Research article

Maps on $ C^\ast $-algebras are skew Lie triple derivations or homomorphisms at one point

  • Received: 18 July 2023 Revised: 15 August 2023 Accepted: 15 August 2023 Published: 04 September 2023
  • MSC : 46L57, 47C15

  • In this paper, we show that every continuous linear map between unital $ C^\ast $-algebras is skew Lie triple derivable at the identity is a $ \ast $-derivation and that every continuous linear map between unital $ C^\ast $-algebras which is a skew Lie triple homomorphism at the identity is a Jordan $ \ast $-homomorphism.

    Citation: Zhonghua Wang, Xiuhai Fei. Maps on $ C^\ast $-algebras are skew Lie triple derivations or homomorphisms at one point[J]. AIMS Mathematics, 2023, 8(11): 25564-25571. doi: 10.3934/math.20231305

    Related Papers:

  • In this paper, we show that every continuous linear map between unital $ C^\ast $-algebras is skew Lie triple derivable at the identity is a $ \ast $-derivation and that every continuous linear map between unital $ C^\ast $-algebras which is a skew Lie triple homomorphism at the identity is a Jordan $ \ast $-homomorphism.



    加载中


    [1] Z. Bai, S. Du, The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra Appl., 436 (2012), 2701–2708. https://doi.org/10.1016/j.laa.2011.11.009 doi: 10.1016/j.laa.2011.11.009
    [2] D. Benkovič, N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl., 437 (2012), 2271–2284. https://doi.org/10.1016/j.laa.2012.06.009 doi: 10.1016/j.laa.2012.06.009
    [3] X. Qi, J. Hou, Additive Lie ($\xi$-Lie) derivations and generalized Lie ($\xi$-Lie) derivations on prime algebras, Acta Math. Sin., 29 (2013), 383–392. https://doi.org/10.1007/s10114-012-0502-8 doi: 10.1007/s10114-012-0502-8
    [4] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge, 120 (1996), 455–473. https://doi.org/10.1017/S0305004100075010 doi: 10.1017/S0305004100075010
    [5] W. Yu, J. Zhang, Nonlinear $\ast$-Lie derivations on factor von Neumann algebras, Linear Algebra Appl., 437 (2012), 1979–1991. https://doi.org/10.1016/j.laa.2012.05.032 doi: 10.1016/j.laa.2012.05.032
    [6] W. Yu, J. Zhang, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015
    [7] W. Yu, J. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl., 432 (2010), 2953–2960. https://doi.org/10.1016/j.laa.2009.12.042 doi: 10.1016/j.laa.2009.12.042
    [8] J. Alaminos, M. Brešar, J. Extremera, A. Villena, Characterizing Jordan maps on $C^\ast$-algebras through zero products, P. Edinburgh Math. Soc., 53 (2010), 543–555. https://doi.org/10.1017/S0013091509000534 doi: 10.1017/S0013091509000534
    [9] D. Liu, J. Zhang, Jordan higher derivable maps on triangular algebras by commutative zero products, Acta Math. Sin., 32 (2016), 258–264. https://doi.org/10.1007/s10114-016-5047-9 doi: 10.1007/s10114-016-5047-9
    [10] J. Zhu, C. Xiong, Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 397 (2005), 367–379. https://doi.org/10.1016/j.laa.2004.11.012 doi: 10.1016/j.laa.2004.11.012
    [11] B. Fadaee, H. Ghahramani, Linear maps on $C^\ast$-algebras behaving like (anti-) derivations at orthogonal elements, B. Malays. Math. Sci. So., 43 (2020), 2851–2859. https://doi.org/10.1007/s40840-019-00841-6 doi: 10.1007/s40840-019-00841-6
    [12] G. An, X. Zhang, J. He, Characterizations of $\ast$-antiderivable mappings on operator algebras, Open Math., 20 (2022), 517–528. https://doi.org/10.1515/math-2022-0047 doi: 10.1515/math-2022-0047
    [13] K. Fallahi, H. Ghahramani, Anti-derivable linear maps at zero on standard operator algebras, Acta Math. Hung., 167 (2022), 287–294. https://doi.org/10.1007/s10474-022-01243-0 doi: 10.1007/s10474-022-01243-0
    [14] A. Essaleh, A. Peralta, Linear maps on $C^\ast$-algebras which are derivations or triple derivations at a point, Linear Algebra Appl., 538 (2018), 1–21. https://doi.org/10.1016/j.laa.2017.10.009 doi: 10.1016/j.laa.2017.10.009
    [15] J. Zhu, C. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 422 (2017), 721–735. https://doi.org/10.1016/j.laa.2006.12.002 doi: 10.1016/j.laa.2006.12.002
    [16] J. Zhu, S. Zhao, Characterizations all-derivable points in nest algebras, P. Am. Math. Soc., 141 (2013), 2343–2350. https://doi.org/10.1090/S0002-9939-2013-11511-X doi: 10.1090/S0002-9939-2013-11511-X
    [17] Z. Bai, S. Du, Maps preserving product $XY-YX^\ast$ on von Neumann algebras, J. Math. Anal. Appl., 386 (2012), 103–109. https://doi.org/10.1016/j.jmaa.2011.07.052 doi: 10.1016/j.jmaa.2011.07.052
    [18] J. Cui, C. Li, Maps preserving product $XY-YX^\ast$ on factor von Neumann algebras, Linear Algebra Appl., 431 (2009), 833–842. https://doi.org/10.1016/j.laa.2009.03.036 doi: 10.1016/j.laa.2009.03.036
    [19] C. J. Li, F. Y. Lu, X. C. Fang, Nonlinear $\xi$-Jordan $\ast$-derivations on von Neumann algebras, Linear Multilinear A., 62 (2014), 466–473. https://doi.org/10.1080/03081087.2013.780603 doi: 10.1080/03081087.2013.780603
    [20] W. Jing, Nonlinear $\ast$-Lie derivations of standard operator algebras, Quaest. Math., 39 (2016), 1037–1046. https://doi.org/10.2989/16073606.2016.1247119 doi: 10.2989/16073606.2016.1247119
    [21] C. J. Li, F. F. Zhao, Q. Y. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sin., 32 (2016), 821–830. https://doi.org/10.1007/s10114-016-5690-1 doi: 10.1007/s10114-016-5690-1
    [22] G. Pisier, Similarity problems and completely bounded maps, Springer, 1995. https://doi.org/10.1007/978-3-662-21537-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1214) PDF downloads(191) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog