The purpose of the article is to analyze the behavior of spacetime using a string cloud energy-momentum tensor $ \mathcal{T} $ having string cloud fluid density $ \rho $ and string tension $ \lambda $, named relativistic string cloud spacetime. We obtain some results for string cloud spacetime with a divergence-free matter tensor and a diminishing space matter tensor. Next, we discuss some curvature characteristics, such as conformally flat, Ricci semi-symmetric and pseudo-Ricci-symmetric, for relativistic string cloud spacetime. In addition, we gain a condition that coincides with the equation of state for the cloud of geometric strings in Ricci semi-symmetric string cloud spacetime.
Citation: Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Khalid Masood. Geometrization of string cloud spacetime in general relativity[J]. AIMS Mathematics, 2023, 8(12): 29042-29057. doi: 10.3934/math.20231487
The purpose of the article is to analyze the behavior of spacetime using a string cloud energy-momentum tensor $ \mathcal{T} $ having string cloud fluid density $ \rho $ and string tension $ \lambda $, named relativistic string cloud spacetime. We obtain some results for string cloud spacetime with a divergence-free matter tensor and a diminishing space matter tensor. Next, we discuss some curvature characteristics, such as conformally flat, Ricci semi-symmetric and pseudo-Ricci-symmetric, for relativistic string cloud spacetime. In addition, we gain a condition that coincides with the equation of state for the cloud of geometric strings in Ricci semi-symmetric string cloud spacetime.
[1] | B. O'Nill, Semi-Riemannian geometry with application to relativity, New York: Academic Press, 1983. |
[2] | S. H. Tye, Brane inflation: string theory viewed from the cosmos, In: String theory and fundamental interactions, Berlin, Heidelberg: Springer, 2008,949–974. https://doi.org/10.1007/978-3-540-74233-3_28 |
[3] | P. S. Letelier, Clouds of strings on general relativity, Phys. Rev. D, 20 (1979), 1294–1302. https://doi.org/10.1103/PhysRevD.20.1294 doi: 10.1103/PhysRevD.20.1294 |
[4] | E. Herscovich, M. G. Richarte, Black holes in Einstein-Gauss-Bonnet gravity with a string cloud background, Phys. Lett. B, 689 (2010), 192–200. https://doi.org/10.1016/j.physletb.2010.04.065 doi: 10.1016/j.physletb.2010.04.065 |
[5] | S. G. Ghosh, U. Papnoi, S. D. Maharaj, Cloud of strings in third order Lovelock gravity, Phys. Rev. D, 90 (2014), 044068. https://doi.org/10.1103/PhysRevD.90.044068 doi: 10.1103/PhysRevD.90.044068 |
[6] | M. G. Richarte, C. Simeone, Traversable wormholes in a string cloud, Int. J. Mod. Phys. D, 17 (2008), 1179–1196. https://doi.org/10.1142/S0218271808012759 doi: 10.1142/S0218271808012759 |
[7] | A. K. Yadav, V. K. Yadav, L. Yadav, Cylindrically symmetric inhomogeneous universes with a cloud of strings, Int. J. Theor. Phys., 48 (2009), 568–578. https://doi.org/10.1007/s10773-008-9832-9 doi: 10.1007/s10773-008-9832-9 |
[8] | A. Ganguly, S. G. Ghosh, S. D. Maharaj, Accretion onto a black hole in a string cloud background, Phys. Rev. D, 90 (2014), 064037. https://doi.org/10.1103/PhysRevD.90.064037 doi: 10.1103/PhysRevD.90.064037 |
[9] | M. D. Siddiqi, F. Mofarreh, A. N. Siddiqui, S. A. Siddiqui, Geometrical structure in a relativistic thermodynamical fluid spacetime, Axioms, 12 (2023), 138. https://doi.org/10.3390/axioms12020138 doi: 10.3390/axioms12020138 |
[10] | M. D. Siddiqi, U. C. De, Relativistic magneto-fluid spacetimes, J. Geom. Phys., 170 (2021), 104370. https://doi.org/10.1016/j.geomphys.2021.104370 doi: 10.1016/j.geomphys.2021.104370 |
[11] | M. D. Siddiqi, F. Mofarreh, S. K. Chaubey, Solitonic aspect of relativistic magneto-fluid spacetime with some specific vector fields, Mathematics, 11 (2023), 1596. https://doi.org/10.3390/math11071596 doi: 10.3390/math11071596 |
[12] | Y. Li, A. Ucum, K. Ilarslan, C. Camcı, A new class of Bertrand curves in Euclidean 4-space, Symmetry, 14 (2022), 1191. https://doi.org/10.3390/sym14061191 doi: 10.3390/sym14061191 |
[13] | Y. Li, S. Senyurt, A. Özduran, D. Canlı, The characterizations of parallel $q$-equidistant ruled surfaces, Symmetry, 14 (2022), 1879. https://doi.org/10.3390/sym14091879 doi: 10.3390/sym14091879 |
[14] | L. Jäntschi, Introducing structural symmetry and asymmetry implications in development of recent pharmacy and medicine, Symmetry, 14 (2022), 1674. https://doi.org/10.3390/math8020216 doi: 10.3390/math8020216 |
[15] | B. Donatella, L. Jäntschi, Comparison of molecular geometry optimization methods based on molecular descriptors, Mathematics, 9 (2021), 2855. https://doi.org/10.3390/math9222855 doi: 10.3390/math9222855 |
[16] | L. Jäntschi, Detecting extreme values with order statistics in samples from continuous distributions, Mathematics, 8 (2020), 216. https://doi.org/10.3390/math8020216 doi: 10.3390/math8020216 |
[17] | L. Jäntschi, S. D. Bolboac, Conformational study of C24 cyclic polyyne clusters, Int. J. Quantum. Chem., 118 (2018), e25614. https://doi.org/10.1002/qua.25614 doi: 10.1002/qua.25614 |
[18] | M. Antić, A class of four dimensional $CR$ submanifolds of the sphere $\mathbb{S}^6$, J. Geom. Phys., 110 (2016), 78–89. https://doi.org/10.1016/j.geomphys.2016.07.014 doi: 10.1016/j.geomphys.2016.07.014 |
[19] | M. Antić, L. Vrancken, Conformally flat, minimal, Lagrangian submanifolds in complex space forms, Sci. China Math., 65 (2022), 1641–1660. https://doi.org/10.1007/s11425-021-1897-0 doi: 10.1007/s11425-021-1897-0 |
[20] | M. Antić, Characterization of Warped Product Lagrangian Submanifolds in $C^n$, Results Math., 77 (2022), 106. https://doi.org/10.1007/s00025-022-01621-8 doi: 10.1007/s00025-022-01621-8 |
[21] | Y. Li, S. H. Nazra, R. A. Abdel-Baky, Singularity properties of timelike sweeping surface in Minkowski 3-space, Symmetry, 14 (2022), 1996. https://doi.org/10.3390/sym14101996 doi: 10.3390/sym14101996 |
[22] | D. M. Joita, M. A. Tomescu, D. Bàlint, L. Jäntschi, An application of the eigenproblem for biochemical similarity, Symmetry, 13 (2021), 1849. https://doi.org/10.3390/sym13101849 doi: 10.3390/sym13101849 |
[23] | Y. Li, F. Mofarreh, R. A. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry, 14 (2022), 1914. https://doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914 |
[24] | R. Jackiw, V. P. Nair, S. Y. Pi, A. P. Polychronakos, Perfect fluid theory and its extensions, J. Phys. A: Math. Gen., 37 (2004), R327. https://doi.org/10.1088/0305-4470/37/42/R01 doi: 10.1088/0305-4470/37/42/R01 |
[25] | Y. Li, F. Mofarreh, R. A. Abdel-Baky, Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry, 14 (2022), 1914. https://doi.org/10.3390/sym14091914 doi: 10.3390/sym14091914 |
[26] | Y. Li, A. A. Abdel-Salam, M. K. Saad, Primitivoids of curves in Minkowski plane, AIMS Mathematics, 8 (2023), 2386–2406. https://doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123 |
[27] | M. Novello, M. J. Reboucas, The stability of a rotating universe, Astrophys. J., 225 (1978), 719–724. https://doi.org/10.1086/156533 doi: 10.1086/156533 |
[28] | Y. Li, F. Mofarreh, S. Dey, S. Roy, A. Ali, General relativistic space-time with $\eta_{1}$ Einstein metrics, Mathematics, 10 (2022), 2530. https://doi.org/10.3390/math10142530 doi: 10.3390/math10142530 |
[29] | S. Guler, S. A. Demirbağ, A study of generalized quasi-Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys., 55 (2016), 548–562. https://doi.org/10.1007/s10773-015-2692-1 doi: 10.1007/s10773-015-2692-1 |
[30] | M. D. Siddiqi, S. A. Siddiqui, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods M., 17 (2020), 2050083. https://doi.org/10.1142/S0219887820500838 doi: 10.1142/S0219887820500838 |
[31] | M. C. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen, 58 (2001), 683–691. https://doi.org/10.5486/PMD.2001.2400 doi: 10.5486/PMD.2001.2400 |
[32] | M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgarian Journal of Physics, 15 (1988), 526–531. |
[33] | A. T. Ali, F. M. Hamdoon, Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space, Korean J. Math., 25 (2017), 537–554. https://doi.org/10.11568/kjm.2017.25.4.537 doi: 10.11568/kjm.2017.25.4.537 |
[34] | A. T. Ali, H. S. Abdel-Aziz, A. H. Sorour, On some geometric properties of quadric surfaces in Euclidean space, Honam Math. J., 38 (2016), 593–611. https://doi.org/10.5831/HMJ.2016.38.3.593 doi: 10.5831/HMJ.2016.38.3.593 |
[35] | A. T. Ali, H. S. Abdel-Aziz, A. H. Sorour, On curvatures and points of the translation surfaces in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 23 (2015), 167–172. https://doi.org/10.1016/j.joems.2014.02.007 doi: 10.1016/j.joems.2014.02.007 |
[36] | Y. Li, K. Eren, K. H. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Mathematics, 8 (2023), 2226–2239. https://doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115 |
[37] | Y. Li, A. Ucum, K. Ilarslan, C. Camcı, A new class of Bertrand curves in Euclidean 4-space, Symmetry, 14 (2022), 1191. https://doi.org/10.3390/sym14061191 doi: 10.3390/sym14061191 |
[38] | L. O. Pimental, Energy-momentum tensor in the general scalar-tensor theory, Class. Quantum Grav., 6 (1989), L263. https://doi.org/10.1088/0264-9381/6/12/005 doi: 10.1088/0264-9381/6/12/005 |
[39] | V. Faraoni, J. Cote, Imperfect fluid description of modified gravity, Phys. Rev. D, 98 (2018), 084019. https://doi.org/10.1103/PhysRevD.98.084019 doi: 10.1103/PhysRevD.98.084019 |
[40] | I. Sawicki, I. D. Saltas, L. Amendola, M. Kunz, Consistent perturbations in an imperfect fluid, J. Cosmol. Astropart. P., 2013 (2013), 004. https://doi.org/10.1088/1475-7516/2013/01/004 doi: 10.1088/1475-7516/2013/01/004 |
[41] | M. D. Siddiqi, Ricci $\rho$-soliton and geometrical structure in a dust fluid and viscous fluid spacetime, Bulg. J. Phys., 46 (2019), 163–173. |
[42] | A. H. Alkhaldi, M. D. Siddiqi, M. A. Khan, L. S. Alqahtani, Imperfect fluid generalized robertson Walker spacetime admitting Ricci-Yamabe metric, Adv. Math. Phys., 2021 (2021), 2485804. https://doi.org/10.1155/2021/2485804 doi: 10.1155/2021/2485804 |
[43] | K. A. Bronnikov, S. W. Kim, M. V. Skvortsova, The Birkhohff theorem and string clouds, Class. Quantum Grav., 33 (2016), 195006. https://doi.org/10.1088/0264-9381/33/19/195006 doi: 10.1088/0264-9381/33/19/195006 |
[44] | D. Barbosa, V. B. Bezerra, On the rotating Letelier spacetime, Gen. Relativ. Gravit., 48 (2016), 149. https://doi.org/10.1007/s10714-016-2143-1 doi: 10.1007/s10714-016-2143-1 |
[45] | V. V. Kiselev, Quintessence and black holes, Class. Quantum Grav., 20 (2003), 1187. https://doi.org/10.1088/0264-9381/20/6/310 |
[46] | S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory of relativity, New York: John Wiley and Sons, Inc., 1972. |
[47] | U. C. De, G. C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Math. J., 44 (2004), 607–615. |
[48] | A. Z. Petrov, Einstein spaces, Oxford: Pergamon Press, 1969. https://doi.org/10.1016/C2013-0-02070-1 |
[49] | Z. Ahsan, A symmetry properties of the spacetime of general relativity in terms of the space-matter tensor, Brazilian J. Phys., 26 (1996), 572–576. |
[50] | Z. Ahsan, S. A. Siddiqui, On the divergence of the space-matter tensor in general relativity, Adv. Studies Theor. Phys., 4 (2010), 543–556. |
[51] | K. Yano, M. Kon, Structures of manifolds, Singapore: World Scientific, 1985. https://doi.org/10.1142/0067 |
[52] | T. Takabayashi, Quantum mechanical determinism, causality and particles, Holland, Dordrecht: D. Reidel Pub. Co., 1978. |
[53] | Y. Nambu, Quark model and the factorization of the Veneziano amplitude, International Conference on Symmetries and Quark Models, USA, Detroit, 1969,269–277. |