Let $ \mathcal{M} $ be a von Neumann algebra without direct commutative summands, and let $ \mathcal{A} $ be an arbitrary subalgebra of $ LS(\mathcal{M}) $ containing $ \mathcal{M}, $ where $ LS(\mathcal{M}) $ is the $ ^{\ast} $-algebra of all locally measurable operators with respect to $ \mathcal{M} $. Suppose $ \delta $ is an additive mapping from $ \mathcal{A} $ to $ LS(\mathcal{M}) $ that satisfies the condition $ \delta(A)B^{\ast}+A\delta(B)+\delta(B)A^{\ast}+B\delta(A) = 0 $ whenever $ AB = BA = 0. $ In this paper, we prove that there exists an element $ Y $ in $ LS(\mathcal{M}) $ such that $ \delta(X) = XY-YX^{\ast}, $ for every $ X $ in $ \mathcal{A}. $
Citation: Wenbo Huang, Jiankui Li, Shaoze Pan. Some zero product preserving additive mappings of operator algebras[J]. AIMS Mathematics, 2024, 9(8): 22213-22224. doi: 10.3934/math.20241080
Let $ \mathcal{M} $ be a von Neumann algebra without direct commutative summands, and let $ \mathcal{A} $ be an arbitrary subalgebra of $ LS(\mathcal{M}) $ containing $ \mathcal{M}, $ where $ LS(\mathcal{M}) $ is the $ ^{\ast} $-algebra of all locally measurable operators with respect to $ \mathcal{M} $. Suppose $ \delta $ is an additive mapping from $ \mathcal{A} $ to $ LS(\mathcal{M}) $ that satisfies the condition $ \delta(A)B^{\ast}+A\delta(B)+\delta(B)A^{\ast}+B\delta(A) = 0 $ whenever $ AB = BA = 0. $ In this paper, we prove that there exists an element $ Y $ in $ LS(\mathcal{M}) $ such that $ \delta(X) = XY-YX^{\ast}, $ for every $ X $ in $ \mathcal{A}. $
[1] | S. Albeverio, S. Ayupov, K. Kudaydergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Funct. Anal., 256 (2009), 2917–2943. https://doi.org/10.1016/j.jfa.2008.11.003 doi: 10.1016/j.jfa.2008.11.003 |
[2] | B. Blackadar, Operator algebras: Theory of $C^{*}$-algebras and von Neumann algebras, Berlin: Springer-Verlag, 2006. https://doi.org/10.1007/3-540-28517-2 |
[3] | M. Brešar, J. Vukman, On some additive mappings in rings with involution, Aeq. Math., 38 (1989), 178–185. https://doi.org/10.1007/BF01840003 doi: 10.1007/BF01840003 |
[4] | R. Kadison, J. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, American Mathematical Society, 1997. |
[5] | M. Muratov, V. Chilin, Topological algebras of measurable and locally measurable operators, J. Math. Sci., 239 (2019), 654–705. https://doi.org/10.1007/s10958-019-04320-y doi: 10.1007/s10958-019-04320-y |
[6] | T. Palmer, Banach algebras and the general theory of $\ast$-algebras. Vol. II, Cambridge: Cambridge University Press, 2001. |
[7] | G. K. Pedersen, $C^{*}$-algebras and their automorphism groups, London: Academic Press, 2018. https://doi.org/10.1016/C2016-0-03431-9 |
[8] | X. Qi, F. Zhang, Multiplicative Jordan $^{\ast}$-derivations on rings with involution, Linear Multilinear A., 64 (2016), 1145–1162. https://doi.org/10.1080/03081087.2015.1073217 doi: 10.1080/03081087.2015.1073217 |
[9] | X. Qi, M. Wang, Local characterization of Jordan $^{\ast}$-derivations on $\mathcal{B}(\mathcal{H})$, Publ. Math. Debrecen, 94 (2019), 421–434. |
[10] | P. Šemrl, Quadratic functionals and Jordan $^{\ast}$-derivations, Studia Math., 97 (1991), 157–165. |
[11] | P. Šemrl, Jordan $^{\ast}$-derivations of standard operator algebras, Proc. Amer. Math. Soc., 120 (1994), 515–518. https://doi.org/10.2307/2159889 doi: 10.2307/2159889 |
[12] | J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc., 100 (1987), 133–136. https://doi.org/10.1090/S0002-9939-1987-0883415-0 doi: 10.1090/S0002-9939-1987-0883415-0 |