In this paper, we show that every continuous linear map between unital $ C^\ast $-algebras is skew Lie triple derivable at the identity is a $ \ast $-derivation and that every continuous linear map between unital $ C^\ast $-algebras which is a skew Lie triple homomorphism at the identity is a Jordan $ \ast $-homomorphism.
Citation: Zhonghua Wang, Xiuhai Fei. Maps on $ C^\ast $-algebras are skew Lie triple derivations or homomorphisms at one point[J]. AIMS Mathematics, 2023, 8(11): 25564-25571. doi: 10.3934/math.20231305
In this paper, we show that every continuous linear map between unital $ C^\ast $-algebras is skew Lie triple derivable at the identity is a $ \ast $-derivation and that every continuous linear map between unital $ C^\ast $-algebras which is a skew Lie triple homomorphism at the identity is a Jordan $ \ast $-homomorphism.
[1] | Z. Bai, S. Du, The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra Appl., 436 (2012), 2701–2708. https://doi.org/10.1016/j.laa.2011.11.009 doi: 10.1016/j.laa.2011.11.009 |
[2] | D. Benkovič, N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl., 437 (2012), 2271–2284. https://doi.org/10.1016/j.laa.2012.06.009 doi: 10.1016/j.laa.2012.06.009 |
[3] | X. Qi, J. Hou, Additive Lie ($\xi$-Lie) derivations and generalized Lie ($\xi$-Lie) derivations on prime algebras, Acta Math. Sin., 29 (2013), 383–392. https://doi.org/10.1007/s10114-012-0502-8 doi: 10.1007/s10114-012-0502-8 |
[4] | B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge, 120 (1996), 455–473. https://doi.org/10.1017/S0305004100075010 doi: 10.1017/S0305004100075010 |
[5] | W. Yu, J. Zhang, Nonlinear $\ast$-Lie derivations on factor von Neumann algebras, Linear Algebra Appl., 437 (2012), 1979–1991. https://doi.org/10.1016/j.laa.2012.05.032 doi: 10.1016/j.laa.2012.05.032 |
[6] | W. Yu, J. Zhang, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015 |
[7] | W. Yu, J. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl., 432 (2010), 2953–2960. https://doi.org/10.1016/j.laa.2009.12.042 doi: 10.1016/j.laa.2009.12.042 |
[8] | J. Alaminos, M. Brešar, J. Extremera, A. Villena, Characterizing Jordan maps on $C^\ast$-algebras through zero products, P. Edinburgh Math. Soc., 53 (2010), 543–555. https://doi.org/10.1017/S0013091509000534 doi: 10.1017/S0013091509000534 |
[9] | D. Liu, J. Zhang, Jordan higher derivable maps on triangular algebras by commutative zero products, Acta Math. Sin., 32 (2016), 258–264. https://doi.org/10.1007/s10114-016-5047-9 doi: 10.1007/s10114-016-5047-9 |
[10] | J. Zhu, C. Xiong, Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 397 (2005), 367–379. https://doi.org/10.1016/j.laa.2004.11.012 doi: 10.1016/j.laa.2004.11.012 |
[11] | B. Fadaee, H. Ghahramani, Linear maps on $C^\ast$-algebras behaving like (anti-) derivations at orthogonal elements, B. Malays. Math. Sci. So., 43 (2020), 2851–2859. https://doi.org/10.1007/s40840-019-00841-6 doi: 10.1007/s40840-019-00841-6 |
[12] | G. An, X. Zhang, J. He, Characterizations of $\ast$-antiderivable mappings on operator algebras, Open Math., 20 (2022), 517–528. https://doi.org/10.1515/math-2022-0047 doi: 10.1515/math-2022-0047 |
[13] | K. Fallahi, H. Ghahramani, Anti-derivable linear maps at zero on standard operator algebras, Acta Math. Hung., 167 (2022), 287–294. https://doi.org/10.1007/s10474-022-01243-0 doi: 10.1007/s10474-022-01243-0 |
[14] | A. Essaleh, A. Peralta, Linear maps on $C^\ast$-algebras which are derivations or triple derivations at a point, Linear Algebra Appl., 538 (2018), 1–21. https://doi.org/10.1016/j.laa.2017.10.009 doi: 10.1016/j.laa.2017.10.009 |
[15] | J. Zhu, C. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 422 (2017), 721–735. https://doi.org/10.1016/j.laa.2006.12.002 doi: 10.1016/j.laa.2006.12.002 |
[16] | J. Zhu, S. Zhao, Characterizations all-derivable points in nest algebras, P. Am. Math. Soc., 141 (2013), 2343–2350. https://doi.org/10.1090/S0002-9939-2013-11511-X doi: 10.1090/S0002-9939-2013-11511-X |
[17] | Z. Bai, S. Du, Maps preserving product $XY-YX^\ast$ on von Neumann algebras, J. Math. Anal. Appl., 386 (2012), 103–109. https://doi.org/10.1016/j.jmaa.2011.07.052 doi: 10.1016/j.jmaa.2011.07.052 |
[18] | J. Cui, C. Li, Maps preserving product $XY-YX^\ast$ on factor von Neumann algebras, Linear Algebra Appl., 431 (2009), 833–842. https://doi.org/10.1016/j.laa.2009.03.036 doi: 10.1016/j.laa.2009.03.036 |
[19] | C. J. Li, F. Y. Lu, X. C. Fang, Nonlinear $\xi$-Jordan $\ast$-derivations on von Neumann algebras, Linear Multilinear A., 62 (2014), 466–473. https://doi.org/10.1080/03081087.2013.780603 doi: 10.1080/03081087.2013.780603 |
[20] | W. Jing, Nonlinear $\ast$-Lie derivations of standard operator algebras, Quaest. Math., 39 (2016), 1037–1046. https://doi.org/10.2989/16073606.2016.1247119 doi: 10.2989/16073606.2016.1247119 |
[21] | C. J. Li, F. F. Zhao, Q. Y. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sin., 32 (2016), 821–830. https://doi.org/10.1007/s10114-016-5690-1 doi: 10.1007/s10114-016-5690-1 |
[22] | G. Pisier, Similarity problems and completely bounded maps, Springer, 1995. https://doi.org/10.1007/978-3-662-21537-1 |