzzy numbers was introduced by Nishad et al. [43]. Bharati and Singh [13,14] have explored intuitionistic fuzzy multiple objective programming and implemented it in agricultural planning and control. In a two-stage time-minimizing transportation concern, Bharati and Malhotra [15] used intuitionistic fuzzy sets. A novel algorithm for ranking intuitionistic fuzzy digits using the centroid method was put forth by Prakash et al. [45]. Mitchell [37] introduced some techniques for ranking intuitively fuzzy numbers. To use the intuitionistic fuzzy number's anticipated interval, Grzegorzewski [26] suggested a ranking and having-to-order method for intuitionistic fuzzy numbers. This is entirely predicated on the possible values for the fuzzy number first presented in Chiao [17]. An approach for ranking fuzzy numbers using the circumcenter of centroids and an indicator of modality was presented by Rao and Shankar [46]. Nasseri et al. [40] introduce an addition to using the circumcenter of centroids to rank fuzzy numbers with the aid of an area method. Roseline and Amirtharaj [50] presented intinuistic fuzzy numbers using distance methods that rely on the circumcenter of centroids.

    Additionally, Yager [54,55] expanded upon the idea of PFS and introduced a new definition known as a q-rung orthopair fuzzy set (q-ROFS). Chen [16] suggested m-polar FS, while Zhang [57] established bipolar FS and its relationships. Akram [2] investigated the theory, procedures, and applications of m-polar F graphs in DM. Riaz and Hashmi [47] proposed the cutting-edge idea of a linear Diophantine fuzzy set (LDFS). The research on LDFSs has recently expanded significantly. Iampan et al. [29] researched linear Diophantine fuzzy Einstein aggregation operators, spherical linear Diophantine fuzzy, and linear Diophantine fuzzy relations concerning decision-making issues. Developed a fresh method for the COVID-19 q-linear Diophantine fuzzy emergency decision support system. Algebraic linear Diophantine fuzzy structures were researched by Kamac [31]. Khan et al. [32] use triangular linear Diophantine fuzzy numbers to solve linear and quadratic equations. There are several authors who studied different applications of generalized fuzzy set models, for instance, Ali et al. [3,4,5,6], Ashraf et al. [9], Ayub et al. [11], Das and Granados [18], Farid et al. [23], Gupta et al. [27], Hashmi et al. [28], Mahmood et al. [36], Mohammad et al. [38] and Riaz and Farid [48].

    The domain principle of intuitionistic fuzzy set (IFS), interval-valued intuitionistic fuzzy set (IVIFS), Pythagorean fuzzy set (PFS), interval-valued Pythagorean fuzzy set (IVPFS) and q-rung orthopair fuzzy set (q-ROFS) have several actual applications in diverse fields. But researchers found some limitations to apply these concepts in much uncertain problems due to some issues related to membership and non-membership grades. For instance, in all these theories the researchers cannot choose 1 for membership and 1 for no-membership, if someone choose 1 for membership and 1 for no-membership the 1q+1q>1. In order to remedy the issues, firstly, Riaz and Hashmi introduce the novel idea of linear Diophantine fuzzy set (LDFS). In LDFS concept, they use the reference parameters similar to membership and non-membership grades makes it most accommodating in the direction of modeling uncertainties in actual existence issues. This research proposes a novel circumcenter-based algorithm for ranking LD fuzzy numbers. A trapezoid is initially divided into three segments in a trapezoidal LD fuzzy number, with the first, second, and third parts consecutively being a triangle, a rectangle, and a triangle. Next, the centroids of each of these three components are computed and their circumcenters. To rank LD fuzzy numbers, a ranking algorithm is lastly specified as the circumcenter position plus the original position. The centroid of the trapezoid, which serves as the trapezoid's balance point, is used as a point of reference in most ranking algorithms suggested in the literature. But since all of the centroids' vertices are fairly different from this point, the centroids' circumcenter could be considered a significantly balanced location.

    This section is dedicated to reviewing some fundamental ideas essential for comprehending the dominant model.

    Definition 2.1. [56] Consider a non-empty set X as the universe of discourse. Then a fuzzy set ξ in X is defined as follows:

    ξ={(θ,μξ(θ))|θX}, (2.1)

    where μξ(θ):X[0,1] is the membership degree.

    Definition 2.2. [24] A fuzzy set ξ defined on the universe set X is said to be normal iff μξ(θ)=1.

    Definition 2.3. [21] A fuzzy set ξ of universe set X is said to be convex iff

    μξ(λx+(1λ)y)min(μξ(x),μξ(y))  x,yXandλ[0,1]. (2.2)

    Definition 2.4. [21] A fuzzy set ξ of universe set X is a fuzzy number iff ξ is normal and convex on X.

    A real fuzzy number ξ is described as any fuzzy subset of the real line R with membership function μξ(θ) possessing the following properties:

    μξ is a continuous mapping from R to the closed interval [0,1].

    ξ is normalized : there exist tR such that μξ(t)=1.

    ● Convexity of ξ: i.e., u,wR, if tuw, then μξ(u)min{μξ(t),μξ(w)}.

    ● Boundness of support: i.e., SR and tR, if |t|S, then μξ(t)=0.

    Definition 2.5. [10] An intuitionistic fuzzy set ϖ in X defined by

    ϖ={(θ,αϖ(θ),βϖ(θ)):θX}, (2.3)

    where αϖ:X[0,1] and βϖ:X[0,1] are the membership degree and non-membership degree, respectively, with the condition:

    0αϖ(θ)+βϖ(θ)1. (2.4)

    The hesitation degree of IFS ϖ defined in X is denoted as πϖ(θ). It is determined by the following expression:

    πϖ(θ)=1αϖ(θ)βϖ(θ). (2.5)

    Definition 2.6. [47] Let X be the universe. A linear Diophantine fuzzy set (LDFS) £R on X is defined as follows:

    £R={(θ,ζτR(θ),ηυR(θ),α(θ),β(θ)):θX}, (2.6)

    where ζτR(θ),ηυR(θ),α(θ),β(θ)[0,1] such that

    0α(θ)ζτR(θ)+β(θ)ηυR(θ)1, θX,0α(θ)+β(θ)1. (2.7)

    The hesitation part can be written as

    ϱπR=1(α(θ)ζτR(θ)+β(θ)ηυR(θ)), (2.8)

    where ϱ is the reference parameter.

    Definition 2.7. [47] An absolute LDFS on X can be written as

    1£R={(θ,1,0,1,0:θX}, (2.9)

    and empty or null LDFS can be expressed as

    0£R={(θ,0,1,0,1:θX}. (2.10)

    Definition 2.8. [47] Let £R={(θ,ζτR(θ),ηυR(θ),α(θ),β(θ)):θX} be an LDFS. For any constants s,t,u,v[0,1] such that 0su+tv1 with 0u+v1, define the (s,t,u,v)-cut of £R as follows:

    £s,tRu,v={θX:ζτR(θ)s, ηυR(θ)t, α(θ)u, β(θ)v}. (2.11)

    Definition 2.9. [32] A LDF number £R is

    ● a LDF subset of the real line R,

    ● normal, i.e., there is any θ0R such that ζτR(θ0)=1, ηυR(θ0)=0, α(θ0)=1, β(θ0)=0,

    ● convex for the membership functions ζτR and α, i.e.,

    ζτR(λθ1+(1λ)θ2)min{ζτR(θ1),ζτR(θ2)} θ1,θ2R, λ[0,1],α(λθ1+(1λ)θ2)min{α(θ1),α(θ2)} θ1,θ2R, λ[0,1], (2.12)

    ● concave for the nonmembership functions ηυR and β, i.e.,

    ηυR(λθ1+(1λ)θ2)max{ηυR(θ1),ηυR(θ2)} θ1,θ2R, λ[0,1],β(λθ1+(1λ)θ2)max{β(θ1),β(θ2)} θ1,θ2R, λ[0,1]. (2.13)

    Definition 2.10. Let £R be a trapezoidal LDFN (TrapLDFN) on R with the following membership functions (ζτR and α) and non-membership functions (ηυR and β):

    ζτR(x)={0x<θ1xθ1θ3θ1θ1xθ31θ3xθ4θ6xθ6θ4θ4xθ60θ6<x, (2.14)
    ηυR(x)={0x<θ2θ3xθ3θ2θ2xθ30θ3xθ4xθ4θ5θ4θ4xθ50θ5<x, (2.15)

    where θ1θ2θ3θ4θ5θ6 for all xR. The figure of (θ1,θ2,θ3,θ4,θ5,θ6) is shown in Figure 1.

    α(x)={0x<θ2xθ2θ3θ2θ2xθ31θ3xθ4θ5xθ5θ4θ4xθ50θ5<x, (2.16)
    β(x)={0x<θ1θ3xθ3θ1θ1xθ30θ3xθ4xθ4θ6θ4θ4xθ60θ6<x, (2.17)
    Figure 1.  The figure of (θ1,θ2,θ3,θ4,θ5,θ6).

    where θ1θ2θ3θ4θ5θ6 for all xR. The figure of (θ1,θ2,θ3,θ4,θ5,θ6) is shown in Figure 2.

    Figure 2.  The figure of (θ1,θ2,θ3,θ4,θ5,θ6).

    The figure of £RTrapLDFN is shown in Figure 3.

    Figure 3.  The figure of £RTrapLDFN.

    Definition 2.11. Consider a TrapLDFN £RTrapLDFN={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6). Then

    (i) s-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

    £sRTrapLDFN={xX:ζτR(x)s}=[ζτR(s)_,¯ζτR(s)]=[θ1+s(θ3θ1),θ6s(θ6θ4)], (2.18)

    (ii) t-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

    £tRTrapLDFN={xX:ηνR(x)t}=[ηνR(t)_,¯ηνR(t)]=[θ3t(θ3θ2),θ4+t(θ5θ4)], (2.19)

    (iii) u-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

    £uRTrapLDFN={xX:α(x)u}=[α(u)_,¯α(u)]=[θ2+u(θ3θ2),θ5u(θ5θ4)], (2.20)

    (iv) v-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

    £vRTrapLDFN={xX:β(x)v}=[β(v)_,¯β(v)]=[θ3v(θ3θ1),θ4+v(θ6θ4)]. (2.21)

    We can denote the (s,t,u,v)-cut of £RTrapLDFN={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6) by

    (£RTrapLDFN)s,tu,v={([ζτR(s)_,¯ζτR(s)],[ηνR(t)_,¯ηνR(t)]),([α(u)_,¯α(u)],[β(v)_,¯β(v)]).

    We denote the set of all TrapLDFN on R by £RTrapLDFN(R).

    In this part, we determine the centroid location of the trapezoidal linear Diaphontine fuzzy number (TrapLDFN). The geometric core of a trapezoidal Linear diophantine fuzzy number is used in the process of ranking TrapLDFNs with a centroid index. Values on the horizontal and vertical axes correlate to the geometric centre.

    Consider a TrapLDFN £RTrapLDFN={(θ1,θ2,θ3,θ4,θ5,θ6)(θ1,θ2,θ3,θ4,θ5,θ6), whose membership function can be defined as follows:

    ζτR(x)={0x<θ1fLA(x)θ1xθ31θ3xθ4fRA(x)θ4xθ60θ6x, (3.1)
    ηυR(x)={0x<θ2gLA(x)θ2xθ30θ3xθ4gRA(x)θ4xθ50θ5x, (3.2)
    α(x)={0x<θ2fLA(x)θ2xθ31θ3xθ4fRA(x)θ4xθ50θ5x, (3.3)
    β(x)={0x<θ1gLA(x)θ1xθ30θ3xθ4gRA(x)θ4xθ60θ6x. (3.4)

    Where

    fLA:R[0,1], fRA:R[0,1],gLA:R[0,1],  gRA:R[0,1],fLA:R[0,1], fRA:R[0,1],gLA:R[0,1] and gRA:R[0,1], (3.5)

    are called the sides of TrapLDFN, where fLA, gRA, fLA and gRA are non-decreasing and fRA, gLA, fRA and gLA are non-increasing functions. Therefore the inverse functions of fLA, fRA, gLA, gRA, fLA, fRA, gLA and gRA exist which are also of the same nature. Let

    hLA:[0,1]R, hRA:[0,1]R,kLA:[0,1]R, kRA:[0,1]R,hLA:[0,1]R, hRA:[0,1]R,kLA:[0,1]R and kRA:[0,1]R, (3.6)

    be the inverse functions of fLA, fRA, gLA, gRA, fLA, fRA, gLA and gRA respectively. Then, hLA, hRA, kLA, kRA, hLA, hRA, kLA and kRA should be integrable on R. In the case of the above defined TrapLDFN, the above inverse functions can be analytically expressed as follows:

    hLA(y)=θ1+(θ3θ1)y0y1,hRA(y)=θ6+(θ4θ6)y0y1,kLA(y)=θ3+(θ2θ3)y0y1,kRA(y)=θ4+(θ5θ4)y0y1,hLA(y)=θ2+(θ3θ2)y0y1,hRA(y)=θ5+(θ4θ5)y0y1,kLA(y)=θ3+(θ1θ3)y0y1,kRA(y)=θ4+(θ6θ4)y0y1. (3.7)

    The centroid point of the TrapLDFN is determined as follows. First we find ζτR(x) and ηυR(x), also see the Figure 4.

    ζτR(x)=θ3θ1xfLA(x)dx+θ4θ3xdx+θ6θ4xfRA(x)dxθ3θ1fLA(x)dx+θ4θ3dx+θ6θ4fRA(x)dx,=θ3θ1x2xθ1θ3θ1dx+θ4θ3xdx+θ6θ4θ6xx2θ6θ4dxθ3θ1xθ1θ3θ1dx+θ4θ3dx+θ6θ4θ6xθ6θ4dx,=1θ3θ1[x33x22θ1]θ3θ1+[x22]θ4θ3+1θ6θ4[θ6x22x33]θ6θ41θ3θ1[x22θ1x]θ3θ1+[x]θ4θ3+1θ6θ4[θ6xx22]θ6θ4,ζτR(x)=13[θ26+θ24θ23θ21θ1θ3+θ6θ4θ6+θ4θ3θ1], (3.8)
    ηυR(x)=θ3θ2xgLA(x)dx+θ4θ3xdx+θ5θ4xgRA(x)θ3θ2gLA(x)dx+θ4θ3dx+θ5θ4gRA(x),=θ3θ2θ3xx2θ3θ2dx+θ4θ3xdx+θ5θ4x2θ4xθ5θ4dxθ3θ2θ3xθ3θ2+θ4θ3dx+θ5θ4xθ4θ5θ4dx,=1θ3θ2[θ3x22x33]θ3θ2+[x22]θ4θ3+1θ5θ4[x33θ4x22]θ5θ41θ3θ2[θ3xx22]θ3θ2+[x]θ4θ3+1θ5θ4[x22θ4x]θ5θ4,ηυR(x)=13[2θ25+2θ242θ232θ22+θ3θ2θ5θ4θ5+θ4θ3θ2]. (3.9)
    Figure 4.  The figure of (θ1,θ2,θ3,θ4,θ5,θ6).

    Similarly, we find α(x) and β(x), also see the Figure 5.

    α(x)=θ3θ2xfLA(x)dx+θ4θ3xdx+θ5θ4xfRA(x)dxθ3θ2fLA(x)dx+θ4θ3dx+θ5θ4fRA(x)dx,=θ3θ2x2θ2xθ3θ2dx+θ4θ3xdx+θ5θ4θ5xx2θ5θ4dxθ3θ2xθ2θ3θ2dx+θ4θ3dx+θ5θ4θ5xθ5θ4dx,=1θ3θ2[x33θ2x22]θ3θ2+[x22]θ4θ3+1θ5θ4[θ5x22x33]θ5θ41θ3θ2[x22θ2x]θ3θ2+[x]θ4θ3+1θ5θ4[θ5xx23]θ5θ4,α(x)=13[θ25+θ24θ23θ22θ2θ3+θ4θ5θ5+θ4θ3θ2], (3.10)
    \begin{eqnarray} \beta (x) & = &\frac{\int_{\theta _{1}^{\prime }}^{\theta _{3}}xg_{A}^{\prime L}(x)dx+\int_{\theta _{3}}^{\theta _{4}}xdx+\int_{\theta _{4}}^{\theta _{6}^{\prime }}g_{A}^{\prime R}(x)dx}{\int_{\theta _{1}^{\prime }}^{\theta _{3}}g_{A}^{\prime L}(x)dx+\int_{\theta _{3}}^{\theta _{4}}dx+\int_{\theta _{4}}^{\theta _{6}^{\prime }}g_{A}^{\prime R}(x)dx}, \\ & = &\frac{\int_{\theta _{1}^{\prime }}^{\theta _{3}}\frac{\theta _{3}x-x^{2}}{ \theta _{3}-\theta _{1}^{\prime }}dx+\int_{\theta _{3}}^{\theta _{4}}xdx+\int_{\theta _{4}}^{\theta _{6}^{\prime }}\frac{x^{2}-\theta _{4}x}{ \theta _{6}^{\prime }-\theta _{4}}dx}{\int_{\theta _{1}^{\prime }}^{\theta _{3}}\frac{\theta _{3}-x}{\theta _{3}-\theta _{1}^{\prime }}dx+\int_{\theta _{3}}^{\theta _{4}}dx+\int_{\theta _{4}}^{\theta _{6}^{\prime }}\frac{ x-\theta _{4}}{\theta _{6}^{\prime }-\theta _{4}}dx}, \\ & = &\frac{\frac{1}{\theta _{3}-\theta _{1}^{\prime }}\left[ \theta _{3}\frac{ x^{2}}{2}-\frac{x^{3}}{3}\right] _{\theta _{1}^{\prime }}^{\theta _{3}}+ \left[ \frac{x^{2}}{2}\right] _{\theta _{3}}^{\theta _{4}}+\frac{1}{\theta _{6}^{\prime }-\theta _{4}}\left[ \frac{x^{3}}{3}-\theta _{4}\frac{x^{2}}{2} \right] _{\theta _{4}}^{\theta _{6}^{\prime }}}{\frac{1}{\theta _{3}-\theta _{1}^{\prime }}\left[ \theta _{3}x-\frac{x^{2}}{2}\right] _{\theta _{1}^{\prime }}^{\theta _{3}}+\left[ x\right] _{\theta _{3}}^{\theta _{4}}++ \frac{1}{\theta _{6}^{\prime }-\theta _{4}}\left[ \frac{x^{2}}{2}-\theta _{4}x\right] _{\theta _{4}}^{\theta _{6}^{\prime }}}, \\ \beta (x) & = &\frac{1}{3}\left[ \frac{2\theta _{6}^{\prime ^{2}}+2\theta _{4}^{2}-2\theta _{3}^{2}-2\theta _{1}^{\prime ^{2}}+\theta _{3}\theta _{1}^{\prime }-\theta _{6}^{\prime }\theta _{4}}{\theta _{6}^{\prime }+\theta _{4}-\theta _{3}-\theta _{1}^{\prime }}\right] . \end{eqnarray} (3.11)
    Figure 5.  The figure of ( \theta _{1}^{^{\prime }}, \theta _{2}^{^{\prime }}, \theta _{3}, \theta _{4}, \theta _{5}^{^{\prime }}, \theta _{6}^{\prime }) .

    Next, we find \zeta _{R}^{\tau }(y) and \eta _{R}^{\upsilon }(y), also see the Figure 6.

    \begin{eqnarray} \zeta _{R}^{\tau }(y) & = &\frac{\int_{0}^{1}yh_{A}^{R}(y)dy- \int_{0}^{1}yh_{A}^{L}(y)dy}{\int_{0}^{1}h_{A}^{R}(y)dy- \int_{0}^{1}h_{A}^{L}(y)dy} \\ & = &\frac{\int_{0}^{1}(\theta _{6}y+\theta _{4}y^{2}-\theta _{6}y^{2})dy-\int_{0}^{1}(\theta _{1}y+\theta _{3}y^{2}-\theta _{1}y^{2})dy}{ \int_{0}^{1}(\theta _{6}+\theta _{4}y-\theta _{6}y)dy-\int_{0}^{1}(\theta _{1}+\theta _{3}y-\theta _{1}y)dy} \\ & = &\frac{1}{3}\left[ \frac{\theta _{6}+2\theta _{4}-\theta _{1}-2\theta _{3} }{\theta _{6}+\theta _{4}-\theta _{1}-\theta _{3}}\right] . \end{eqnarray} (3.12)
    \begin{eqnarray} \eta _{R}^{\upsilon }(y) & = &\frac{\int_{0}^{1}yk_{A}^{R}dy- \int_{0}^{1}yk_{A}^{L}(y)dy}{\int_{0}^{1}k_{A}^{R}dy- \int_{0}^{1}k_{A}^{L}(y)dy}, \\ & = &\frac{\int_{0}^{1}(\theta _{4}y+\theta _{5}y^{2}-\theta _{4}y^{2})dy-\int_{0}^{1}(\theta _{3}y+\theta _{2}y^{2}-\theta _{3}y^{2})dy}{ \int_{0}^{1}(\theta _{4}+\theta _{5}y-\theta _{4}y)dy-\int_{0}^{1}(\theta _{3}+\theta _{2}y-\theta _{3}y)dy}, \\ \eta _{R}^{\upsilon }(y) & = &\frac{1}{3}\left[ \frac{2\theta _{5}+\theta _{4}-\theta _{3}-2\theta _{2}}{\theta _{5}+\theta _{4}-\theta _{3}-\theta _{2}}\right] . \end{eqnarray} (3.13)
    Figure 6.  The figure of inverse of ( \theta _{1}, \theta _{2}, \theta _{3}, \theta _{4}, \theta _{5}, \theta _{6}) .

    Similarly, we find \alpha (y) and \beta (y), also see the Figure 7.

    \begin{eqnarray} \alpha (y) & = &\frac{\int_{0}^{1}yh_{A}^{\prime R}(y)dy-\int_{0}^{1}yh_{A}^{\prime L}(y)dy}{\int_{0}^{1}h_{A}^{\prime R}(y)dy-\int_{0}^{1}h_{A}^{\prime L}(y)dy}, \\ & = &\frac{\int_{0}^{1}(\theta _{5}^{\prime }y+\theta _{4}y^{2}-\theta _{5}^{\prime }y^{2})dy-\int_{0}^{1}(\theta _{2}^{\prime }y+\theta _{3}y^{2}-\theta _{2}^{\prime }y^{2})dy}{\int_{0}^{1}(\theta _{5}^{\prime }+\theta _{4}y-\theta _{5}^{\prime }y)dy-\int_{0}^{1}(\theta _{2}^{\prime }+\theta _{3}y-\theta _{2}^{\prime }y)dy}, \\ \alpha (y) & = &\frac{1}{3}\left[ \frac{\theta _{5}^{\prime }+2\theta _{4}-2\theta _{3}-\theta _{2}^{\prime }}{\theta _{5}^{\prime }+\theta _{4}-\theta _{3}-\theta _{2}^{\prime }}\right] . \end{eqnarray} (3.14)
    \begin{eqnarray} \beta (y) & = &\frac{\int_{0}^{1}yk_{A}^{\prime R}(y)dy-\int_{0}^{1}yk_{A}^{\prime L}(y)dy}{\int_{0}^{1}k_{A}^{\prime R}(y)dy-\int_{0}^{1}k_{A}^{\prime L}(y)dy}, \\ & = &\frac{\int_{0}^{1}(\theta _{4}y+\theta _{6}^{\prime }y^{2}-\theta _{4}y^{2})dy-\int_{0}^{1}(\theta _{3}y+\theta _{1}^{\prime }y^{2}-\theta _{3}y^{2})dy}{\int_{0}^{1}(\theta _{4}+\theta _{6}^{\prime }y-\theta _{4}y)dy-\int_{0}^{1}(\theta _{3}+\theta _{1}^{\prime }y-\theta _{3}y)dy}, \\ & = &\frac{1}{3}\left[ \frac{2\theta _{6}^{\prime }+\theta _{4}-\theta _{3}-2\theta _{1}^{\prime }}{\theta _{6}^{\prime }+\theta _{4}-\theta _{3}-\theta _{1}^{\prime }}\right] . \end{eqnarray} (3.15)
    Figure 7.  The figure of inverse of ( \theta _{1}^{^{\prime }}, \theta _{2}^{^{\prime }}, \theta _{3}, \theta _{4}, \theta _{5}^{^{\prime }}, \theta _{6}^{\prime }) .

    Then ( \langle \zeta _{R}^{\tau }(x), \zeta _{R}^{\tau }(y)\rangle, \langle \alpha (x), \alpha (y)\rangle; \langle \eta _{R}^{\upsilon }(x), \eta _{R}^{\upsilon }(y)\rangle, \langle \beta (x), \beta (y)\rangle) gives the centroid of the TrapLDFN.

    Definition 3.1. The ranking function of the TrapLDFN A is defined by

    \begin{equation} \Re (A) = \sqrt{\left[ \zeta _{R}^{\tau }(x)-\zeta _{R}^{\tau }(y)\right] ^{2}+ \left[ \alpha (x)-\alpha (y)\right] ^{2}+\left[ \eta _{R}^{\upsilon }(x)-\eta _{R}^{\upsilon }(y)\right] ^{2}+\left[ \beta (x)-\beta (y)\right] ^{2}} \end{equation} (3.16)

    which is the Eculidean distance.

    As a special case, if in a TrapLDFN, we let \theta _{3} = \theta _{4}, then we will get a triangular LDFN with parameters \theta _{1}\leq \theta _{2}\leq \theta _{3}\leq \theta _{4}\leq \theta _{5}\leq \theta _{6} and \theta _{1}^{^{\prime }}\leq \theta _{2}^{^{\prime }}\leq \theta _{3}\leq \theta _{4}\leq \theta _{5}^{^{\prime }}\leq \theta _{6}^{\prime }. It is denoted by {\rm{£}} _{\mathfrak{R}_{TriLDFN}} = \left\{ _{(\theta _{1}^{^{\prime }}, \theta _{2}^{^{\prime }}, \theta _{3}, \theta _{5}^{^{\prime }}, \theta _{6}^{^{\prime }})}^{(\theta _{1}, \theta _{2}, \theta _{3}, \theta _{5}, \theta _{6})}\right. . The centroids of the membership functions and non-membership functions of the triangular LDFN respectively are defined as

    \begin{equation} \begin{array}{c} \zeta _{R}^{\tau }(x) = \frac{1}{3}\left[ \theta _{1}+\theta _{3}+\theta _{6} \right] , \\ \eta _{R}^{\upsilon }(x) = \frac{1}{3}\left[ 2\theta _{2}-\theta _{3}+2\theta _{5}\right] , \\ \alpha (x) = \frac{1}{3}\left[ \theta _{2}^{\prime }+\theta _{3}+\theta _{5}^{\prime }\right] , \\ \beta (x) = \frac{1}{3}\left[ 2\theta _{1}^{\prime }-\theta _{3}+2\theta _{6}^{\prime }\right] , \end{array} \end{equation} (3.17)

    and

    \begin{equation} \begin{array}{c} \zeta _{R}^{\tau }(y) = \frac{1}{3}, \\ \eta _{R}^{\upsilon }(y) = \frac{2}{3}, \\ \alpha (y) = \frac{1}{3}, \\ \beta (y) = \frac{2}{3}. \end{array} \end{equation} (3.18)

    Definition 3.2. The ranking function of the triangular LDFN A is defined by

    \begin{equation} \Re (A) = \sqrt{\left[ \zeta _{R}^{\tau }(x)-\zeta _{R}^{\tau }(y)\right] ^{2}+ \left[ \alpha (x)-\alpha (y)\right] ^{2}+\left[ \eta _{R}^{\upsilon }(x)-\eta _{R}^{\upsilon }(y)\right] ^{2}+\left[ \beta (x)-\beta (y)\right] ^{2}, } \end{equation} (3.19)

    which is the Eculidean distance.

    Example 3.3. Consider two TriLDFNs A = \left\{ _{(1, 4, 7, 10, 14)}^{(3, 5, 7, 8, 13)}\right. and B = \left\{ _{(0, 4, 9, 13, 15)}^{(1, 3, 9, 10, 13)}\right.. Then using the proposed method we find \Re (A),

    \begin{eqnarray} \zeta _{R}^{\tau }(x) & = &\frac{1}{3}\left[ \theta _{1}+\theta _{3}+\theta _{6}\right] = \frac{1}{3}\left[ 3+7+13\right] = 7.67 \end{eqnarray} (3.20)
    \begin{eqnarray} \eta _{R}^{\upsilon }(x) & = &\frac{1}{3}\left[ 2\theta _{2}-\theta _{3}+2\theta _{5}\right] = \frac{1}{3}\left[ 10-7+16\right] = 6.33 \end{eqnarray} (3.21)
    \begin{eqnarray} \alpha (x) & = &\frac{1}{3}\left[ \theta _{2}^{\prime }+\theta _{3}+\theta _{5}^{\prime }\right] = \frac{1}{3}\left[ 4+7+10\right] = 7 \end{eqnarray} (3.22)
    \begin{eqnarray} \beta (x) & = &\frac{1}{3}\left[ 2\theta _{1}^{\prime }-\theta _{3}+2\theta _{6}^{\prime }\right] = \frac{1}{3}\left[ 2-7+28\right] = 7.67. \end{eqnarray} (3.23)

    Also

    \begin{equation} \zeta _{R}^{\tau }(y) = 0.33, { \ }\eta _{R}^{\upsilon }(y) = 0.67, { \ } \alpha (y) = 0.33, { \ }\beta (y) = 0.67. \end{equation} (3.24)

    Now,

    \begin{eqnarray} \Re (A) & = &\sqrt{\left[ \zeta _{R}^{\tau }(x)-\zeta _{R}^{\tau }(y)\right] ^{2}+\left[ \alpha (x)-\alpha (y)\right] ^{2}+\left[ \eta _{R}^{\upsilon }(x)-\eta _{R}^{\upsilon }(y)\right] ^{2}+\left[ \beta (x)-\beta (y)\right] ^{2}} \\ & = &13.394. \end{eqnarray} (3.25)

    Now, by using the proposed method we find \Re (B),

    \begin{eqnarray} \zeta _{R}^{\tau }(x) & = &\frac{1}{3}\left[ \theta _{1}+\theta _{3}+\theta _{6}\right] = \frac{1}{3}\left[ 1+9+13\right] = 7.67 \end{eqnarray} (3.26)
    \begin{eqnarray} \eta _{R}^{\upsilon }(x) & = &\frac{1}{3}\left[ 2\theta _{2}-\theta _{3}+2\theta _{5}\right] = \frac{1}{3}\left[ 6-9+20\right] = 5.67 \end{eqnarray} (3.27)
    \begin{eqnarray} \alpha (x) & = &\frac{1}{3}\left[ \theta _{2}^{\prime }+\theta _{3}+\theta _{5}^{\prime }\right] = \frac{1}{3}\left[ 4+9+13\right] = 8.67 \end{eqnarray} (3.28)
    \begin{eqnarray} \beta (x) & = &\frac{1}{3}\left[ 2\theta _{1}^{\prime }-\theta _{3}+2\theta _{6}^{\prime }\right] = \frac{1}{3}\left[ 0-9+30\right] = 7. \end{eqnarray} (3.29)

    Also

    \begin{equation} \zeta _{R}^{\tau }(y) = 0.33, { \ }\eta _{R}^{\upsilon }(y) = 0.67, { \ } \alpha (y) = 0.33, { \ }\beta (y) = 0.67. \end{equation} (3.30)

    Now,

    \begin{eqnarray} \Re (B) & = &\sqrt{\left[ \zeta _{R}^{\tau }(x)-\zeta _{R}^{\tau }(y)\right] ^{2}+\left[ \alpha (x)-\alpha (y)\right] ^{2}+\left[ \eta _{R}^{\upsilon }(x)-\eta _{R}^{\upsilon }(y)\right] ^{2}+\left[ \beta (x)-\beta (y)\right] ^{2}} \\ & = &13.729. \end{eqnarray} (3.31)

    As \Re (A) < \Re (B)\Longrightarrow A < B.

    A trapezoid's centroid is regarded as the shape's equilibrium position. The linear Diophantine fuzzy number's membership function trapezoid is divided into three planar figures. These three plane figures are in order, a triangle, a rectangle, and another triangle. The point of reference for defining the ordering of linear Diophantine fuzzy numbers is the circumcenter of the centroids of these three plane figures. Each centroid point ( G_{1} of a triangle, G_{2} of a rectangle, and G_{3} of a triangle) is a balancing point for each unique planar figure, and the circumcenter of these centroid points is equidistant from each vertex, which is why this point was chosen as a point of reference (which are centroids). As a result, this point would serve as a more accurate reference point than the trapezoid's centroid.

    Take into consideration the trapezoidal linear Diophantine fuzzy number

    \begin{equation} {\rm{£}} _{\mathfrak{R}_{TrapLDFN}} = \left\{ _{(\theta _{1}^{^{\prime }}, \theta _{2}^{^{\prime }}, \theta _{3}, \theta _{4}, \theta _{5}^{^{\prime }}, \theta _{6}^{\prime })}^{(\theta _{1}, \theta _{2}, \theta _{3}, \theta _{4}, \theta _{5}, \theta _{6})}\right. . \end{equation} (4.1)

    The centroids of the three plane figures that make up the \zeta _{R}^{\tau }(x) are G_{1} = (\frac{\theta _{1}+2\theta _{3}}{3}, \frac{1}{3}), G_{2} = (\frac{\theta _{3}+\theta _{4}}{2}, \frac{1}{2}) and G_{3} = (\frac{2\theta _{4}+\theta _{6}}{3}, \frac{1}{3}) and membership function are G_{1} = (\frac{ \theta _{1}+2\theta _{3}}{3}, \frac{1}{3}), G_{2} = (\frac{\theta _{3}+\theta _{4}}{2}, \frac{1}{2}) and G_{3} = (\frac{2\theta _{4}+\theta _{6}}{3}, \frac{1 }{3}) ) are non-collinear and form a triangle. Since the equation of line G_{1}G_{3} is y = \frac{1}{3} and G_{2} does not lie on line G_{1}G_{3}. Figure 8 displays the circumcenter of the centroids of \zeta _{R}^{\tau }(x) .

    Figure 8.  Circumcenter of centroids of \zeta _{R}^{ \tau }(x) .

    Likewise, the centroids of the three plane figures that make up the membership function of \alpha (x) are, in a similar manner, G_{1}^{\prime } = (\frac{\theta _{2}^{\prime }+2\theta _{3}}{3}, \frac{1}{3}), G_{2}^{\prime } = (\frac{\theta _{3}+\theta _{4}}{2}, \frac{1}{2}) and G_{3}^{\prime } = (\frac{2\theta _{4}+\theta _{5}^{\prime }}{3}, \frac{1}{3}) . G_{2}^{\prime } does not fall on the line G_{1}^{\prime }G_{3}^{\prime } , and its equation is y = \frac{1}{3} . G_{1}^{\prime }, G_{2}^{\prime } and G_{3}^{\prime } are therefore non-collinear and form a triangle. Figure 9 displays the circumcenter of the centroids of \alpha (x).

    Figure 9.  Circumcenter of centroids of \alpha (x) .

    Finding the triangle's circumcenter is our next task. The general equation for a triangle's circumcentre with the coordinates (x_{1}, y_{1}), (x_{2}, y_{2}) and (x_{3}, y_{3}) is

    \begin{eqnarray} x & = &\frac{-(y_{1}-y_{2})u+(y_{1}-y_{3})v}{2K}, \end{eqnarray} (4.2)
    \begin{eqnarray} y & = &\frac{(x_{1}-x_{2})u-(x_{1}-x_{3})v}{2K}, \end{eqnarray} (4.3)

    where

    \begin{eqnarray} v & = &x_{1}^{2}+y_{1}^{2}-x_{2}^{2}-y_{2}^{2}, \end{eqnarray} (4.4)
    \begin{eqnarray} u & = &x_{1}^{2}+y_{1}^{2}-x_{3}^{2}-y_{3}^{2}, \end{eqnarray} (4.5)
    \begin{eqnarray} K & = &(x_{1}-x_{2})(y_{1}-y_{3})-(x_{1}-x_{3})(y_{1}-y_{2}). \end{eqnarray} (4.6)

    The circumcenter \hat{S}_{A_{(\zeta _{R}^{\tau }(x))}}(\overline{x_{0}}, \overline{y_{0}}) of the triangle with vertices G_{1}, G_{2} and G_{3} (as shown in Figure 8) of the membership function of the trapezoidal LDFN A = \left\{ _{(\theta _{1}^{^{\prime }}, \theta _{2}^{^{\prime }}, \theta _{3}, \theta _{4}, \theta _{5}^{^{\prime }}, \theta _{6}^{\prime })}^{(\theta _{1}, \theta _{2}, \theta _{3}, \theta _{4}, \theta _{5}, \theta _{6})}\right. is

    \begin{equation} \hat{S}_{A_{(\zeta _{R}^{\tau }(x))}}(\overline{x_{0}}, \overline{y_{0}} ) = \left( \frac{\theta _{1}+2\theta _{3}+2\theta _{4}+\theta _{6}}{6}, \frac{ \left( 2\theta _{1}+\theta _{3}-3\theta _{4}\right) \left( 2\theta _{6}+\theta _{4}-3\theta _{3}\right) +5}{12}\right) , \end{equation} (4.7)

    Also, the circumcenter \hat{S}_{A_{(\alpha (x))}}\;\;(\overline{x_{0}^{\prime }}, \overline{y_{0}^{\prime }}) of the triangle with vertices G_{1}^{\prime }, G_{2}^{\prime } and G_{3}^{\prime } (as shown in Figure 9) is

    \begin{equation} \hat{S}_{A_{(\alpha (x))}}(\overline{x_{0}^{\prime }}, \overline{ y_{0}^{\prime }}) = \left( \frac{\theta _{2}^{^{\prime }}+2\theta _{3}+2\theta _{4}+\theta _{5}^{^{\prime }}}{6}, \frac{\left( 2\theta _{2}^{^{\prime }}+\theta _{3}-3\theta _{4}\right) \left( 2\theta _{5}^{^{\prime }}+\theta _{4}-3\theta _{3}\right) +5}{12}\right) . \end{equation} (4.8)

    Separate the TrapLDFN trapezoid of non-membership functions into three plane figures as well. Again, a triangle, a rectangle, and a triangle successively make up these three plane figures. Additionally, the centroids of the three plane figures that make up the non-membership function \eta _{\mathfrak{R} }^{\nu }(x) are G_{1}^{1} = \left(\frac{\theta _{2}+2\theta _{3}}{3}, \frac{2 }{3}\right), G_{2}^{1} = \left(\frac{(\theta _{3}+\theta _{4})}{2}, \frac{1 }{2}\right) and G_{3}^{1} = \left(\frac{(2\theta _{4}+\theta _{5}}{3}, \frac{2}{3}\right) correspondingly. The line G_{1}^{1}G_{3}^{1} is has the equation y = \frac{2}{3}, and G_{2}^{1} does not fall on this line.

    G_{1}^{1} , G_{2}^{1} and G_{3}^{1} are therefore not collinear and form a triangle. Figure 10 displays the circumcenter of the centroids of \eta _{\mathfrak{R}}^{\nu }(x) . And the circumcenter \hat{S}_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}} of the triangle formed by the vertices G_{1}^{1} , G_{2}^{1} and G_{3}^{1} of the non-membership function of the trapezoidal LDFN {\rm{£}} _{\mathfrak{R}_{TrapLDFN}} = \left\{ _{(\theta _{1}^{^{\prime }}, \theta _{2}^{^{\prime }}, \theta _{3}, \theta _{4}, \theta _{5}^{^{\prime }}, \theta _{6}^{\prime })}^{(\theta _{1}, \theta _{2}, \theta _{3}, \theta _{4}, \theta _{5}, \theta _{6})}\right. is

    \begin{equation} \hat{S}_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}}(\overline{x_{1}}, \overline{ y_{1}}) = \left( \frac{\theta _{2}+2\theta _{3}+2\theta _{4}+\theta _{5}}{6}, \frac{(2\theta _{2}+\theta _{3}-3\theta _{4})(-2\theta _{5}-\theta _{4}+3\theta _{3})+7}{12}\right) . \end{equation} (4.9)
    Figure 10.  Circumcenter of centroids of \eta _{\mathfrak{R}}^{ \nu }(x) .

    Similarly, the centroids of the three plane figures of nonmembership function \beta (x) are G_{1}^{1^{\prime }} = \left(\frac{\theta _{1}^{\prime }+2\theta _{3}}{3}, \frac{2}{3}\right), G_{2}^{1^{\prime }} = \left(\frac{(\theta _{3}+\theta _{4})}{2}, \frac{1}{2}\right) and G_{3}^{1^{\prime }} = \left(\frac{(2\theta _{4}+\theta _{6}^{\prime }}{3}, \frac{2}{3}\right) respectively. Equation of the line G_{1}^{1^{\prime }}G_{3}^{1^{\prime }} is y = \frac{2}{3} and G_{2}^{1^{\prime }} does not lie on the line G_{1}^{1^{\prime }}G_{3}^{1^{\prime }} . Therefore G_{1}^{1^{\prime }}, G_{2}^{1^{\prime }} and G_{3}^{1\prime } (as shown in Figure 11) are non-collinear and they form a triangle. The circumcenter of centroids of \beta (x) is

    \begin{equation} \hat{S}_{A_{(\beta (x))}}(\overline{x_{1}^{\prime }}, \overline{y_{1}^{\prime }}) = \left( \frac{\theta _{1}^{\prime }+2\theta _{3}+2\theta _{4}+\theta _{6}^{\prime }}{6}, \frac{(2\theta _{1}^{\prime }+\theta _{3}-3\theta _{4})(-2\theta _{6}^{\prime }-\theta _{4}+3\theta _{3})+7}{12}\right) . \end{equation} (4.10)
    Figure 11.  Circumcenter of centroids of \beta (x) .

    Definition 4.1. The ranking function of the trapezoidal LDFN A = \left\{ _{(\theta _{1}^{^{\prime }}, \theta _{2}^{^{\prime }}, \theta _{3}, \theta _{4}, \theta _{5}^{^{\prime }}, \theta _{6}^{\prime })}^{(\theta _{1}, \theta _{2}, \theta _{3}, \theta _{4}, \theta _{5}, \theta _{6})}\right. for membership function and non-membership function are defined as R_{A_{(\zeta _{R}^{\tau }(x))}} = \sqrt{\overline{x_{0}^{2}}+\overline{y_{0}^{2}}} , R_{A_{(\alpha (x))}} = \sqrt{\overline{x_{0}^{\prime ^{2}}}+\overline{y_{0}^{\prime ^{2}}}} and R_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}} = \sqrt{\overline{x_{1}}^{2}+ \overline{y_{1}}^{2}}, R_{A_{(\beta (x))}} = \sqrt{\overline{x_{1}^{\prime ^{2}}}\overline{+y_{1}^{\prime ^{2}}}}, then

    \begin{equation} R_{A} = \frac{1}{4}\left( R_{A_{(\zeta _{R}^{\tau }(x))}}+R_{A_{(\alpha (x))}}+R_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}}+R_{A_{(\beta (x))}}\right) . \end{equation} (4.11)

    As an exception, if we allow \theta _{3} = \theta _{4} in a TrapLDFN, we will obtain a triangular LDFN with the parameters \theta _{1}\leq \theta _{2}\leq \theta _{3}\leq \theta _{4}\leq \theta _{5}\leq \theta _{6} and \theta _{1}^{^{\prime }}\leq \theta _{2}^{^{\prime }}\leq \theta _{3}\leq \theta _{4}\leq \theta _{5}^{^{\prime }}\leq \theta _{6}^{\prime }. It is indicated by {\rm{£}} _{\mathfrak{R}_{TriLDFN}} = \left\{ _{(\theta _{1}^{^{\prime }}, \theta _{2}^{^{\prime }}, \theta _{3}, \theta _{5}^{^{\prime }}, \theta _{6}^{^{\prime }})}^{(\theta _{1}, \theta _{2}, \theta _{3}, \theta _{5}, \theta _{6})}\right. . The circumcenters of the centroids for the triangular LDFN's membership function and nonmembership function are defined as follows.

    \begin{eqnarray} \hat{S}_{A_{(\zeta _{R}^{\tau }(x))}}(\overline{x_{0}}, \overline{y_{0}}) & = &\left( \frac{\theta _{1}+4\theta _{3}+\theta _{6}}{6}, \frac{4\left( \theta _{1}-\theta _{3}\right) \left( \theta _{6}-\theta _{3}\right) +5}{12} \right) , \end{eqnarray} (4.12)
    \begin{eqnarray} \hat{S}_{A_{(\alpha (x))}}(\overline{x_{0}^{\prime }}, \overline{ y_{0}^{\prime }}) & = &\left( \frac{\theta _{2}^{^{\prime }}+4\theta _{3}+\theta _{5}^{^{\prime }}}{6}, \frac{4\left( \theta _{2}^{^{\prime }}-\theta _{3}\right) \left( \theta _{5}^{^{\prime }}-\theta _{3}\right) +5}{ 12}\right) , \end{eqnarray} (4.13)

    and

    \begin{eqnarray} \hat{S}_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}}(\overline{x_{1}}, \overline{ y_{1}}) & = &\left( \frac{\theta _{2}+4\theta _{3}+\theta _{5}}{6}, \frac{ 4(\theta _{2}-\theta _{3})(-\theta _{5}+\theta _{3})+7}{12}\right) , \end{eqnarray} (4.14)
    \begin{eqnarray} \hat{S}_{A_{(\beta (x))}}(\overline{x_{1}^{\prime }}, \overline{y_{1}^{\prime }}) & = &\left( \frac{\theta _{1}^{\prime }+4\theta _{3}+\theta _{6}^{\prime } }{6}, \frac{4(\theta _{1}^{\prime }-\theta _{3})(-\theta _{6}^{\prime }+\theta _{3})+7}{12}\right) . \end{eqnarray} (4.15)

    Example 4.2. Consider two TriLDFN A = \left\{ \begin{array}{l} (2, 4, 5, 7, 9) \\ (1, 3, 5, 8, 10) \end{array} \right. and B = \left\{ \begin{array}{l} (3, 5, 7, 8, 9) \\ (2, 4, 7, 9, 9) \end{array} \right.. Then using the proposed method we find \Re (A),

    \begin{eqnarray} \hat{S}_{A_{(\zeta _{R}^{\tau }(x))}}(\overline{x_{0}}, \overline{y_{0}}) & = &\left( \frac{\theta _{1}+4\theta _{3}+\theta _{6}}{6}, \frac{4\left( \theta _{1}-\theta _{3}\right) \left( \theta _{6}-\theta _{3}\right) +5}{12} \right) = (5.16, -3.58), \end{eqnarray} (4.16)
    \begin{eqnarray} \hat{S}_{A_{(\alpha (x))}}(\overline{x_{0}^{\prime }}, \overline{ y_{0}^{\prime }}) & = &\left( \frac{\theta _{2}^{^{\prime }}+4\theta _{3}+\theta _{5}^{^{\prime }}}{6}, \frac{4\left( \theta _{2}^{^{\prime }}-\theta _{3}\right) \left( \theta _{5}^{^{\prime }}-\theta _{3}\right) +5}{ 12}\right) = (5.16, -1.58), \end{eqnarray} (4.17)
    \begin{eqnarray} \hat{S}_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}}(\overline{x_{1}}, \overline{ y_{1}}) & = &\left( \frac{\theta _{2}+4\theta _{3}+\theta _{5}}{6}, \frac{ 4(\theta _{2}-\theta _{3})(-\theta _{5}+\theta _{3})+7}{12}\right) = (5.33, 1.25), \end{eqnarray} (4.18)
    \begin{eqnarray} \hat{S}_{A_{(\beta (x))}}(\overline{x_{1}^{\prime }}, \overline{y_{1}^{\prime }}) & = &\left( \frac{\theta _{1}^{^{\prime }}+4\theta _{3}+\theta _{6}^{\prime }}{6}, \frac{4(\theta _{1}^{^{\prime }}-\theta _{3})(-\theta _{6}^{\prime }+\theta _{3})+7}{12}\right) = (5.16, 7.25). \end{eqnarray} (4.19)

    Also,

    \begin{equation} \begin{array}{lllll} \Re _{A_{(\zeta _{R}^{\tau }(x))}} = \sqrt{\overline{x_{0}^{2}}+\overline{ y_{0}^{2}}} = 6.28, & & & & \Re _{A_{(\alpha (x))}} = \sqrt{\overline{ x_{0}^{\prime ^{2}}}+\overline{y_{0}^{\prime ^{2}}}} = 5.39, \\ \Re _{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}} = \sqrt{\overline{x_{1}}^{2}+ \overline{y_{1}}^{2}} = 5.47, & & & & \Re _{A_{(\beta (x))}} = \sqrt{ \overline{x_{1}^{\prime ^{2}}}\overline{+y_{1}^{\prime ^{2}}}} = 8.89. \end{array} \end{equation} (4.20)

    Now,

    \begin{equation} \Re _{A} = \frac{1}{4}\left( R_{A_{(\zeta _{R}^{\tau }(x))}}+R_{A_{(\alpha (x))}}+R_{A_{(\eta _{\mathfrak{R}}^{\nu }(x))}}+R_{A_{(\beta (x))}}\right) = 6.50. \end{equation} (4.21)

    Now, using the proposed method we find \Re (B),

    \begin{eqnarray} \hat{S}_{B_{(\zeta _{R}^{\tau }(x))}}(\overline{x_{0}}, \overline{y_{0}}) & = &\left( \frac{\theta _{1}+4\theta _{3}+\theta _{6}}{6}, \frac{4\left( \theta _{1}-\theta _{3}\right) \left( \theta _{6}-\theta _{3}\right) +5}{12} \right) = (6.66, -2.25), \end{eqnarray} (4.22)
    \begin{eqnarray} \hat{S}_{B_{(\alpha (x))}}(\overline{x_{0}^{\prime }}, \overline{ y_{0}^{\prime }}) & = &\left( \frac{\theta _{2}^{^{\prime }}+4\theta _{3}+\theta _{5}^{^{\prime }}}{6}, \frac{4\left( \theta _{2}^{^{\prime }}-\theta _{3}\right) \left( \theta _{5}^{^{\prime }}-\theta _{3}\right) +5}{ 12}\right) = (6.83, -1.58), \end{eqnarray} (4.23)
    \begin{eqnarray} \hat{S}_{B_{(\eta _{\mathfrak{R}}^{\nu }(x))}}(\overline{x_{1}}, \overline{ y_{1}}) & = &\left( \frac{\theta _{2}+4\theta _{3}+\theta _{5}}{6}, \frac{ 4(\theta _{2}-\theta _{3})(-\theta _{5}+\theta _{3})+7}{12}\right) = (6.83, 1.25), \end{eqnarray} (4.24)
    \begin{eqnarray} \hat{S}_{B_{(\beta (x))}}(\overline{x_{1}^{\prime }}, \overline{y_{1}^{\prime }}) & = &\left( \frac{\theta _{1}^{^{\prime }}+4\theta _{3}+\theta _{6}^{\prime }}{6}, \frac{4(\theta _{1}^{^{\prime }}-\theta _{3})(-\theta _{6}^{\prime }+\theta _{3})+7}{12}\right) = (6.5, 3.91). \end{eqnarray} (4.25)

    Also,

    \begin{equation} \begin{array}{ccccc} \Re _{B_{(\zeta _{R}^{\tau }(x))}} = \sqrt{\overline{x_{0}^{2}}+\overline{ y_{0}^{2}}} = 6.97, & & & & \Re _{B_{(\alpha (x))}} = \sqrt{\overline{ x_{0}^{\prime ^{2}}}+\overline{y_{0}^{\prime ^{2}}}} = 7.01, \\ \Re _{B_{(\eta _{\mathfrak{R}}^{\nu }(x))}} = \sqrt{\overline{x_{1}}^{2}+ \overline{y_{1}}^{2}} = 6.94, & & & & \Re _{B_{(\beta (x))}} = \sqrt{ \overline{x_{1}^{\prime ^{2}}}\overline{+y_{1}^{\prime ^{2}}}} = 7.58. \end{array} \end{equation} (4.26)

    Now,

    \begin{equation} \Re _{B} = \frac{1}{4}\left( R_{B_{(\zeta _{R}^{\tau }(x))}}+R_{B_{(\alpha (x))}}+R_{B_{(\eta _{\mathfrak{R}}^{\nu }(x))}}+R_{B_{(\beta (x))}}\right) = 7.12. \end{equation} (4.27)

    As \Re (A) < \Re (B)\Longrightarrow A < B.

    The linear Diophantine fuzzy numbers have been identified in this research. In this study, we discovered the circumcenter of centroids of the membership function and non-membership function of a linear Diophantine fuzzy number. We also suggested a distance approach for ranking the linear Diophantine fuzzy number depending on the circumcenter of centroids. The suggested method gives the precise organization of linear Diophantine fuzzy numbers. It may be used to rank the linear Diophantine fuzzy numbers in order to deal with various fuzzy optimization issues. This method can be implemented to rank trapezoidal in addition to triangular fuzzy numbers and their counterparts. The following areas may be covered by our future projects:

    (ⅰ) Linear programming problems;

    (ⅱ) Differential equations;

    (ⅲ) Game theory;

    (ⅳ) Transportation problems;

    (ⅴ) Differential games.

    The authors would like to express their sincere thanks to the anonymous reviewers for their careful reading and constructive comments.

    The authors of this paper declare that they have no conflict of interest.



    [1] I. Babuška, W. C. Rheinboldt, A-posteriori error estimates for the finite element method, Int. J. Numer. Meth. Eng., 12 (1978), 1597–1615. https://doi.org/10.1002/nme.1620121010 doi: 10.1002/nme.1620121010
    [2] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal.-Theor., 71 (2009), 2391–2396. https://doi.org/10.1016/j.na.2009.01.073 doi: 10.1016/j.na.2009.01.073
    [3] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, The fractional-order governing equation of Lévy motion, Water Resour. Res., 36 (2000), 1413–1423. https://doi.org/10.1029/2000WR900032 doi: 10.1029/2000WR900032
    [4] C. Bernardi, Y. Maday, Spectral methods, In: Handbook numerical analysis, 5 (1997), 209–485. https://doi.org/10.1016/S1570-8659(97)80003-8
    [5] Y. Chen, X. Lin, Y. Huang, Error analysis of spectral approximation for space-time fractional optimal control problems with control and state constraints, J. Comput. Appl. Math., 413 (2022), 114293. https://doi.org/10.1016/j.cam.2022.114293 doi: 10.1016/j.cam.2022.114293
    [6] S. Chen, J. Shen, L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput., 85 (2016), 1603–1638. http://doi.org/10.1090/mcom3035 doi: 10.1090/mcom3035
    [7] R. W. Ibrahim, Global controllability of a set of fractional differential equations, Miskolc Math. Notes, 12 (2011), 51–60. https://doi.org/10.18514/MMN.2011.259 doi: 10.18514/MMN.2011.259
    [8] R. Klages, G. Radons, I. M. Sokolov, Anomalous transport: Foundations and applications, Wiley, 2008.
    [9] D. Kusnezov, A. Bulgac, G. D. Dang, Quantum Lévy processes and fractional kinetics, Phys. Rev. Lett., 82 (1999), 1136–1139. https://doi.org/10.1103/PhysRevLett.82.1136 doi: 10.1103/PhysRevLett.82.1136
    [10] E. Lutz, Fractional transport equations for Lévy stable processes, Phys. Rev. Lett., 86 (2001), 2208–2211. https://doi.org/10.1103/PhysRevLett.86.2208 doi: 10.1103/PhysRevLett.86.2208
    [11] X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM. J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
    [12] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, 2007, arXiv: cond-mat/0702419v1. https://doi.org/10.48550/arXiv.cond-mat/0702419
    [13] B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093
    [14] Z. Mao, S. Chen, J. Shen, Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations, Appl. Numer. Math., 106 (2016), 165–181. https://doi.org/10.1016/j.apnum.2016.04.002 doi: 10.1016/j.apnum.2016.04.002
    [15] W. Mao, Y. Chen, H. Wang, A-posteriori error estimations of the GJF-Petrov-CGalerkin methods for fractional differential equations, Comput. Math. Appl., 90 (2021), 159–170. https://doi.org/10.1016/j.camwa.2021.03.021 doi: 10.1016/j.camwa.2021.03.021
    [16] W. Mao, Y. Chen, H. Wang, A posteriori error estimations of the Petrov-Galerkin methods for fractional Helmholtz equations, Numer. Algor., 89 (2022), 1095–1127. https://doi.org/10.1007/s11075-021-01147-0 doi: 10.1007/s11075-021-01147-0
    [17] Z. Mao, G. E. Karniadakis, A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative, SIAM J. Numer. Anal., 56 (2018), 24–49. https://doi.org/10.1137/16M1103622 doi: 10.1137/16M1103622
    [18] Z. Mao, J. Shen, Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients, J. Comput. Phys., 307 (2016), 243–261. https://doi.org/10.1016/j.jcp.2015.11.047 doi: 10.1016/j.jcp.2015.11.047
    [19] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
    [20] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, New York: Gordon and Breach Sciences Publishers, 1993.
    [21] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pur. Appl. Math., 60 (2007), 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153
    [22] G. Su, L. Lu, B. Tang, Z. Liu, Quasilinearization technique for solving nonlinear Riemann-Liouville fractional-order problems, Appl. Math. Comput., 378 (2020), 125199. https://doi.org/10.1016/j.amc.2020.125199 doi: 10.1016/j.amc.2020.125199
    [23] G. Szegö, Orthogonal polynomials, American Mathematical Society, Providence, 1975.
    [24] B. Tang, J. Zhao, Z. Liu, Monotone iterative method for two-point fractional boundary value problems, Adv. Differ. Equ., 2018 (2018), 182. https://doi.org/10.1186/s13662-018-1632-9 doi: 10.1186/s13662-018-1632-9
    [25] B. Tang, Y, Chen, X. Lin, A posteriori error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations, Appl. Math. Lett., 120 (2021), 107259. https://doi.org/10.1016/j.aml.2021.107259 doi: 10.1016/j.aml.2021.107259
    [26] H. Wang, Y. Chen, Y. Huang, W. Mao, A posteriori error estimates of the Galerkin spectral methods for space-time fractional diffusion equations, Adv. Appl. Math. Mech., 12 (2020), 87–100. https://doi.org/10.4208/aamm.OA-2019-0137 doi: 10.4208/aamm.OA-2019-0137
    [27] X. Ye, C. Xu, A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions, AIMS Mathematics, 6 (2021), 12028–12050. https://doi.org/10.3934/math.2021697 doi: 10.3934/math.2021697
    [28] X. Ye, C. Xu, A posteriori error estimates for the fractional optimal control problems, J. Inequal. Appl., 2015 (2015), 141. https://doi.org/10.1186/s13660-015-0662-z doi: 10.1186/s13660-015-0662-z
    [29] M. Zayernouri, G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation, J. Comput. Phys., 252 (2013), 495–517. https://doi.org/10.1016/j.jcp.2013.06.031 doi: 10.1016/j.jcp.2013.06.031
    [30] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461–580. https://doi.org/10.1016/S0370-1573(02)00331-9
    [31] F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599–2622. https://doi.org/10.1137/130934192 doi: 10.1137/130934192
    [32] X. Zhao, L. Wang, Z. Xie, Sharp error bounds for Jacobi expansions and Gegenbauer-Gauss quadrature of analytic functions, SIAM J. Numer. Anal., 51 (2013), 1443–1469. https://doi.org/10.1137/12089421X doi: 10.1137/12089421X
    [33] M. Zheng, F. Liu, V. Anh, I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Model., 40 (2016), 4970–4985. https://doi.org/10.1016/j.apm.2015.12.011 doi: 10.1016/j.apm.2015.12.011
    [34] M. Zheng, F. Liu, I. Turner, V. Anh, A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM J. Sci. Comput., 37 (2015), A701–A724. https://doi.org/10.1137/140980545 doi: 10.1137/140980545
  • This article has been cited by:

    1. Muhammad Abdurrahman Rois, Cicik Alfiniyah, Chidozie W. Chukwu, Dynamic analysis and optimal control of COVID-19 with comorbidity: A modeling study of Indonesia, 2023, 8, 2297-4687, 10.3389/fams.2022.1096141
    2. Le Cui, Diyi Chen, Chun Li, Xiaodong Tan, Xunfeng Yuan, A General Study on 3D Fractional Order Hexagon × n RLɑ Cβ Circuit Network, 2022, 10, 2169-3536, 55889, 10.1109/ACCESS.2022.3168720
    3. Xiao-Ping Li, Mahmoud H. DarAssi, Muhammad Altaf Khan, C.W. Chukwu, Mohammad Y. Alshahrani, Mesfer Al Shahrani, Muhammad Bilal Riaz, Assessing the potential impact of COVID-19 Omicron variant: Insight through a fractional piecewise model, 2022, 38, 22113797, 105652, 10.1016/j.rinp.2022.105652
    4. Hengki Tasman, Dipo Aldila, Putri A. Dumbela, Meksianis Z. Ndii, Faishal F. Herdicho, Chidozie W. Chukwu, Assessing the Impact of Relapse, Reinfection and Recrudescence on Malaria Eradication Policy: A Bifurcation and Optimal Control Analysis, 2022, 7, 2414-6366, 263, 10.3390/tropicalmed7100263
    5. Bevina D. Handari, Rossi A. Ramadhani, Chidozie W. Chukwu, Sarbaz H. A. Khoshnaw, Dipo Aldila, An Optimal Control Model to Understand the Potential Impact of the New Vaccine and Transmission-Blocking Drugs for Malaria: A Case Study in Papua and West Papua, Indonesia, 2022, 10, 2076-393X, 1174, 10.3390/vaccines10081174
    6. Endang Yuliani, Cicik Alfiniyah, Maureen L. Juga, Chidozie W. Chukwu, On the Modeling of COVID-19 Transmission Dynamics with Two Strains: Insight through Caputo Fractional Derivative, 2022, 6, 2504-3110, 346, 10.3390/fractalfract6070346
    7. E. Bonyah, M. L. Juga, L. M. Matsebula, C. W. Chukwu, On the Modeling of COVID-19 Spread via Fractional Derivative: A Stochastic Approach, 2023, 15, 2070-0482, 338, 10.1134/S2070048223020023
    8. Muhammad Abdurrahman Rois, Cicik Alfiniyah, Santi Martini, Dipo Aldila, Farai Nyabadza, Modeling and optimal control of COVID-19 with comorbidity and three-dose vaccination in Indonesia, 2024, 6, 25889338, 181, 10.1016/j.jobb.2024.06.004
    9. Olumuyiwa James Peter, Nadhira Dwi Fahrani, C.W. Chukwu, A fractional derivative modeling study for measles infection with double dose vaccination, 2023, 4, 27724425, 100231, 10.1016/j.health.2023.100231
    10. C.W. Chukwu, R.T. Alqahtani, C. Alfiniyah, F.F. Herdicho, , A Pontryagin’s maximum principle and optimal control model with cost-effectiveness analysis of the COVID-19 epidemic, 2023, 8, 27726622, 100273, 10.1016/j.dajour.2023.100273
    11. Dipo Aldila, Nadya Awdinda, Faishal F. Herdicho, Meksianis Z. Ndii, Chidozie W. Chukwu, Optimal control of pneumonia transmission model with seasonal factor: Learning from Jakarta incidence data, 2023, 9, 24058440, e18096, 10.1016/j.heliyon.2023.e18096
    12. G. M. Vijayalakshmi, P. Roselyn Besi, Ali Akgül, Fractional commensurate model on COVID‐19 with microbial co‐infection: An optimal control analysis, 2024, 45, 0143-2087, 1108, 10.1002/oca.3093
    13. Gaohui Fan, Ning Li, Application and analysis of a model with environmental transmission in a periodic environment, 2023, 31, 2688-1594, 5815, 10.3934/era.2023296
    14. G. M. Vijayalakshmi, P. Roselyn Besi, A. Kalaivani, G. Infant Sujitha, S. Mahesh, Microbial coinfections in COVID-19: mathematical analysis using Atangana–Baleanu–Caputo type, 2024, 7, 2520-8160, 4097, 10.1007/s41939-024-00418-2
    15. C.W. Chukwu, E. Bonyah, M.L. Juga, , On mathematical modeling of fractional-order stochastic for tuberculosis transmission dynamics, 2023, 11, 26667207, 100238, 10.1016/j.rico.2023.100238
    16. C.W. Chukwu, M.I. Utoyo, A. Setiawan, J.O. Akanni, Fractional model of HIV transmission on workplace productivity using real data from Indonesia, 2024, 225, 03784754, 1089, 10.1016/j.matcom.2023.11.014
    17. CW Chukwu, S. Y. Tchoumi, Z. Chazuka, M. L. Juga, G. Obaido, Assessing the impact of human behavior towards preventative measures on COVID-19 dynamics for Gauteng, South Africa: a simulation and forecasting approach, 2024, 9, 2473-6988, 10511, 10.3934/math.2024514
    18. Puntipa Pongsumpun, Puntani Pongsumpun, I-Ming Tang, Jiraporn Lamwong, The role of a vaccine booster for a fractional order model of the dynamic of COVID-19: a case study in Thailand, 2025, 15, 2045-2322, 10.1038/s41598-024-80390-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1197) PDF downloads(57) Cited by(0)

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog