The purpose of the article is to analyze the behavior of spacetime using a string cloud energy-momentum tensor T having string cloud fluid density ρ and string tension λ, named relativistic string cloud spacetime. We obtain some results for string cloud spacetime with a divergence-free matter tensor and a diminishing space matter tensor. Next, we discuss some curvature characteristics, such as conformally flat, Ricci semi-symmetric and pseudo-Ricci-symmetric, for relativistic string cloud spacetime. In addition, we gain a condition that coincides with the equation of state for the cloud of geometric strings in Ricci semi-symmetric string cloud spacetime.
Citation: Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Khalid Masood. Geometrization of string cloud spacetime in general relativity[J]. AIMS Mathematics, 2023, 8(12): 29042-29057. doi: 10.3934/math.20231487
[1] | Zhonghua Wang, Xiuhai Fei . Maps on C∗-algebras are skew Lie triple derivations or homomorphisms at one point. AIMS Mathematics, 2023, 8(11): 25564-25571. doi: 10.3934/math.20231305 |
[2] | Guangyu An, Xueli Zhang, Jun He, Wenhua Qian . Characterizations of local Lie derivations on von Neumann algebras. AIMS Mathematics, 2022, 7(5): 7519-7527. doi: 10.3934/math.2022422 |
[3] | Mohd Arif Raza, Aisha Jabeen, Abdul Nadim Khan, Husain Alhazmi . Linear maps on von Neumann algebras acting as Lie type derivation via local actions. AIMS Mathematics, 2021, 6(8): 8453-8465. doi: 10.3934/math.2021490 |
[4] | Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie n-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424 |
[5] | Junaid Nisar, Turki Alsuraiheed, Nadeem ur Rehman . Nonlinear mixed type product [K,F]∗⊙D on ∗-algebras. AIMS Mathematics, 2024, 9(8): 21596-21608. doi: 10.3934/math.20241049 |
[6] | Wenbo Huang, Jiankui Li, Shaoze Pan . Some zero product preserving additive mappings of operator algebras. AIMS Mathematics, 2024, 9(8): 22213-22224. doi: 10.3934/math.20241080 |
[7] | Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126 |
[8] | He Yuan, Qian Zhang, Zhendi Gu . Characterizations of generalized Lie n-higher derivations on certain triangular algebras. AIMS Mathematics, 2024, 9(11): 29916-29941. doi: 10.3934/math.20241446 |
[9] | Xiuhai Fei, Zhonghua Wang, Cuixian Lu, Haifang Zhang . Higher Jordan triple derivations on ∗-type trivial extension algebras. AIMS Mathematics, 2024, 9(3): 6933-6950. doi: 10.3934/math.2024338 |
[10] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
The purpose of the article is to analyze the behavior of spacetime using a string cloud energy-momentum tensor T having string cloud fluid density ρ and string tension λ, named relativistic string cloud spacetime. We obtain some results for string cloud spacetime with a divergence-free matter tensor and a diminishing space matter tensor. Next, we discuss some curvature characteristics, such as conformally flat, Ricci semi-symmetric and pseudo-Ricci-symmetric, for relativistic string cloud spacetime. In addition, we gain a condition that coincides with the equation of state for the cloud of geometric strings in Ricci semi-symmetric string cloud spacetime.
Let A be an associative algebra. For A,B∈A, denote by [A,B]=AB−BA the Lie product of A and B. An additive (a linear) map δ:A→A is called a global Lie triple derivation if δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for all A,B,C∈A. The study of global Lie triple derivations on various algebras has attracted several authors' attention, see for example [2,11,16,17,20]. Next, let δ:A→A be a map (without the additivity (linearity) assumption). δ is called a global nonlinear Lie triple derivation if δ satisfies δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for all A,B,C∈A. Ji, Liu and Zhao [4] gave the concrete form of global nonlinear Lie triple derivations on triangular algebras. Chen and Xiao [3] investigated global nonlinear Lie triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras. Very recently, Zhao and Hao [21] paid attention to non-global nonlinear Lie triple derivations. Let F:A×A×A→A be a map and Q be a proper subset of A. δ is called a non-global nonlinear Lie triple derivation if δ satisfies δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for any A,B,C∈A with F(A,B,C)∈Q. Let M be a finite von Neumann algebra with no central summands of type I1. Zhao and Hao [21] proved that if δ:M→M satisfies δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for any A,B,C∈M with ABC=0, then δ=d+τ, where d is a derivation from M into itself and τ is a nonlinear map from M into its center such that τ([[A,B],C])=0 with ABC=0.
Let A be an associative ∗-algebra. For A,B∈A, denote by [A,B]∗=AB−BA∗ the skew Lie product of A and B. The skew Lie product arose in representability of quadratic functionals by sesquilinear functionals [12,13]. In recent years, the study related to skew Lie product has attracted some authors' attention, see for example [1,5,6,7,8,9,10,14,15,18,19,22] and references therein. A map δ:A→A (without the additivity (linearity) assumption) is called a global nonlinear skew Lie triple derivation if δ([[A,B]∗,C]∗)=[[δ(A),B]∗,C]∗+[[A,δ(B)]∗,C]∗+[[A,B]∗,δ(C)]∗ for all A,B,C∈A. A map δ:A→A is called an additive ∗-derivation if it is an additive derivation and satisfies δ(A∗)=δ(A)∗ for all A∈A. Li, Zhao and Chen [5] proved that every global nonlinear skew Lie triple derivation on factor von Neumann algebras is an additive ∗-derivation. Taghavi, Nouri and Darvish [15] proved that every global nonlinear skew Lie triple derivation on prime ∗-algebras is additive. Similarly, let F:A×A×A→A be a map and Q be a proper subset of A. If δ satisfies δ([[A,B]∗,C]∗)=[[δ(A),B]∗,C]∗+[[A,δ(B)]∗,C]∗+[[A,B]∗,δ(C)]∗ for any A,B,C∈A with F(A,B,C)∈Q, then δ is called a non-global nonlinear skew Lie triple derivation.
Motivated by the mentioned works, we will concentrate on characterizing a kind of non-global nonlinear skew Lie triple derivations δ on factor von Neumann algebras satisfying δ([[A,B]∗,C]∗)=[[δ(A),B]∗,C]∗+[[A,δ(B)]∗,C]∗+[[A,B]∗,δ(C)]∗ for any A,B,C∈A with A∗B∗C=0.
As usual, C denotes the complex number field. Let H be a complex Hilbert space and B(H) be the algebra of all bounded linear operators on H. Let A⊆B(H) be a factor von Neumann algebra (i.e., the center of A is CI, where I is the identity of A). Recall that A is prime (i.e., for any A,B∈A, AAB={0} implies A=0 or B=0).
The main result is the following theorem.
Theorem 2.1. Let A be a factor von Neumann algebra acting on a complex Hilbert space H with dimA>1. If a map δ:A→A satisfies
δ([[A,B]∗,C]∗)=[[δ(A),B]∗,C]∗+[[A,δ(B)]∗,C]∗+[[A,B]∗,δ(C)]∗ |
for any A,B,C∈A with A∗B∗C=0, then δ is an additive ∗-derivation.
Let P1∈A be a nontrivial projection. Write P2=I−P1, Aij=PiAPj (i,j=1,2). Then A=A11+A12+A21+A22. For any A∈A, A=A11+A12+A21+A22, Aij∈ Aij (i,j=1,2).
Lemma 2.1. (a) δ(Pi)∗=δ(Pi) (i=1,2);
(b) Piδ(Pi)Pj=−Piδ(Pj)Pj (1≤i≠j≤2).
Proof. (a) It is clear that δ(0)=0. For any X21∈A21, it follows from P∗1P∗1X21=0 and [[P1,P1]∗,X21]∗=0 that
0=δ([[P1,P1]∗,X21]∗)=[[δ(P1),P1]∗,X21]∗+[[P1,δ(P1)]∗,X21]∗+[[P1,P1]∗,δ(X21)]∗=−P1δ(P1)∗X21−X21δ(P1)∗+X21δ(P1)P1+P1δ(P1)X21−X21δ(P1)∗P1+X21δ(P1)∗. | (2.1) |
Multiplying (2.1) by P2 from the left and by P1 from the right, we have X21(δ(P1)P1−δ(P1)∗P1)=0. Then by the primeness of A, we get
P1δ(P1)∗P1=P1δ(P1)P1. | (2.2) |
By P∗1P∗2P2=0 and [[P1,P2]∗,P2]∗=0, we have
0=δ([[P1,P2]∗,P2]∗)=[[δ(P1),P2]∗,P2]∗+[[P1,δ(P2)]∗,P2]∗+[[P1,P2]∗,δ(P2)]∗=δ(P1)P2−P2δ(P1)∗P2−P2δ(P1)∗+P2δ(P1)P2+P1δ(P2)P2−P2δ(P2)∗P1. | (2.3) |
Multiplying (2.3) by P2 from both sides, we see that
P2δ(P1)∗P2=P2δ(P1)P2. | (2.4) |
From P∗1P∗1P2=0 and [[P1,P1]∗,P2]∗=0, we have
0=δ([[P1,P1]∗,P2]∗)=[[δ(P1),P1]∗,P2]∗+[[P1,δ(P1)]∗,P2]∗+[[P1,P1]∗,δ(P2)]∗=−P1δ(P1)∗P2+P2δ(P1)P1+P1δ(P1)P2−P2δ(P1)∗P1. | (2.5) |
Multiplying (2.5) by P1 from the left and by P2 from the right, then
P1δ(P1)∗P2=P1δ(P1)P2. | (2.6) |
Multiplying (2.5) by P2 from the left and by P1 from the right, then
P2δ(P1)∗P1=P2δ(P1)P1. | (2.7) |
It follows from (2.2), (2.4), (2.6) and (2.7) that δ(P1)∗=δ(P1). Similarly, we can obtain that δ(P2)∗=δ(P2).
(b) From P∗2P∗1P2=0 and [[P2,P1]∗,P2]∗=0, we have
0=δ([[P2,P1]∗,P2]∗)=[[δ(P2),P1]∗,P2]∗+[[P2,δ(P1)]∗,P2]∗+[[P2,P1]∗,δ(P2)]∗=−P1δ(P2)∗P2+P2δ(P2)P1+P2δ(P1)P2−δ(P1)P2−P2δ(P1)∗P2+P2δ(P1)∗. | (2.8) |
Multiplying (2.8) by P1 from the left and by P2 from the right, we have P1δ(P1)P2=−P1δ(P2)∗P2. Then P1δ(P1)P2=−P1δ(P2)P2 by (a). Similarly, we can obtain that P2δ(P2)P1=−P2δ(P1)P1.
Lemma 2.2. For any Aij∈Aij (1≤i≠j≤2), we have
Pjδ(Aij)Pi=0. |
Proof. Let A12∈A12. For any X12∈A12, since A∗12X∗12P2=0 and [[A12,X12]∗,P2]∗=0, we have
0=δ([[A12,X12]∗,P2]∗)=[[δ(A12),X12]∗,P2]∗+[[A12,δ(X12)]∗,P2]∗+[[A12,X12]∗,δ(P2)]∗=δ(A12)X12−X12δ(A12)∗P2−X∗12δ(A12)∗+P2δ(A12)X∗12+A12δ(X12)P2−P2δ(X12)∗A∗12−X12A∗12δ(P2)+δ(P2)A12X∗12. | (2.9) |
Multiplying (2.9) by P2 from both sides, we have
0=P2δ(A12)X12−X∗12δ(A12)∗P2. | (2.10) |
Replacing X12 with iX12 in (2.10) yields that
0=P2δ(A12)X12+X∗12δ(A12)∗P2. | (2.11) |
Combining (2.10) and (2.11), we see that P2δ(A12)X12=0. Then P2δ(A12)P1=0 by the primeness of A. Similarly, we can obtain that P1δ(A21)P2=0.
Lemma 2.3. For any A12∈A12,B21∈A21, there exist GA12,B21∈A11,KA12,B21∈A22 such that
δ(A12+B21)=δ(A12)+δ(B21)+GA12,B21+KA12,B21. |
Proof. Let T=δ(A12+B21)−δ(A12)−δ(B21). From P∗2(A12+B21)∗P2=P∗2A∗12P2=P∗2B∗21P2=0 and [[P2,B21]∗,P2]∗=0, we have
[[δ(P2),A12+B21]∗,P2]∗+[[P2,δ(A12+B21)]∗,P2]∗+[[P2,A12+B21]∗,δ(P2)]∗=δ([[P2,A12+B21]∗,P2]∗)=δ([[P2,A12]∗,P2]∗)+δ([[P2,B21]∗,P2]∗)=[[δ(P2),A12+B21]∗,P2]∗+[[P2,δ(A12)+δ(B21)]∗,P2]∗+[[P2,A12+B21]∗,δ(P2)]∗, |
which implies
[[P2,T]∗,P2]∗=0. | (2.12) |
Multiplying (2.12) by P1 from the left, we get T12=0. Similarly, T21=0. Let
GA12,B21=T11,KA12,B21=T22. |
Then GA12,B21∈A11,KA12,B21∈A22, and so δ(A12+B21)=δ(A12)+δ(B21)+GA12,B21+KA12,B21.
Lemma 2.4. (a) Pjδ(Pi)Pj=0 (1≤i≠j≤2);
(b) Piδ(Pi)Pi=0 (i=1,2).
Proof. (a) For any X12∈A12, since P∗1X∗12P1=0 and [[P1,X12]∗,P1]∗=0, we have
0=δ([[P1,X12]∗,P1]∗)=[[δ(P1),X12]∗,P1]∗+[[P1,δ(X12)]∗,P1]∗+[[P1,X12]∗,δ(P1)]∗=−X12δ(P1)P1+P1δ(P1)X∗12+P1δ(X12)P1−δ(X12)P1−P1δ(X12)∗P1+P1δ(X12)∗+X12δ(P1)−δ(P1)X∗12. | (2.13) |
Multiplying (2.13) by P1 from the left and by P2 from the right, we have
P1δ(X12)∗P2+X12δ(P1)P2=0. |
It follows from Lemma 2.2 that X12δ(P1)P2=−(P2δ(X12)P1)∗=0. Then P2δ(P1)P2=0. Similarly, P1δ(P2)P1=0.
(b) For any X21∈A21, from (iX21)∗P∗1P1=0, [[iX21,P1]∗,P1]∗=iX∗21+iX21, Lemma 2.1(a) and Lemma 2.3, there exist GiX∗21,iX21∈A11,KiX∗21,iX21∈A22 such that
δ(iX∗21)+δ(iX21)+GiX∗21,iX21+KiX∗21,iX21=δ([[iX21,P1]∗,P1]∗)=[[δ(iX21),P1]∗,P1]∗+[[iX21,δ(P1)]∗,P1]∗+[[iX21,P1]∗,δ(P1)]∗=δ(iX21)P1−P1δ(iX21)∗P1−P1δ(iX21)∗+P1δ(iX21)P1+iX21δ(P1)P1+iP1δ(P1)X∗21+iX21δ(P1)+iX∗21δ(P1)+iδ(P1)X∗21+iδ(P1)X21. | (2.14) |
Multiplying (2.14) by P2 from the left and by P1 from the right, we have
P2δ(iX∗21)P1=2iX21δ(P1)P1+iP2δ(P1)X21. | (2.15) |
By (2.15), Lemma 2.2 and the fact that P2δ(P1)P2=0, we obtain X21δ(P1)P1=0. Then P1δ(P1)P1=0. Similarly, P2δ(P2)P2=0.
Remark 2.1. Let S=P1δ(P1)P2−P2δ(P1)P1. Then S∗=−S by Lemma 2.1. We define a map Δ:A→A by
Δ(X)=δ(X)−[X,S] |
for any X∈A. It is easy to verify that Δ is a map satisfying
Δ([[A,B]∗,C]∗)=[[Δ(A),B]∗,C]∗+[[A,Δ(B)]∗,C]∗+[[A,B]∗,Δ(C)]∗ |
for any A,B,C∈A with A∗B∗C=0. By Lemmas 2.1–2.4, it follows that
(a) Δ(Pi)=0 (i=1,2);
(b) For any Aij∈Aij (1≤i≠j≤2), we have PjΔ(Aij)Pi=0;
(c) For any A12∈A12,B21∈A21, there exist UA12,B21∈A11,VA12,B21∈A22 such that
Δ(A12+B21)=Δ(A12)+Δ(B21)+UA12,B21+VA12,B21. |
Lemma 2.5. Δ(Aii)⊆Aii (i=1,2).
Proof. Let A11∈A11. From A∗11P∗2P2=0, [[A11,P2]∗,P2]∗=0 and Δ(P2)=0, we have
0=Δ([[A11,P2]∗,P2]∗)=[[Δ(A11),P2]∗,P2]∗=Δ(A11)P2−P2Δ(A11)∗P2−P2Δ(A11)∗+P2Δ(A11)P2. | (2.16) |
Multiplying (2.16) by P1 from the left, we get P1Δ(A11)P2=0. Since P∗2A∗11P1=0, [[P2,A11]∗,P1]∗=0 and Δ(P1)=Δ(P2)=0, we have
0=Δ([[P2,A11]∗,P1]∗)=[[P2,Δ(A11)]∗,P1]∗=P2Δ(A11)P1−P1Δ(A11)∗P2. | (2.17) |
Multiplying (2.17) by P2 from the left, we get P2Δ(A11)P1=0. For any X12∈A12, from X∗12A∗11P2=0, [[X12,A11]∗,P2]∗=0 and Δ(P2)=0, we have
0=Δ([[X12,A11]∗,P2]∗)=[[Δ(X12),A11]∗,P2]∗+[[X12,Δ(A11)]∗,P2]∗=−A11Δ(X12)∗P2+P2Δ(X12)A∗11+X12Δ(A11)P2−P2Δ(A11)∗X∗12. | (2.18) |
Multiplying (2.18) by P1 from the left, we get −A11Δ(X12)∗P2+X12Δ(A11)P2=0. It follows from Remark 2.1(b) that X12Δ(A11)P2=A11(P2Δ(X12)P1)∗=0. Then P2Δ(A11)P2=0. Hence Δ(A11)⊆A11. Similarly, Δ(A22)⊆A22.
Lemma 2.6. Δ(Aij)⊆Aij (1≤i≠j≤2).
Proof. Let A12∈A12. Then P2Δ(A12)P1=0 by Remark 2.1(b). For any X12∈A12, from X∗12A∗12P1=0 and Δ(P1)=0, we have
Δ(−A12X∗12+X12A∗12)=Δ([[X12,A12]∗,P1]∗)=[[Δ(X12),A12]∗,P1]∗+[[X12,Δ(A12)]∗,P1]∗=−A12Δ(X12)∗P1+P1Δ(X12)A∗12+X12Δ(A12)P1−Δ(A12)X∗12−P1Δ(A12)∗X∗12+X12Δ(A12)∗. | (2.19) |
Multiplying (2.19) by P2 from the left and by P1 from the right, then by Lemma 2.5, we get P2Δ(A12)X∗12=0. Hence P2Δ(A12)P2=0. Since A∗12X∗12P2=0, [[A12,X12]∗,P2]∗=0 and Δ(P2)=0, we have
0=Δ([[A12,X12]∗,P2]∗)=[[Δ(A12),X12]∗,P2]∗+[[A12,Δ(X12)]∗,P2]∗=Δ(A12)X12−X12Δ(A12)∗P2−X∗12Δ(A12)∗+P2Δ(A12)X∗12+A12Δ(X12)P2−P2Δ(X12)∗A∗12. | (2.20) |
Multiplying (2.20) by P1 from the left and by P2 from the right, then by P2Δ(A12)P2=P2Δ(X12)P2=0, we have P1Δ(A12)X12=0. It follows that P1Δ(A12)P1=0. Therefore Δ(A12)⊆A12. Similarly, Δ(A21)⊆A21.
Lemma 2.7. For any Aii∈Aii,Bij∈Aij,Bji∈Aji (1≤i≠j≤2), we have
(a) Δ(Aii+Bij)=Δ(Aii)+Δ(Bij);
(b) Δ(Aii+Bji)=Δ(Aii)+Δ(Bji).
Proof. (a) Let T=Δ(Aii+Bij)−Δ(Aii)−Δ(Bij). Since (iPj)∗I∗(Aii+Bij)=(iPj)∗I∗Aii=(iPj)∗I∗Bij=0 and [[iPj,I]∗,Aii]∗=0, we have
[[Δ(iPj),I]∗,Aii+Bij]∗+[[iPj,Δ(I)]∗,Aii+Bij]∗+[[iPj,I]∗,Δ(Aii+Bij)]∗=Δ([[iPj,I]∗,Aii+Bij]∗)=Δ([[iPj,I]∗,Aii]∗)+Δ([[iPj,I]∗,Bij]∗)=[[Δ(iPj),I]∗,Aii+Bij]∗+[[iPj,Δ(I)]∗,Aii+Bij]∗+[[iPj,I]∗,Δ(Aii)+Δ(Bij)]∗, |
which implies
[[iPj,I]∗,T]∗=0. | (2.21) |
Multiplying (2.21) by Pi from the left, by Pi from the right, by Pj from both sides, respectively, we get Tij=Tji=Tjj=0. Hence
Δ(Aii+Bij)=Δ(Aii)+Δ(Bij)+Tii. | (2.22) |
For any Xij∈Aij, from (Aii+Bij)∗X∗ijPj=A∗iiX∗ijPj=B∗ijX∗ijPj=0, [[Bij,Xij]∗,Pj]∗=0 and (2.22), we have
[[Δ(Aii)+Δ(Bij)+Tii,Xij]∗,Pj]∗+[[Aii+Bij,Δ(Xij)]∗,Pj]∗+[[Aii+Bij,Xij]∗,Δ(Pj)]∗=[[Δ(Aii+Bij),Xij]∗,Pj]∗+[[Aii+Bij,Δ(Xij)]∗,Pj]∗+[[Aii+Bij,Xij]∗,Δ(Pj)]∗=Δ([[Aii+Bij,Xij]∗,Pj]∗)=Δ([[Aii,Xij]∗,Pj]∗)+Δ([[Bij,Xij]∗,Pj]∗)=[[Δ(Aii)+Δ(Bij),Xij]∗,Pj]∗+[[Aii+Bij,Δ(Xij)]∗,Pj]∗+[[Aii+Bij,Xij]∗,Δ(Pj)]∗. |
This implies
[[Tii,Xij]∗,Pj]∗=0. | (2.23) |
Multiplying (2.23) by Pj from the right, we see that TiiXij=0. Hence Tii=0, and so we obtain (a).
Similarly, we can show that (b) holds.
Lemma 2.8. For any Aij,Bij∈Aij (1≤i≠j≤2), we have
Δ(Aij+Bij)=Δ(Aij)+Δ(Bij). |
Proof. For any A12,B12∈A12, it follows that
[[P1+A12,P2+B12]∗,P2]∗=A12+B12−A∗12−B∗12. | (2.24) |
Then by (2.24) and Remark 2.1(c), there exist UA12+B12,−A∗12−B∗12∈A11, VA12+B12,−A∗12−B∗12 ∈A22 such that
Δ([[P1+A12,P2+B12]∗,P2]∗)=Δ(A12+B12)+Δ(−A∗12−B∗12)+UA12+B12,−A∗12−B∗12+VA12+B12,−A∗12−B∗12. | (2.25) |
From (P1+A12)∗(P2+B12)∗P2=0, Δ(P1)=Δ(P2)=0, (2.25), Lemmas 2.6 and 2.7, we have
Δ(A12+B12)+Δ(−A∗12−B∗12)+UA12+B12,−A∗12−B∗12+VA12+B12,−A∗12−B∗12=Δ([[P1+A12,P2+B12]∗,P2]∗)=[[Δ(A12),P2+B12]∗,P2]∗+[[P1+A12,Δ(B12)]∗,P2]∗=Δ(A12)+Δ(B12)−Δ(A12)∗−Δ(B12)∗. | (2.26) |
Multiplying (2.26) by P1 from the left and by P2 from the right, then by Lemma 2.6 and the fact that UA12+B12,−A∗12−B∗12∈A11,VA12+B12,−A∗12−B∗12∈A22, we see that Δ(A12+B12)=Δ(A12)+Δ(B12). Similarly, we can show that Δ(A21+B21)=Δ(A21)+Δ(B21).
Lemma 2.9. For any Aii,Bii∈Aii (i=1,2), we have
Δ(Aii+Bii)=Δ(Aii)+Δ(Bii). |
Proof. For any A11,B11∈A11,B12∈A12, from A∗11B∗12P2=0, Δ(P2)=0, [[A11,B12]∗,P2]∗=A11B12−B∗12A∗11, Lemmas 2.5, 2.6 and 2.8, we have
Δ(A11B12)+Δ(−B∗12A∗11)=Δ([[A11,B12]∗,P2]∗)=[[Δ(A11),B12]∗,P2]∗+[[A11,Δ(B12)]∗,P2]∗=Δ(A11)B12+A11Δ(B12)−B∗12Δ(A11)∗−Δ(B12)∗A∗11. | (2.27) |
Multiplying (2.27) by P1 from the left and by P2 from the right, we have
Δ(A11B12)=Δ(A11)B12+A11Δ(B12). | (2.28) |
Similarly, we can show that
Δ(A22B21)=Δ(A22)B21+A22Δ(B21). | (2.29) |
For any X12∈A12, it follows from Lemma 2.8 and (2.28) that
Δ(A11+B11)X12+(A11+B11)Δ(X12)=Δ((A11+B11)X12)=Δ(A11X12)+Δ(B11X12)=Δ(A11)X12+A11Δ(X12)+Δ(B11)X12+B11Δ(X12). |
It follows that (Δ(A11+B11)−Δ(A11)−Δ(B11))X12=0. Then Δ(A11+B11)=Δ(A11)+Δ(B11). Similarly, we can show that Δ(A22+B22)=Δ(A22)+Δ(B22).
Lemma 2.10. For any A12∈A12,B21∈A21, we have
Δ(A12+B21)=Δ(A12)+Δ(B21). |
Proof. For any X12∈A12, by X∗12(A12+B21)∗P1=X∗12A∗12P1=X∗12B∗21P1=0,
[[X12,A12+B21]∗,P1]∗=[[X12,A12]∗,P1]∗+[[X12,B21]∗,P1]∗∈A11, |
Remark 2.1(c) and Lemma 2.9, there exist UA12,B21∈A11,VA12,B21∈A22 such that
[[Δ(X12),A12+B21]∗,P1]∗+[[X12,Δ(A12)+Δ(B21)+UA12,B21+VA12,B21]∗,P1]∗+[[X12,A12+B21]∗,Δ(P1)]∗=Δ([[X12,A12+B21]∗,P1]∗)=Δ([[X12,A12]∗,P1]∗)+Δ([[X12,B21]∗,P1]∗)=[[Δ(X12),A12+B21]∗,P1]∗+[[X12,Δ(A12)+Δ(B21)]∗,P1]∗+[[X12,A12+B21]∗,Δ(P1)]∗. |
Then
0=[[X12,UA12,B21+VA12,B21]∗,P1]∗=−VA12,B21X∗12+X12V∗A12,B21. | (2.30) |
Multiplying (2.30) by P1 from the right, we get VA12,B21X∗12=0. Hence VA12,B21=0. Then by Remark 2.1(c), we get
Δ(A12+B21)=Δ(A12)+Δ(B21)+UA12,B21. | (2.31) |
For any X21∈A21, from X∗21(A12+B21)∗P2=X∗21A∗12P2=X∗21B∗21P2=0,
[[X21,A12+B21]∗,P2]∗=[[X21,A12]∗,P2]∗+[[X21,B21]∗,P2]∗∈A22, |
Lemma 2.9 and (2.31), we have
[[Δ(X21),A12+B21]∗,P2]∗+[[X21,Δ(A12)+Δ(B21)+UA12,B21]∗,P2]∗+[[X21,A12+B21]∗,Δ(P2)]∗=Δ([[X21,A12+B21]∗,P2]∗)=Δ([[X21,A12]∗,P2]∗)+Δ([[X12,B21]∗,P2]∗)=[[Δ(X21),A12+B21]∗,P2]∗+[[X21,Δ(A12)+Δ(B21)]∗,P2]∗+[[X21,A12+B21]∗,Δ(P2)]∗, |
which implies
0=[[X21,UA12,B21]∗,P2]∗=−UA12,B21X∗21+X21U∗A12,B21. | (2.32) |
Multiplying (2.32) by P2 from the right, we obtain UA12,B21X∗21=0. Then UA12,B21=0. Hence we obtain the desired result.
Lemma 2.11. For any A11∈A11,B12∈A12,C21∈A21,D22∈A22, we have
(a) Δ(A11+B12+C21)=Δ(A11)+Δ(B12)+Δ(C21);
(b) Δ(B12+C21+D22)=Δ(B12)+Δ(C21)+Δ(D22).
Proof. (a) Let T=Δ(A11+B12+C21)−Δ(A11)−Δ(B12)−Δ(C21). From P∗2(A11+B12+C21)∗P2=P∗2A∗11P2=P∗2B∗12P2=P∗2C∗21P2=0 and [[P2,A11]∗,P2]∗=[[P2,C21]∗,P2]∗=0, we have
[[Δ(P2),A11+B12+C21]∗,P2]∗+[[P2,Δ(A11+B12+C21)]∗,P2]∗+[[P2,A11+B12+C21]∗,Δ(P2)]∗=Δ([[P2,A11+B12+C21]∗,P2]∗)=Δ([[P2,A11]∗,P2]∗)+Δ([[P2,B12]∗,P2]∗)+Δ([[P2,C21]∗,P2]∗)=[[Δ(P2),A11+B12+C21]∗,P2]∗+[[P2,Δ(A11)+Δ(B12)+Δ(C21)]∗,P2]∗+[[P2,A11+B12+C21]∗,Δ(P2)]∗. |
This implies
[[P2,T]∗,P2]∗=0. | (2.33) |
Multiplying (2.33) by P1 from the left, we have T12=0. For any X12∈A12, from P∗1X∗12(A11+B12+C21)=P∗1X∗12A11=P∗1X∗12B12=P∗1X∗12C21=0, [[P1,X12]∗,A11+B12+C21]∗=X12C21−B12X∗12 and Lemma 2.9, we have
[[Δ(P1),X12]∗,A11+B12+C21]∗+[[P1,Δ(X12)]∗,A11+B12+C21]∗+[[P1,X12]∗,Δ(A11+B12+C21)]∗=Δ([[P1,X12]∗,A11+B12+C21]∗)=Δ(X12C21)+Δ(−B12X∗12)=Δ([[P1,X12]∗,A11]∗)+Δ([[P1,X12]∗,B12]∗)+Δ([[P1,X12]∗,C21]∗)=[[Δ(P1),X12]∗,A11+B12+C21]∗+[[P1,Δ(X12)]∗,A11+B12+C21]∗+[[P1,X12]∗,Δ(A11)+Δ(B12)+Δ(C21)]∗, |
which implies
[[P1,X12]∗,T]∗=0. | (2.34) |
Multiplying (2.34) by P1 from both sides, we obtain X12TP1−P1TX∗12=0. Then X12TP1=0 by T12=0. Hence T21=0. Multiplying (2.34) by P2 from the right, we have X12TP2=0 and so T22=0. Let SA11,B12,C21=T11. Then SA11,B12,C21∈A11 and
Δ(A11+B12+C21)=Δ(A11)+Δ(B12)+Δ(C21)+SA11,B12,C21. |
Similarly, there exists a RB12,C21,D22∈A22 such that
Δ(B12+C21+D22)=Δ(B12)+Δ(C21)+Δ(D22)+RB12,C21,D22. | (2.35) |
For any X21∈A21, by [[P2,X21]∗,A11+B12+C21]∗=−A11X∗21+X21A11+X21B12−C21X∗21 and (2.35), there exist a R−A11X∗21,X21A11,X21B12−C21X∗21∈A22 such that
Δ([[P2,X21]∗,A11+B12+C21]∗)=Δ(−A11X∗21)+Δ(X21A11)+Δ(X21B12−C21X∗21)+R−A11X∗21,X21A11,X21B12−C21X∗21. | (2.36) |
From P∗2X∗21(A11+B12+C21)=P∗2X∗21A11=P∗2X∗21B12=P∗2X∗21C21=0, (2.36), Lemmas 2.9 and 2.10, we have
[[Δ(P2),X21]∗,A11+B12+C21]∗+[[P2,Δ(X21)]∗,A11+B12+C21]∗+[[P2,X21]∗,Δ(A11+B12+C21)]∗=Δ([[P2,X21]∗,A11+B12+C21]∗)=Δ(−A11X∗21)+Δ(X21A11)+Δ(X21B12−C21X∗21)+R−A11X∗21,X21A11,X21B12−C21X∗21=Δ(−A11X∗21+X21A11)+Δ(X21B12)+Δ(−C21X∗21)+R−A11X∗21,X21A11,X21B12−C21X∗21=Δ([[P2,X21]∗,A11]∗)+Δ([[P2,X21]∗,B12]∗)+Δ([[P2,X21]∗,C21]∗)+R−A11X∗21,X21A11,X21B12−C21X∗21=[[Δ(P2),X21]∗,A11+B12+C21]∗+[[P2,Δ(X21)]∗,A11+B12+C21]∗+[[P2,X21]∗,Δ(A11)+Δ(B12)+Δ(C21)]∗+R−A11X∗21,X21A11,X21B12−C21X∗21. |
It follows that
[[P2,X21]∗,T]∗=R−A11X∗21,X21A11,X21B12−C21X∗21. | (2.37) |
Multiplying (2.37) by P1 from the right, then by R−A11X∗21,X21A11,X21B12−C21X∗21∈A22, we obtain X21TP1=0. Hence SA11,B12,C21=T11=0, and so Δ(A11+B12+C21)=Δ(A11)+Δ(B12)+Δ(C21).
Similarly, we can show that (b) holds.
Lemma 2.12. For any A11∈A11,B12∈A12,C21∈A21,D22∈A22, we have
Δ(A11+B12+C21+D22)=Δ(A11)+Δ(B12)+Δ(C21)+Δ(D22). |
Proof. Let T=Δ(A11+B12+C21+D22)−Δ(A11)−Δ(B12)−Δ(C21)−Δ(D22). From (A11+B12+C21+D22)∗P∗1P2=A∗11P∗1P2=B∗12P∗1P2=C∗21P∗1P2=D∗22P∗1P2=0 and [[A11+B12+C21+D22,P1]∗,P2]∗=−C∗21+C21, we have
[[Δ(A11+B12+C21+D22),P1]∗,P2]∗+[[A11+B12+C21+D22,Δ(P1)]∗,P2]∗+[[A11+B12+C21+D22,P1]∗,Δ(P2)]∗=Δ([[A11+B12+C21+D22,P1]∗,P2]∗)=Δ([[A11,P1]∗,P2]∗)+Δ([[B12,P1]∗,P2]∗)+Δ([[C21,P1]∗,P2]∗)+Δ([[D22,P1]∗,P2]∗)=[[Δ(A11)+Δ(B12)+Δ(C21)+Δ(D22),P1]∗,P2]∗+[[A11+B12+C21+D22,Δ(P1)]∗,P2]∗+[[A11+B12+C21+D22,P1]∗,Δ(P2)]∗. |
This implies
[[T,P1]∗,P2]∗=0. | (2.38) |
Multiplying (2.38) by P2 from the left, we have T21=0. Similarly, T12=0. For any X12∈A12, from P∗1X∗12(A11+B12+C21+D22)=P∗1X∗12A11=P∗1X∗12B12=P∗1X∗12C21=P∗1X∗12D22=0, [[P1,X12]∗,A11+B12+C21+D22]∗=X12C21−B12X∗12+X12D22−D22X∗12, Lemmas 2.9 and 2.12, we have
[[Δ(P1),X12]∗,A11+B12+C21+D22]∗+[[P1,Δ(X12)]∗,A11+B12+C21+D22]∗+[[P1,X12]∗,Δ(A11+B12+C21+D22)]∗=Δ([[P1,X12]∗,A11+B12+C21+D22]∗)=Δ(X12C21)+Δ(−B12X∗12)+Δ(X12D22−D22X∗12)=Δ([[P1,X12]∗,A11]∗)+Δ([[P1,X12]∗,B12]∗)+Δ([[P1,X12]∗,C21]∗)+Δ([[P1,X12]∗,D22]∗)=[[Δ(P1),X12]∗,A11+B12+C21+D22]∗+[[P1,Δ(X12)]∗,A11+B12+C21+D22]∗+[[P1,X12]∗,Δ(A11)+Δ(B12)+Δ(C21)+Δ(D22)]∗. |
This implies
[[P1,X12]∗,T]∗=0. | (2.39) |
Multiplying (2.39) by P2 from the right, we obtain X12TP2=0. Then T22=0. Similarly, T11=0. Hence we obtain the desired result.
Lemma 2.13. For any Aii,Bii∈Aii,Aij,Bij∈Aij,Bji∈Aji,Bjj∈Ajj (1≤i≠j≤2), we have
(a) Δ(AiiBij)=Δ(Aii)Bij+AiiΔ(Bij);
(b) Δ(AijBjj)=Δ(Aij)Bjj+AijΔ(Bjj);
(c) Δ(AiiBii)=Δ(Aii)Bii+AiiΔ(Bii);
(d) Δ(AijBji)=Δ(Aij)Bji+AijΔ(Bji).
Proof. (a) It follows from (2.28) and (2.29) that (a) holds.
(b) Let A12∈A12,B22∈A22. From A∗12B∗22P2=0, Δ(P2)=0, [[A12,B22]∗,P2]∗=A12B22−B∗22A∗12, Lemmas 2.5, 2.6 and 2.12, we have
Δ(A12B22)+Δ(−B∗22A∗12)=Δ([[A12,B22]∗,P2]∗)=[[Δ(A12),B22]∗,P2]∗)+[[A12,Δ(B22)]∗,P2]∗=Δ(A12)B22+A12Δ(B22)−B∗22Δ(A12)∗−Δ(B22)∗A∗12. | (2.40) |
Multiplying (2.40) by P1 from the left and by P2 from the right, we have Δ(A12B22)=Δ(A12)B22+A12Δ(B22). Similarly, Δ(A21B11)=Δ(A21)B11+A21Δ(B11).
(c) Let A11,B11∈A11,X12∈A12. It follows from (a) that
Δ(A11B11)X12+A11B11Δ(X12)=Δ(A11B11X12)=Δ(A11)B11X12+A11Δ(B11X12)=Δ(A11)B11X12+A11Δ(B11)X12+A11B11Δ(X12). |
It follows that (Δ(A11B11)−Δ(A11)B11−A11Δ(B11))X12=0. Hence Δ(A11B11)=Δ(A11)B11+A11Δ(B11). Similarly, Δ(A22B22)=Δ(A22)B22+A22Δ(B22).
(d) Let A12∈A12,B21∈A21. From B∗21P∗1A12=0, Δ(P1)=0, [[B21,P1]∗,A12]∗=B21A12+A12B21, Lemmas 2.6 and 2.12, we have
Δ(B21A12)+Δ(A12B21)=Δ([[B21,P1]∗,A12]∗)=[[Δ(B21),P1]∗,A12]∗+[[B21,P1]∗,Δ(A12)]∗=Δ(B21)A12+A12Δ(B21)+B21Δ(A12)+Δ(A12)B21. | (2.41) |
Multiplying (2.41) by P1 from both sides, we have Δ(A12B21)=Δ(A12)B21+A12Δ(B21). Similarly, Δ(A21B12)=Δ(A21)B12+A21Δ(B12).
Now, we give the proof of Theorem 2.1 in the following.
Proof of Theorem 2.1. By Lemmas 2.5, 2.6, 2.8, 2.9, 2.12 and 2.13, it is easy to verify that Δ is an additive derivation on A. Let Aij∈Aij (1≤i≠j≤2). By A∗ijP∗jPj=0, Δ(Pj)=0 and Lemma 2.6, we have
Δ(Aij)−Δ(A∗ij)=Δ([[Aij,Pj]∗,Pj]∗)=[[Δ(Aij),Pj]∗,Pj]∗=Δ(Aij)−Δ(Aij)∗. |
It follows that
Δ(A∗ij)=Δ(Aij)∗. | (2.42) |
Let Aii∈Aii, Xji∈Aji (1≤i≠j≤2). Since A∗iiP∗iXji=0, Δ(Pi)=0, [[Aii,Pi]∗,Xji]∗=XjiAii−XjiA∗ii, Lemmas 2.5, 2.6 and 2.13(b), we have
Δ(Xji)Aii+XjiΔ(Aii)−Δ(Xji)A∗ii−XjiΔ(A∗ii)=Δ(XjiAii)−Δ(XjiA∗ii)=Δ([[Aii,Pi]∗,Xji]∗)=[[Δ(Aii),Pi]∗,Xji]+[[Aii,Pi]∗,Δ(Xji)]=Δ(Xji)Aii+XjiΔ(Aii)−Δ(Xji)A∗ii−XjiΔ(Aii)∗. |
It follows that Xji(Δ(A∗ii)−Δ(Aii)∗)=0. Then
Δ(A∗ii)=Δ(Aii)∗. | (2.43) |
For any A∈A, we have A=∑2i,j=1Aij. By (2.42), (2.43) and the additivity of Δ on A, it follows that
Δ(A∗)=2∑i,j=1Δ(A∗ij)=2∑i,j=1Δ(Aij)∗=Δ(A)∗. |
Hence Δ is an additive ∗-derivation. Therefore, δ is an additive ∗-derivation on A by Remark 2.1.
In this paper, we gave the characterization of a kind of non-global nonlinear skew Lie triple derivations on factor von Neumann algebras.
This research is supported by Scientific Research Project of Shangluo University (21SKY104).
The authors declare that there are no conflicts of interest.
[1] | B. O'Nill, Semi-Riemannian geometry with application to relativity, New York: Academic Press, 1983. |
[2] | S. H. Tye, Brane inflation: string theory viewed from the cosmos, In: String theory and fundamental interactions, Berlin, Heidelberg: Springer, 2008,949–974. https://doi.org/10.1007/978-3-540-74233-3_28 |
[3] |
P. S. Letelier, Clouds of strings on general relativity, Phys. Rev. D, 20 (1979), 1294–1302. https://doi.org/10.1103/PhysRevD.20.1294 doi: 10.1103/PhysRevD.20.1294
![]() |
[4] |
E. Herscovich, M. G. Richarte, Black holes in Einstein-Gauss-Bonnet gravity with a string cloud background, Phys. Lett. B, 689 (2010), 192–200. https://doi.org/10.1016/j.physletb.2010.04.065 doi: 10.1016/j.physletb.2010.04.065
![]() |
[5] |
S. G. Ghosh, U. Papnoi, S. D. Maharaj, Cloud of strings in third order Lovelock gravity, Phys. Rev. D, 90 (2014), 044068. https://doi.org/10.1103/PhysRevD.90.044068 doi: 10.1103/PhysRevD.90.044068
![]() |
[6] |
M. G. Richarte, C. Simeone, Traversable wormholes in a string cloud, Int. J. Mod. Phys. D, 17 (2008), 1179–1196. https://doi.org/10.1142/S0218271808012759 doi: 10.1142/S0218271808012759
![]() |
[7] |
A. K. Yadav, V. K. Yadav, L. Yadav, Cylindrically symmetric inhomogeneous universes with a cloud of strings, Int. J. Theor. Phys., 48 (2009), 568–578. https://doi.org/10.1007/s10773-008-9832-9 doi: 10.1007/s10773-008-9832-9
![]() |
[8] |
A. Ganguly, S. G. Ghosh, S. D. Maharaj, Accretion onto a black hole in a string cloud background, Phys. Rev. D, 90 (2014), 064037. https://doi.org/10.1103/PhysRevD.90.064037 doi: 10.1103/PhysRevD.90.064037
![]() |
[9] |
M. D. Siddiqi, F. Mofarreh, A. N. Siddiqui, S. A. Siddiqui, Geometrical structure in a relativistic thermodynamical fluid spacetime, Axioms, 12 (2023), 138. https://doi.org/10.3390/axioms12020138 doi: 10.3390/axioms12020138
![]() |
[10] |
M. D. Siddiqi, U. C. De, Relativistic magneto-fluid spacetimes, J. Geom. Phys., 170 (2021), 104370. https://doi.org/10.1016/j.geomphys.2021.104370 doi: 10.1016/j.geomphys.2021.104370
![]() |
[11] |
M. D. Siddiqi, F. Mofarreh, S. K. Chaubey, Solitonic aspect of relativistic magneto-fluid spacetime with some specific vector fields, Mathematics, 11 (2023), 1596. https://doi.org/10.3390/math11071596 doi: 10.3390/math11071596
![]() |
[12] |
Y. Li, A. Ucum, K. Ilarslan, C. Camcı, A new class of Bertrand curves in Euclidean 4-space, Symmetry, 14 (2022), 1191. https://doi.org/10.3390/sym14061191 doi: 10.3390/sym14061191
![]() |
[13] |
Y. Li, S. Senyurt, A. Özduran, D. Canlı, The characterizations of parallel q-equidistant ruled surfaces, Symmetry, 14 (2022), 1879. https://doi.org/10.3390/sym14091879 doi: 10.3390/sym14091879
![]() |
[14] |
L. Jäntschi, Introducing structural symmetry and asymmetry implications in development of recent pharmacy and medicine, Symmetry, 14 (2022), 1674. https://doi.org/10.3390/math8020216 doi: 10.3390/math8020216
![]() |
[15] |
B. Donatella, L. Jäntschi, Comparison of molecular geometry optimization methods based on molecular descriptors, Mathematics, 9 (2021), 2855. https://doi.org/10.3390/math9222855 doi: 10.3390/math9222855
![]() |
[16] |
L. Jäntschi, Detecting extreme values with order statistics in samples from continuous distributions, Mathematics, 8 (2020), 216. https://doi.org/10.3390/math8020216 doi: 10.3390/math8020216
![]() |
[17] |
L. Jäntschi, S. D. Bolboac, Conformational study of C24 cyclic polyyne clusters, Int. J. Quantum. Chem., 118 (2018), e25614. https://doi.org/10.1002/qua.25614 doi: 10.1002/qua.25614
![]() |
[18] |
M. Antić, A class of four dimensional CR submanifolds of the sphere S6, J. Geom. Phys., 110 (2016), 78–89. https://doi.org/10.1016/j.geomphys.2016.07.014 doi: 10.1016/j.geomphys.2016.07.014
![]() |
[19] |
M. Antić, L. Vrancken, Conformally flat, minimal, Lagrangian submanifolds in complex space forms, Sci. China Math., 65 (2022), 1641–1660. https://doi.org/10.1007/s11425-021-1897-0 doi: 10.1007/s11425-021-1897-0
![]() |
[20] |
M. Antić, Characterization of Warped Product Lagrangian Submanifolds in Cn, Results Math., 77 (2022), 106. https://doi.org/10.1007/s00025-022-01621-8 doi: 10.1007/s00025-022-01621-8
![]() |
[21] |
Y. Li, S. H. Nazra, R. A. Abdel-Baky, Singularity properties of timelike sweeping surface in Minkowski 3-space, Symmetry, 14 (2022), 1996. https://doi.org/10.3390/sym14101996 doi: 10.3390/sym14101996
![]() |
[22] |
D. M. Joita, M. A. Tomescu, D. Bàlint, L. Jäntschi, An application of the eigenproblem for biochemical similarity, Symmetry, 13 (2021), 1849. https://doi.org/10.3390/sym13101849 doi: 10.3390/sym13101849
![]() |
[23] |
Y. Li, F. Mofarreh, R. A. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry, 14 (2022), 1914. https://doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914
![]() |
[24] |
R. Jackiw, V. P. Nair, S. Y. Pi, A. P. Polychronakos, Perfect fluid theory and its extensions, J. Phys. A: Math. Gen., 37 (2004), R327. https://doi.org/10.1088/0305-4470/37/42/R01 doi: 10.1088/0305-4470/37/42/R01
![]() |
[25] |
Y. Li, F. Mofarreh, R. A. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry, 14 (2022), 1914. https://doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914
![]() |
[26] |
Y. Li, A. A. Abdel-Salam, M. K. Saad, Primitivoids of curves in Minkowski plane, AIMS Mathematics, 8 (2023), 2386–2406. https://doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123
![]() |
[27] |
M. Novello, M. J. Reboucas, The stability of a rotating universe, Astrophys. J., 225 (1978), 719–724. https://doi.org/10.1086/156533 doi: 10.1086/156533
![]() |
[28] |
Y. Li, F. Mofarreh, S. Dey, S. Roy, A. Ali, General relativistic space-time with η1 Einstein metrics, Mathematics, 10 (2022), 2530. https://doi.org/10.3390/math10142530 doi: 10.3390/math10142530
![]() |
[29] |
S. Guler, S. A. Demirbağ, A study of generalized quasi-Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys., 55 (2016), 548–562. https://doi.org/10.1007/s10773-015-2692-1 doi: 10.1007/s10773-015-2692-1
![]() |
[30] |
M. D. Siddiqi, S. A. Siddiqui, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods M., 17 (2020), 2050083. https://doi.org/10.1142/S0219887820500838 doi: 10.1142/S0219887820500838
![]() |
[31] |
M. C. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen, 58 (2001), 683–691. https://doi.org/10.5486/PMD.2001.2400 doi: 10.5486/PMD.2001.2400
![]() |
[32] | M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgarian Journal of Physics, 15 (1988), 526–531. |
[33] |
A. T. Ali, F. M. Hamdoon, Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space, Korean J. Math., 25 (2017), 537–554. https://doi.org/10.11568/kjm.2017.25.4.537 doi: 10.11568/kjm.2017.25.4.537
![]() |
[34] |
A. T. Ali, H. S. Abdel-Aziz, A. H. Sorour, On some geometric properties of quadric surfaces in Euclidean space, Honam Math. J., 38 (2016), 593–611. https://doi.org/10.5831/HMJ.2016.38.3.593 doi: 10.5831/HMJ.2016.38.3.593
![]() |
[35] |
A. T. Ali, H. S. Abdel-Aziz, A. H. Sorour, On curvatures and points of the translation surfaces in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 23 (2015), 167–172. https://doi.org/10.1016/j.joems.2014.02.007 doi: 10.1016/j.joems.2014.02.007
![]() |
[36] |
Y. Li, K. Eren, K. H. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Mathematics, 8 (2023), 2226–2239. https://doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115
![]() |
[37] |
Y. Li, A. Ucum, K. Ilarslan, C. Camcı, A new class of Bertrand curves in Euclidean 4-space, Symmetry, 14 (2022), 1191. https://doi.org/10.3390/sym14061191 doi: 10.3390/sym14061191
![]() |
[38] |
L. O. Pimental, Energy-momentum tensor in the general scalar-tensor theory, Class. Quantum Grav., 6 (1989), L263. https://doi.org/10.1088/0264-9381/6/12/005 doi: 10.1088/0264-9381/6/12/005
![]() |
[39] |
V. Faraoni, J. Cote, Imperfect fluid description of modified gravity, Phys. Rev. D, 98 (2018), 084019. https://doi.org/10.1103/PhysRevD.98.084019 doi: 10.1103/PhysRevD.98.084019
![]() |
[40] |
I. Sawicki, I. D. Saltas, L. Amendola, M. Kunz, Consistent perturbations in an imperfect fluid, J. Cosmol. Astropart. P., 2013 (2013), 004. https://doi.org/10.1088/1475-7516/2013/01/004 doi: 10.1088/1475-7516/2013/01/004
![]() |
[41] | M. D. Siddiqi, Ricci ρ-soliton and geometrical structure in a dust fluid and viscous fluid spacetime, Bulg. J. Phys., 46 (2019), 163–173. |
[42] |
A. H. Alkhaldi, M. D. Siddiqi, M. A. Khan, L. S. Alqahtani, Imperfect fluid generalized robertson Walker spacetime admitting Ricci-Yamabe metric, Adv. Math. Phys., 2021 (2021), 2485804. https://doi.org/10.1155/2021/2485804 doi: 10.1155/2021/2485804
![]() |
[43] |
K. A. Bronnikov, S. W. Kim, M. V. Skvortsova, The Birkhohff theorem and string clouds, Class. Quantum Grav., 33 (2016), 195006. https://doi.org/10.1088/0264-9381/33/19/195006 doi: 10.1088/0264-9381/33/19/195006
![]() |
[44] |
D. Barbosa, V. B. Bezerra, On the rotating Letelier spacetime, Gen. Relativ. Gravit., 48 (2016), 149. https://doi.org/10.1007/s10714-016-2143-1 doi: 10.1007/s10714-016-2143-1
![]() |
[45] | V. V. Kiselev, Quintessence and black holes, Class. Quantum Grav., 20 (2003), 1187. https://doi.org/10.1088/0264-9381/20/6/310 |
[46] | S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory of relativity, New York: John Wiley and Sons, Inc., 1972. |
[47] | U. C. De, G. C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Math. J., 44 (2004), 607–615. |
[48] | A. Z. Petrov, Einstein spaces, Oxford: Pergamon Press, 1969. https://doi.org/10.1016/C2013-0-02070-1 |
[49] | Z. Ahsan, A symmetry properties of the spacetime of general relativity in terms of the space-matter tensor, Brazilian J. Phys., 26 (1996), 572–576. |
[50] | Z. Ahsan, S. A. Siddiqui, On the divergence of the space-matter tensor in general relativity, Adv. Studies Theor. Phys., 4 (2010), 543–556. |
[51] | K. Yano, M. Kon, Structures of manifolds, Singapore: World Scientific, 1985. https://doi.org/10.1142/0067 |
[52] | T. Takabayashi, Quantum mechanical determinism, causality and particles, Holland, Dordrecht: D. Reidel Pub. Co., 1978. |
[53] | Y. Nambu, Quark model and the factorization of the Veneziano amplitude, International Conference on Symmetries and Quark Models, USA, Detroit, 1969,269–277. |
1. | Mohammad Ashraf, Md Shamim Akhter, Mohammad Afajal Ansari, Non-global nonlinear skew Lie n -derivations on *-algebras , 2024, 52, 0092-7872, 3734, 10.1080/00927872.2024.2328802 |