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1. Introduction

Let A be a ∗-ring, meaning a ring with involution ∗, and let B be a subring of A. An additive
mapping δ : B → A is called a Jordan ∗-derivation (though in some literature, this term may carry a
different meaning) if

δ(T 2) = δ(T )T ∗ + Tδ(T )

for all T ∈ B. It can be easily verified that if A is 2-torsion-free, meaning 2A = 0 implies A = 0 for
every A inA, then a Jordan ∗-derivation can be equivalently defined as

δ(A ◦ B) = δ(A)B∗ + Aδ(B) + δ(B)A∗ + Bδ(A)

for all A, B ∈ B, where A ◦ B = AB + BA. For each A ∈ A, one can define a Jordan ∗-derivation δA by
δA(T ) = T A−AT ∗, for all T ∈ B. Such Jordan ∗-derivations are referred to as inner Jordan ∗-derivations.

The significance of Jordan ∗-derivations lies in their structural importance in problems concerning
the representability of quadratic functionals by sesquilinear forms on modules (see [10–12]).
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Brešar and Vukman [3] established that if a unital ∗-ring A contains 1
2 and a central invertible

element A such that A∗ = −A, then every Jordan ∗-derivation from A to itself is inner. Consequently,
every Jordan ∗-derivation on a unital complex ∗-algebra is inner. To adapt the approach employed in
the proof of [3, Theorem 1], the following lemma can be derived:

Lemma 1.1. Let A be a complex ∗-algebra with the unity 1, and let B be an arbitrary subalgebra of
A. Then every Jordan ∗-derivation from B intoA is inner.

Let B(H) denote the algebra of all bounded linear operators on a real or complex Hilbert space
H with dim H > 1, and let A be a standard operator algebra on H . Šemrl [11] proved that every
Jordan ∗-derivation fromA to B(H) is inner.

Let R be a 2-trision-free, noncommutative prime ∗-ring with a nontrivial projection. Qi and
Zhang [8] demonstrated that if δ : R → R satisfies the condition

δ(A ◦ B) = δ(A)B∗ + Aδ(B) + δ(B)A∗ + Bδ(A) whenever AB = 0, (P1)

then δ is a Jordan ∗-derivation.
Consider a real Hilbert space H with dim H = ∞, and let δ : B(H) → B(H) be a real linear

mapping. Qi and Wang in [9] established that if δ satisfies

δ(A)A∗ + Aδ(A) = 0 whenever A2 = 0, (P2)

then δ is inner. In the same paper, the authors constructed an example of an additive mapping that
satisfies condition (P2) but is not a Jordan ∗-derivation on the algebra of all 2 × 2 real matrices. This
implies that, on a large class of ∗-rings, an additive mapping δ that only satisfies condition (P2) is not
sufficient to ensure it is a Jordan ∗-derivation.

Motivated by these results, in this paper, we aim to characterize an additive mapping δ : B → A
satisfying the following condition:

δ(A)B∗ + Aδ(B) + δ(B)A∗ + Bδ(A) = 0 whenever AB = BA = 0. (P)

Clearly, condition (P) is weaker than condition (P1).
In the paper, our main focus is on investigating the aforementioned preservation problem of operator

algebras, specifically in von Neumann algebras and C∗-algebras. For a von Neumann algebraM, we
approach the study within a broader context by considering M as a subalgebra of the ∗-algebra of
all locally measurable operators with respect toM. Regarding C∗-algebras, achieving results for the
preservation problem discussed above is challenging in general C∗-algebras. Hence, we primarily focus
on properly infinite, primitive, and AF (approximately finite) C∗-algebras. In the paper, we present the
following main results:

(1) Let M be a von Neumann algebra without direct commutative summands, and let A be an
arbitrary subalgebra of LS (M) containingM. An additive mapping δ : A → LS (M) is an inner
Jordan ∗-derivation if and only if it satisfies condition (P).

(2) Let A be a properly infinite C∗-algebra. An additive mapping δ : A → A is inner if and only if
it satisfies condition (P).

(3) Let A be a unital noncommutative primitive C∗-algebra with a nonzero soc(A), and let B be an
arbitrary subalgebra of A containing soc(A). An additive mapping δ : B → A is inner if and
only if it satisfies condition (P).
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(4) Suppose A =
⋃
An is an AF algebra such that A1 has no direct commutative summands. Let B

be chosen from A or
⋃N

n=1An, where N is a finite integer or infinite. Then an additive mapping
δ : B → A is inner if and only if it satisfies condition (P).

2. Main results

An element P in a ∗-ring is called a projection if P∗ = P = P2. Let G be a ∗-ring with unity 1 and a
nontrivial projection P1. By P2, we shall always mean 1− P1 unless otherwise specified. To obtain the
main results of the paper, we first present the following theorem, which generalizes [8, Theorem 2.2].
Additionally, we place the proof of the theorem at the end of the paper to keep the focus on its main
points.

Theorem 2.1. Let G be a 2-torsion-free ∗-ring with unity 1 and a nontrivial projection P1. SupposeU
is a subring of G that satisfies the following conditions:

(1) P1, P2 ∈ U;
(2) UP2 left separates P1GP1, i.e. for each A in P1GP1, AUP2 = {0} implies that A = 0;
(3) P1U right separates P2GP2, i.e. for each A in P2GP2, P1UA = {0} implies that A = 0.

If δ : U → G is an additive mapping satisfying condition (P), then it is a Jordan ∗-derivation.

Recall that a ring R is prime if ARB = 0 (A, B ∈ R), which implies that A = 0 or B = 0.
Applying Theorem 2.1, we can get the following corollary immediately.

Corollary 2.1. Let A be a unital, 2-torsion-free, noncommutative prime ∗-ring with a nontrivial
projection. If δ : A → A is an additive mapping satisfying condition (P), then δ is a
Jordan ∗-derivation.

LetH be a complex Hilbert space andM be a von Neumann algebra in B(H). Let P(M) be the set
of all projections inM, and Pfin(M) be the subset of all finite projections of P(M).

A linear subspace D in H is affiliated withM (denoted as D ηM) if u(D) ⊆ D for every unitary
operator u inM′, the commutant ofM. D is strongly dense inH with respect toM, ifD ηM and there
is a sequence of projections {Pn}

∞
n=1 ⊆ P(M), such that Pn ↑ 1, pn(H) ⊆ D, and 1 − Pn ∈ Pfin(M),

for every n ∈ N. A linear operator x on H with a dense domain D(x) is said to be affiliated with
M (denoted as x ηM) if D(x) ηM and ux(ξ) = xu(ξ) for all ξ ∈ D(x) and for every unitary operator
in M′. A closed linear operator x acting in H is measurable with respect to M if x ηM and D(x)
strongly dense inH . Let S (M) denote the set of all measurable operators.

A closed linear operator x acting inH is called locally measurable with respect toM if x ηM and
there is a sequence {Pn}

∞
n=1 of central projections in M such that Pn ↑ 1 and xPn ∈ S (M) for every

n ∈ N.
The set LS (M) of all locally measurable operators with respect to M forms a unital ∗-algebra

with respect to algebraic operators of strong addition and multiplication and taking the adjoint of an
operator. BothM and S (M) are subalgebras of LS (M). Refer to [1,5] and related literature for further
details.

Theorem 2.2. Let M be a von Neumann algebra without direct commutative summands, and let A
be an arbitrary subalgebra of LS (M) containing M. If δ : A → LS (M) is an additive mapping
satisfying condition (P), then it is an inner Jordan ∗-derivation.
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Proof. By assumption, M has no direct commutative summands; there exists a projection P1 in M
such that CP1 = CP2 = 1, where CPi denotes the central carrier of Pi for i = 1, 2.

To prove that δ is an inner Jordan ∗-derivation, according to Lemma 1.1 and Theorem 2.1, it is
sufficient to show thatMP2 left separates P1LS (M)P1 and P1M right separates P2LS (M)P2.

Assume that A ∈ P1LS (M)P1 and AX = 0 for each X ∈ MP2. It follows from [4, Proposition 6.1.8]
that there are projections Q1 and T1 such that Q1 ≤ P1, T1 ≤ P2, and Q1 ∼ T1. Then there exists a
partial isometry V ∈ M such that V∗V = Q1 and VV∗ = T1. Thus,

P1AQ1 = P1AP1Q1 = AP1V∗VQ1 = AP1V∗VV∗V = A(P1V∗T1P2)V = 0.

If Q1 = P1, then the proof is complete. If P1 − Q1 , 0, it implies that CP1−Q1CP2 , 0. By [4,
Proposition 6.1.8], there exist Q2 ≤ P1−Q1 and T2 ≤ P2 with Q2 ∼ T2. Let Qα be an orthogonal family
of projections inM maximal with respect to the property that Qα ≤ P1, and P1AQα = 0 for each α. By
maximality of Qα, we have P1 =

∑
Qα. Therefore,

A = P1AP1 =
∑

P1AQα = 0.

Using a similar technique, we can show that P1M right separates P2LS (M)P2, and we omit it here.
The proof is complete. □

In a C∗-algebraA, projections P and Q are considered (Murray-von Neumann ) equivalent, denoted
by P ∼ Q, if there exists a partial isometry V ∈ A such that V∗V = P, VV∗ = Q, and P ≾ Q if P
is equivalent to a subprojection of Q. Note that P ≾ Q and Q ≾ P do not necessarily imply P ∼ Q
in general C∗-algebras. In other words, there is no Schröder–Bernstein theorem for the equivalence of
projections in general C∗-algebras.

A nonzero projection P in A is termed properly infinite if there exist mutually orthogonal
subprojections Q1 and Q2 of P such that Q1 ∼ P ∼ Q2. A unital C∗-algebra is properly infinite if its
unity 1 is properly infinite. For example, the Calkin algebra and Cuntz algebras are properly infinite.

Theorem 2.3. LetA be a properly infinite C∗-algebra. If δ : A → A is an additive mapping satisfying
condition (P), then δ is an inner Jordan ∗-derivation.

Proof. The first step is to establish the following claim:
Claim 1. If P and Q are two projections in A such that P ≾ Q, then AQ (QA) left (right) separates
PAP.

Since P ≾ Q, there exists a partial isometry V ∈ A with V∗V = P and VV∗ = Q1 ⩽ Q. Now,
suppose A ∈ PAP such that AAQ = 0. This implies

0 = AV∗Q = AV∗VV∗Q = AV∗Q1 = AV∗,

which leads to A = 0. Similarly, we can demonstrate that QA right separates PAP. Thus, Claim 1 is
validated.

Next, consider mutually orthogonal projections P1, Q1 inA such that P1 ∼ 1 ∼ Q1.

Claim 2. P2 ≾ P1.

Let U ∈ A be a partial isometry such that U∗U = 1 and UU∗ = P1. Define T = UP2U∗, which is a
projection satisfying T ≤ P1. Let S = UP2. Then S is a partial isometry operator. Clearly, S S ∗ = T
and S ∗S = P2. Therefore,

P2 ∼ T ≤ P1.
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Moreover, it is evident that P1 ≾ P2. From Claims 1 and 2, we conclude thatAP2 left separates P1AP1,
and P1A right separates P2AP2. By Lemma 1.1 and Theorem 2.1, we conclude that the statement
holds. The proof is complete. □

A complex unital Banach ∗-algebra A is called proper if A∗A = 0 implies A = 0 for each A ∈ A.
Suppose a proper ∗-algebra A has a minimal left ideal J , or equivalently, there exists a minimal
projection P ∈ A such thatJ = AP. The sum of all minimal left ideals is referred to as the socle ofA,
denoted by soc(A). IfA does not have minimal left ideal, we define soc(A) = 0. It is well known that
the socle of B(H) is identical to F (H), the ideal of all finite rank operators in B(H) (cf. [6, p.1142
and 1143]).

Theorem 2.4. Let A be a complex proper Banach ∗-algebra with unity 1, and B be a subalgebra
of A containing soc(A). Suppose there is a minimal projection P1 in A such that P1soc(A) right
separates P2AP2. If δ : B → A is an additive mapping satisfying condition (P), then δ is an inner
Jordan ∗-derivation.

Proof. Without loss of generality, we assume that 1 in B. If 1 < B, let B1 = B + C1. In this case,
consider the mapping δ̃ : B1 → A by δ̃(B + λ1) = δ(B) for each B ∈ B. Clearly, δ̃|B = δ.

To prove that δ is an inner Jordan ∗-derivation, according to Lemma 1.1 and Theorem 2.1, it is
sufficient to show that soc(A)P2 left separates P1AP1.

For any A ∈ A, it follows from [6, Theorem 10.6.2, p.1143] that there exists a continuous linear
functional f on A such that P1AP1 = f (A)P1. Given the assumption that P1soc(A) right separates
P2AP2, it implies P1soc(A)P2 , 0. If P1AP1soc(A)P2 = 0, it follows that f (A) = 0. Consequently,
P1AP1 = 0. □

Let A be a C∗-algebra. A representation π : A → B(H) is said to be irreducible if π(A) has no
nontrivial invariant subspace. A is called primitive if it has a faithful irreducible representation. It is
easy to verify that every primitive C∗-algebra is prime, and for separable algebras, the converse is also
true (cf. [2, p. 112]).

Corollary 2.2. LetA be a unital noncommutative primitive C∗-algebra with a nonzero soc(A), and let
B be an arbitrary subalgebra ofA containing soc(A). If δ : B → A is an additive mapping satisfying
condition (P), then it is an inner Jordan ∗-derivation.

Proof. Consider π : A → B(H), a faithful irreducible representation of A. If soc(A) , 0, it implies
soc(π(A)) , 0. According to [7, Theorem 6.1.5], we have soc(π(A)) ⊇ F (H). This implies that
P1soc(A) right separates P2AP2 for every minimal projection P1 in A. The conclusion then follows
from Theorem 2.4. □

The following theorem improves the main result of [11].

Theorem 2.5. LetH be a real or complex Hilbert space, dimH > 1, and letA be a standard operator
algebra on H . Suppose that δ : A → B(H) is an additive mapping satisfying condition (P). Then
there exists a unique linear operator A ∈ B(H) such that δ(X) = XA − AX∗ for all X ∈ A.

Proof. In the real space setting ofH , Theorem 2.1 establishes δ as a Jordan ∗-derivation. WhenH is a
complex space, an immediate application of Corollary 2.2 confirms δ as an inner Jordan ∗-derivation.
Therefore, the conclusion holds true in both cases, as supported by [11, Theorem]. □
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LetB be a C∗-subalgebra of a C∗-algebraA. A conditional expectation fromA toB is a completely
positive contraction ϕ : A → B such that ϕ(B) = B, ϕ(BA) = Bϕ(A), and ϕ(AB) = ϕ(A)B for all
A ∈ A, B ∈ B. IfB is injective, then there exists a conditional expectation fromA toB (cf. [2, IV.2.1]).

Recall that an approximately finite (AF) algebra is a unital C∗-algebraA,which is an inductive limit
of an increasing sequence of finite-dimensional C∗-algebras An, 1 ≤ n < ∞, with unital embeddings
ȷn : An ↪→ An+1. Equivalently, A is an AF algebra if it can be represented as the closed union of an
ascending sequence of finite-dimensional C∗-algebras. Clearly, every finite-dimensional C∗-algebra is
injective; thus, there exists a sequence ϕn : A → An of conditional expectations such that

lim
n→∞
ϕn(A) = A, A ∈ A. (2.1)

Theorem 2.6. Suppose A =
⋃∞

n=1An is an AF algebra such that A1 has no direct commutative
summands. Let B be either A or

⋃N
n=1An, where N is a finite integer or infinite. If δ : B → A is an

additive mapping satisfying condition (P), then δ is an inner Jordan ∗-derivation.

Proof. We divide the proof into two cases.
Case 1. Let B =

⋃N
n=1An. For any positive integer k (k < N + 1), we consider the mapping ϕk ◦ δ :

B → Ak. Let A, B ∈ Ak such that AB = BA = 0, then

ϕk ◦ δ(A)B∗ + Aϕk ◦ δ(B) + ϕk ◦ δ(B)A∗ + Bϕk ◦ δ(A)
= ϕk (δ(A)B∗ + Aδ(B) + δ(B)A∗ + Bδ(A))

= ϕk(0) = 0.

Thus, ϕk ◦ δ |Ak : Ak → Ak satisfies condition (P). Since A1 has no direct commutative summands, it
implies that Ak has no direct commutative summands. Thus, Ak = Mk1 ⊕ · · · ⊕Mkl , where ki ≥ 2 for
each i. Through routine calculation, we can show that ϕk ◦δ |Ak (Mki) ⊆Mki . By Theorem 2.1, we have
ϕk ◦ δ |Ak is a Jordan ∗-derivation.

Fix n and let n ≤ k < N + 1. For each An ∈ An ⊆ Ak, we have

ϕk ◦ δ(A2
n) = ϕk ◦ δ(An)A∗n + Anϕk ◦ δ(An).

It follows from Eq (2.1) that
δ(A2

n) = δ(An)A∗n + Anδ(An)

on
⋃N

n=1An. Therefore, δ is a Jordan ∗-derivation. By Lemma 1.1, δ is inner. Hence, we finish the proof
of the first statement.
Case 2. Assume δ is defined fromA to itself. Fix n and choose a nontrivial projection P1 inAn. Now,
consider an element A ∈ A such that P1AP1 , 0. This implies the existence of a subsequence Akm

converging to A, where P1Akm P1 , 0 and Akm ∈ Akm for each km. Since Akm is finite dimensional, it is
also prime. Therefore,

P1Akm P1Akm P2 = P1Akn P1Akm(1Akm
− P1) , 0.

Hence, P1Akm P1AP2 , 0, implying P1AP1AP2 , 0.
Similarly, we can show that P1A right separates P2AP2. By applying Lemma 1.1 and Theorem 2.1,

we conclude that δ is an inner Jordan ∗-derivation. □
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Next, we prove Theorem 2.1. Before providing its proof, we introduce the following lemmas,
established under the assumptions of Theorem 2.1. For convenience, we denote PiGP j and PiUP j as
Gi j andUi j, respectively. Then, the Peirce decomposition of G andU is as follows:

G = G11 + G12 + G21 + G22, U = U11 +U12 +U21 +U22.

Lemma 2.1. The following statements hold:

(1) P1δ(P2)P1 = P2δ(P1)P2 = 0;
(2) P1δ(1)P1 = P1δ(P1)P1;
(3) P2δ(1)P2 = P2δ(P2)P2.

Proof. Since P1P2 = P2P1 = 0, it follows from the assumption that

δ(P1)P2 + P2δ(P1) + δ(P2)P1 + P1δ(P2) = 0.

Multiplying the above equation from both sides by P1, we have 2P1δ(P2)P1 = 0. Given that G11 is
2-torsion-free by assumption, we have P1δ(P2)P1 = 0. Similarly, we have P2δ(P1)P2 = 0. Thus, (1)
holds. Statements (2) and (3) are easily verified from (1), and we omit the details. Hence, the proof is
complete. □

Lemma 2.2. If E is an idempotent inU, then Eδ(1) = δ(1)E∗.

Proof. Since E(1 − E) = (1 − E)E = 0, it follows from the assumption that

δ(E)(1 − E)∗ + Eδ(1 − E) + δ(1 − E)E∗ + (1 − E)δ(E) = 0.

Hence,

2δ(E) + δ(1)E∗ + Eδ(1) = 2δ(E)E∗ + 2Eδ(E). (2.2)

Multiplying by E∗ from the right side in Eq (2.2), we have

δ(1)E∗ + Eδ(1)E∗ = 2Eδ(E)E∗.

Multiplying by E from the left side in Eq (2.2), we have

Eδ(1)E∗ + Eδ(1) = 2Eδ(E)E∗.

Combining the above two equations, we obtain Eδ(1) = δ(1)E∗. □

Applying the above result, we can get the following lemma immediately.

Lemma 2.3. δ(1) = P1δ(1)P1 + P2δ(1)P2.

Lemma 2.4. δ(1) = 0.
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Proof. For any G12 ∈ U12, then P1 +G12 is an idempotent inU. By Lemma 2.2, we have

(P1 +G12)∗δ(1) = δ(1)(P1 +G12).

It follows from Lemma 2.2 that
G∗12δ(1) = δ(1)G12.

By Lemma 2.3, we have δ(1)G12 ∈ G12 and G∗12δ(1) ∈ G21. This means that δ(1)G12 = 0 for any G12 ∈

U12. By assumption, UP2 left separates G11, it follows that P1δ(1)P1 = 0. Similarly, P2δ(1)P2 = 0.
Using Lemma 2.3, then δ(1) = 0. The proof is complete. □

For every A, B ∈ G, let [A, B]∗ = AB−BA∗. Define an additive mapping σ : U → G by the formula:

σ(G) = [G, P1δ(P1)P2 + P2δ(P2)P1]∗ − δ(G), G ∈ U.

It is evident that σ satisfies condition (P). Additionally, it is straightforward to verify that σ(P1) =
σ(P2) = 0.

Lemma 2.5. For each G ∈ U, the following statements hold:

(1) σ(G11) ∈ G11;
(2) σ(G22) ∈ G22;
(3) P1σ(G12)P1 = P2σ(G12)P2 = 0;
(4) P1σ(G21)P1 = P2σ(G21)P2 = 0.

Proof. For any G11 ∈ U11, we have G11P2 = P2G11 = 0. Therefore,

σ(G11)P2 +G11σ(P2) + σ(P2)G∗11 + P2σ(G11) = 0.

Simplifying further, we obtain

σ(G11)P2 + P2σ(G11) = 0. (2.3)

Multiplying both sides of Eq (2.3) by P1 from the left side, we have

P1σ(G11)P2 = 0.

Similarly, multiplying both sides of Eq (2.3) by P1 from the right side, we obtain

P2σ(G11)P1 = 0.

Furthermore, multiplying both sides of Eq (2.3) by P2 and using the assumption thatG is 2-torsion-free,
we have P2σ(G11)P2 = 0. This implies that

σ(G11) ∈ G11,

which proves statement (1). The proof for statement (2) follows a similar pattern as statement (1).
Therefore, we omit it here.

(G12 + P1)(P2 −G12) = (P2 −G12)(G12 + P1) = 0

AIMS Mathematics Volume 9, Issue 8, 22213–22224.
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implies that

σ(G12 + P1)(P2 −G12)∗ + (G12 + P1)σ(P2 −G12)
+ σ(P2 −G12)(G12 + P1)∗ + (P2 −G12)σ(G12 + P1) = 0.

Simplifying further, we obtain

σ(G12)P1 + P1σ(G12) = σ(G12)P2 + P2σ(G12).

Consequently, we have
P1σ(G12)P1 = P2σ(G12)P2 = 0.

Thus, (3) holds. The proof of statement (4) follows a similar approach to that of (3), so we omit it. The
proof is complete. □

Lemma 2.6. For each Gi j inUi j (i, j = 1, 2), the following statements hold:

(1) σ(G11 ◦G12) = σ(G11)G∗12 +G11σ(G12) + σ(G12)G∗11 +G12σ(G11);
(2) σ(G22 ◦G21) = σ(G22)G∗21 +G22σ(G21) + σ(G21)G∗22 +G21σ(G22);
(3) σ(G11 ◦G21) = σ(G11)G∗21 +G11σ(G21) + σ(G21)G∗11 +G21σ(G11);
(4) σ(G22 ◦G12) = σ(G22)G∗12 +G22σ(G12) + σ(G12)G∗22 +G12σ(G22);
(5) σ(G2

11) = σ(G11)G∗11 +G11σ(G11);
(6) σ(G2

22) = σ(G22)G∗22 +G22σ(G22);
(7) σ(G12 ◦G21) = σ(G12)G∗21 +G12σ(G21) + σ(G21)G∗12 +G21σ(G12).

Proof.
(G11 −G11G12)(G12 + P2) = (G12 + P2)(G11 −G11G12) = 0

implies

σ(G11 −G11G12)(G12 + P2)∗ + (G11 −G11G12)σ(G12 + P2)
+ σ(G12 + P2)(G11 −G11G12)∗ + (G12 + P2)σ(G11 −G11G12) = 0.

Simplifying further, we have

σ(G12)G∗11 +G11σ(G12) − σ(G11G12)P2 − P2σ(G11G12) = 0.

Lemma 2.5 (3) implies that

σ(G11G12)P2 + P2σ(G11G12) = σ(G11G12).

Combining the above two equations, we obtain

σ(G11G12) = σ(G12)G∗11 +G11σ(G12).

It follows from Lemma 2.5 (1) that

σ(G11 ◦G12) = σ(G11)G∗12 +G11σ(G12) + σ(G12)G∗11 +G12σ(G11).
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Thus, statement (1) holds. The proof of statement (2) follows a similar approach to that of (1), so we
omit it.

(G11 +G21G11)(G21 − P2) = (G21 − P2)(G11 +G21G11) = 0

implies

σ(G11 +G21G11)(G21 − P2)∗ + (G11 +G21G11)σ(G21 − P2)
+ σ(G21 − P2)(G11 +G21G11)∗ + (G21 − P2)σ(G11 +G21G11) = 0.

In Lemma 2.5, we have

σ(G11)G∗21 +G11σ(G21) +G21σ(G11) + σ(G21)G∗11

= σ(G21G11)P2 + P2σ(G21G11) = σ(G21G11),

which means that

σ(G11 ◦G21) = σ(G11)G∗21 +G11σ(G21) +G21σ(G11) + σ(G21)G∗11. (2.4)

Thus, (3) holds. Similarly, statement (4) is true.
For each G11 ∈ U11, by Eq (2.4), we have

σ(G∗12G
2
11) = σ(G2

11)G12 +G2
11σ(G∗12) + σ(G∗12)(G2

11)∗ +G∗12σ(G2
11),

where σ(G2
11)G12 +G2

11σ(G∗12) ∈ G12. On the other hand,

σ(G∗12G11G11)
= σ(G∗12G11)G∗11 +G∗12G11σ(G11) + σ(G11)(G∗12G11)∗ +G11σ(G∗12G11)
= σ(G11)(G∗12G11)∗ +G11σ(G11)G12 +G2

11σ(G∗12) + σ(G∗12)(G2
11)∗

+G∗12σ(G11)G∗11 +G∗12G11σ(G11),

where σ(G11)(G∗12G11)∗ +G11σ(G11)G12 +G2
11σ(G∗12) ∈ G12. Thus

σ(G2
11)G12 +G2

11σ(G∗12) = σ(G11)(G∗12G11)∗ +G11σ(G11)G12 +G2
11σ(G∗12).

Therefore,
(σ(G2

11) − σ(G11)G∗11 −G11σ(G11))U12 = 0.

By assumption,U12 left separates G11; it follows that

σ(G2
11) − σ(G11)G∗11 −G11σ(G11) = 0.

Thus, (5) holds. Similarly, statement (6) is also true.
Since

0 = (G12G21 +G12 +G21 + P2)(G21G12 −G12 −G21 + P1)
= (G21G12 −G12 −G21 + P1)(G12G21 +G12 +G21 + P2).
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It follows that

0 = σ(G12G21 +G12 +G21 + P2)(G21G12 −G12 −G21 + P1)∗

+ (G12G21 +G12 +G21 + P2)σ(G21G12 −G12 −G21 + P1)
+ σ(G21G12 −G12 −G21 + P1)(G12G21 +G12 +G21 + P2)∗

+ (G21G12 −G12 −G21 + P1)σ(G12G21 +G12 +G21 + P2).

The above equation implies that

2(σ(G12 ◦G21) − σ(G12)G∗21 −G12σ(G21) − σ(G21)G∗12 −G21σ(G12)) = 0.

By assumption, G is 2-torsion-free; it follows that

σ(G12 ◦G21) − σ(G12)G∗21 −G12σ(G21) − σ(G21)G∗12 −G21σ(G12) = 0.

Thus, (7) holds. The proof is complete. □

Using Lemma 2.6, we obtain

Lemma 2.7. σ is a Jordan ∗-derivation.

Proof of Theorem 2.1. Based on the definition of σ, we have

δ(G) = [G, P1δ(P1)P2 + P2δ(P2)P1]∗ − σ(G), G ∈ U.

Since the mapping G 7−→ [G, P1δ(P1)P2 + P2δ(P2)P1]∗ is a Jordan ∗-derivation, by Lemma 2.7, it
follows that δ is a Jordan ∗-derivation. □
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3. M. Brešar, J. Vukman, On some additive mappings in rings with involution, Aeq. Math., 38 (1989),
178–185. https://doi.org/10.1007/BF01840003

4. R. Kadison, J. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, American
Mathematical Society, 1997.

5. M. Muratov, V. Chilin, Topological algebras of measurable and locally measurable operators, J.
Math. Sci., 239 (2019), 654–705. https://doi.org/10.1007/s10958-019-04320-y

6. T. Palmer, Banach algebras and the general theory of ∗-algebras. Vol. II, Cambridge: Cambridge
University Press, 2001.

7. G. K. Pedersen, C∗-algebras and their automorphism groups, London: Academic Press, 2018.
https://doi.org/10.1016/C2016-0-03431-9

8. X. Qi, F. Zhang, Multiplicative Jordan ∗-derivations on rings with involution, Linear Multilinear
A., 64 (2016), 1145–1162. https://doi.org/10.1080/03081087.2015.1073217

9. X. Qi, M. Wang, Local characterization of Jordan ∗-derivations on B(H), Publ. Math. Debrecen,
94 (2019), 421–434.

10. P. Šemrl, Quadratic functionals and Jordan ∗-derivations, Studia Math., 97 (1991), 157–165.
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