In this paper, we show that every continuous linear map between unital C∗-algebras is skew Lie triple derivable at the identity is a ∗-derivation and that every continuous linear map between unital C∗-algebras which is a skew Lie triple homomorphism at the identity is a Jordan ∗-homomorphism.
Citation: Zhonghua Wang, Xiuhai Fei. Maps on C∗-algebras are skew Lie triple derivations or homomorphisms at one point[J]. AIMS Mathematics, 2023, 8(11): 25564-25571. doi: 10.3934/math.20231305
[1] | Fenhong Li, Liang Kong, Chao Li . Non-global nonlinear mixed skew Jordan Lie triple derivations on prime $ \ast $-rings. AIMS Mathematics, 2025, 10(4): 7795-7812. doi: 10.3934/math.2025357 |
[2] | Liang Kong, Chao Li . Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras. AIMS Mathematics, 2022, 7(8): 13963-13976. doi: 10.3934/math.2022771 |
[3] | Lili Ma, Qiang Li . Cohomology and its applications on multiplicative Hom-$ \delta $-Jordan Lie color triple systems. AIMS Mathematics, 2024, 9(9): 25936-25955. doi: 10.3934/math.20241267 |
[4] | Xiuhai Fei, Zhonghua Wang, Cuixian Lu, Haifang Zhang . Higher Jordan triple derivations on $ * $-type trivial extension algebras. AIMS Mathematics, 2024, 9(3): 6933-6950. doi: 10.3934/math.2024338 |
[5] | Ai-qun Ma, Lin Chen, Zijie Qin . Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras. AIMS Mathematics, 2023, 8(3): 6026-6035. doi: 10.3934/math.2023304 |
[6] | Zhongxian Huang . Biderivations of the extended Schrödinger-Virasoro Lie algebra. AIMS Mathematics, 2023, 8(12): 28808-28817. doi: 10.3934/math.20231476 |
[7] | Wen Teng, Fengshan Long, Yu Zhang . Cohomologies of modified $ \lambda $-differential Lie triple systems and applications. AIMS Mathematics, 2023, 8(10): 25079-25096. doi: 10.3934/math.20231280 |
[8] | Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie $ n $-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424 |
[9] | Guangyu An, Xueli Zhang, Jun He, Wenhua Qian . Characterizations of local Lie derivations on von Neumann algebras. AIMS Mathematics, 2022, 7(5): 7519-7527. doi: 10.3934/math.2022422 |
[10] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson $ n $-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
In this paper, we show that every continuous linear map between unital C∗-algebras is skew Lie triple derivable at the identity is a ∗-derivation and that every continuous linear map between unital C∗-algebras which is a skew Lie triple homomorphism at the identity is a Jordan ∗-homomorphism.
Homomorphisms and derivations are the most intensively studied classes of operators on Banach algebras or other algebras. Let A be an algebra and M be an A-bimodule, d:A→M be a linear map. If for any x,y∈A,
d(xy)=d(x)y+xd(y), | (1.1) |
then d is called a derivation. If for any x∈A, d(x2)=d(x)x+xd(x), then d is called a Jordan derivation. Additionally, if for any x,y∈A, d([x,y])=[d(x),y]+[x,d(y)], where [x,y]=xy−yx is the Lie product of x and y, then d is called a Lie derivation. Clearly, a derivation is a Jordan derivation and is a Lie derivation. However, a Jordan or Lie derivation need not certainly be a derivation. The standard problem is to find conditions implying that a Jordan or a Lie derivation is actually a derivation. Along this line, there are fruitful results. See for example [1,2,3,4,5,6,7].
Recently, many studies are concerned with finding the standard form of linear maps satisfying the derivation type equation for special pairs of x and y. For example, [8,9,10,11,12,13] studied linear maps which satisfy the derivation type equation for any x,y with xy=0 and [14,15,16] studied linear maps which satisfy the derivation type equation for any x,y with xy=1.
A map φ from a ∗-algebra A into a bimodule M over A is called a skew Lie derivation if
φ([a,b]∗)=[φ(a),b]∗+[a,φ(b)]∗ | (1.2) |
for all a,b∈A, is called skew Lie derivable at the point z∈A if (1.2) holds for all a,b∈A with ab=z, where [a,b]∗=ab−ba∗. A linear map φ from A into another C∗-algebra B is called a skew Lie homomorphism at z if φ([a,b]∗)=[φ(a),φ(b)]∗ for all a,b∈A with ab=z. If φ is a skew Lie homomorphism at all elements of A, then it is called a skew Lie homomorphism on A. For their special importance, these maps attracted many authors' attention in the past decades (see [17,18,19,20]).
In [21], Li, Zhao and Chen introduced the concept of nonlinear skew Lie triple derivations and showed every nonlinear skew Lie triple derivation between factors is an additive ∗-derivation.
Difinition 1.1. An additive map φ:A→M is called a nonlinear skew Lie triple derivation if
φ([[a,b]∗,c]∗)=[[φ(a),b]∗,c]∗+[[a,φ(b)]∗,c]∗+[[a,b]∗,φ(c)]∗ | (1.3) |
for all a,b,c in A, and is called skew Lie triple derivable at the point z∈A if Eq (1.3) holds for all a,b,c∈A with ab=z and c=a.
For unital C∗-algebras A and B, in the present paper, we study two types of continuous maps. One of them is the type of continuous linear maps from A into B, which are skew Lie triple derivable at the identity. Another is the type of continuous linear maps from A into B, which are skew Lie triple homomorphisms at the identity (see Section 3 for more details).
In this section, we will study linear maps between unital C∗-algebras which are skew Lie triple derivable at the identity. Throughout this section, B will be a unital C∗-algebra, A will be a C∗-subalgebra of B and 1A=1B, Asa will be the set of all self-adjoint elements in A, φ:A→B will be a linear map. First, let us explore the behavior of the identity 1 under φ when φ is skew Lie triple derivable at the identity.
Lemma 2.1. If φ:A→B is skew Lie triple derivable at the identity, then φ(1)=φ(1)∗.
Proof. Since 1⋅1=1 and [[1,1]∗,1]∗=0, we have
0=[[φ(1),1]∗,1]∗+[[1,φ(1)]∗,1]∗+[[1,1]∗,φ(1)]∗=φ(1)−φ(1)∗−(φ(1)−φ(1)∗)∗, |
from which it follows that φ(1)=φ(1)∗.
Theorem 2.1. Let φ:A→B be a continuous linear map which is skew Lie triple derivable at the identity, then it is a ∗-derivation.
Proof. (1) First, we show φ is selfadjoint, i.e., φ(x∗)=φ(x)∗ for all x∈A. Put any a∈Asa, eita is a unitary for each t∈R and [[eita,e−ita]∗,eita]∗=e3ita−e−ita. Thus we deduce that
φ(e3ita)−φ(e−ita)=[[φ(eita),e−ita]∗,eita]∗+[[eita,φ(e−ita)]∗,eita]∗+[[eita,e−ita]∗,φ(eita)]=−e−itaφ(eita)∗eita+eitaφ(eita)eita+eitaφ(e−ita)eita−eitaφ(eita)∗e−ita−e−2itaφ(eita)+φ(eita)e2ita+φ(eita)−φ(e−ita)+e2itaφ(e−ita)∗−e2itaφ(eita)∗. | (2.1) |
By taking derivative of Eq (2.1) at t, we obtain that
φ(3ae3ita)+φ(ae−ita)=ae−itaφ(eita)∗eita+e−itaφ(aeita)∗eita−e−itaφ(eita)∗aeita+aeitaφ(eita)eita+eitaφ(aeita)eita+eitaφ(eita)aeita+aeitaφ(e−ita)eita−eitaφ(ae−ita)eita+eitaφ(e−ita)aeita−aeitaφ(e−ita)∗e−ita−eitaφ(ae−ita)∗e−ita+eitaφ(e−ita)∗ae−ita+2ae−2itaφ(eita)−e−2itaφ(aeita)+φ(aeita)e2ita+2φ(eita)ae2ita+φ(aeita)+φ(ae−ita)+2ae2itaφ(e−ita)∗+e2itaφ(ae−ita)∗−2ae2itaφ(eita)∗+e2itaφ(aeita)∗. | (2.2) |
Put t=0 and a=1 in Eq (2.2), then we get φ(1)=0. Again put t=0 in Eq (2.2), noted that φ(1)=0, we get
φ(a)=φ(a)∗,a∈Asa. |
For each x∈A, there are a,b∈Asa such that x=a+ib. Hence, φ(x∗)=φ(a)−iφ(b)=φ(x)∗.
(2) Now we show φ is a ∗-derivation. Taking derivative of Eq (2.2) in t=0 yields that
φ(a2)=φ(a)a+aφ(a). | (2.3) |
Put any a,b∈Asa, then
φ((a+b)2)=φ(a+b)(a+b)+(a+b)φ(a+b). |
So
φ(ab+ba)=φ(a)b+aφ(b)+φ(b)a+bφ(a). | (2.4) |
For any x∈A, there are a,b∈A such that x=a+ib. Hence,
φ(x2)=φ((a2−b2)+i(ab+ba))=(φ(a)a+aφ(a)−φ(b)b−bφ(b))+i(φ(a)b+aφ(b)+φ(b)a+bφ(a))=φ(x)x+xφ(x). |
Therefore, φ is a Jordan derivation. By [4, Theorem 6.3], φ is a ∗-derivation.
Let A,B be unital C∗-algebras, φ:A→B a linear map. If
φ([[x,y]∗,x]∗)=[[φ(x),φ(y)]∗,φ(x)]∗ |
for all x,y∈A with xy=1, then φ is called a skew Lie triple homomorphism at the identity. Recall that a Jordan ∗-homomorphism between C∗-algebras is a linear map φ such that φ(x2)=φ(x)2 and φ(x∗)=φ(x)∗. In this section we prove that every linear continuous skew Lie triple homomorphism at the identity is a Jordan ∗-homomorphism. Throughout this section A and B will be unital C∗-algebras.
Lemma 3.1. Let φ:A→B be a linear continuous skew Lie triple homomorphism at the identity. Then φ(1) is a partial isometry.
Proof. Since the product of 1 and itself is 1 and [[1,1]∗,1]∗=0, then
0=[[φ(1),φ(1)]∗,φ(1)]∗=φ(1)3−φ(1)φ(1)∗φ(1)−φ(1)φ(1)∗φ(1)∗+φ(1)φ(1)φ(1)∗. |
Hence,
φ(1)3−φ(1)φ(1)∗φ(1)∗=φ(1)φ(1)∗φ(1)−φ(1)φ(1)φ(1)∗. | (3.1) |
For any a∈Asa, eita is a unitary for each real number t and [[eita,e−ita]∗,eita]∗=e3ita−e−ita. Thus we deduce that
φ(e3ita)−φ(e−ita)=[[φ(eita),φ(e−ita)]∗,φ(eita)]∗=φ(eita)φ(e−ita)φ(eita)−φ(e−ita)φ(eita)∗φ(eita)−φ(eita)φ(e−ita)∗φ(eita)∗+φ(eita)φ(eita)φ(e−ita)∗. |
Take derivative at t, then
3φ(ae3ita)+φ(ae−ita)=φ(aeita)φ(e−ita)φ(eita)−φ(eita)φ(ae−ita)φ(eita)+φ(eita)φ(e−ita)φ(aeita)+φ(ae−ita)φ(eita)∗φ(eita)+φ(e−ita)φ(aeita)∗φ(eita)−φ(e−ita)φ(eita)∗φ(aeita)−φ(aeita)φ(e−ita)∗φ(eita)∗−φ(eita)φ(ae−ita)∗φ(eita)∗+φ(eita)φ(e−ita)∗φ(aeita)∗+φ(aeita)φ(eita)φ(e−ita)∗+φ(eita)φ(aeita)φ(e−ita)∗+φ(eita)φ(eita)φ(ae−ita)∗. | (3.2) |
Put t=0 and a=1, then
4φ(1)=φ(1)3+φ(1)φ(1)∗φ(1)−φ(1)φ(1)∗φ(1)∗+3φ(1)φ(1)φ(1)∗. | (3.3) |
By taking derivative of Eq (3.2) at t=0, we get
−8φ(a2)=−φ(a2)φ(1)2+φ(1)φ(a2)∗φ(1)+φ(1)φ(1)∗φ(a2)∗−φ(1)φ(a2)φ(1)∗−φ(1)φ(a2)φ(1)+φ(a2)φ(1)∗φ(1)+φ(1)φ(a2)∗φ(1)∗−φ(1)2φ(a2)∗−φ(1)2φ(a2)+φ(1)φ(1)∗φ(a2)+φ(a2)[φ(1)∗]2−φ(a2)φ(1)φ(1)∗+2[φ(a)2φ(1)+φ(a)φ(a)∗φ(1)−φ(1)[φ(a)∗]2−φ(1)φ(a)φ(a)∗]−2[φ(a)φ(1)φ(a)+φ(1)φ(a)∗φ(a)+φ(a)φ(1)∗φ(a)∗+φ(a)2φ(1)∗]+2[φ(1)φ(a)2−φ(a)φ(1)∗φ(a)+φ(a)φ(a)∗φ(1)∗−φ(a)φ(1)φ(a)∗]. | (3.4) |
By putting a=1 in Eq (3.4), we get
8φ(1)=φ(1)3−φ(1)φ(1)∗φ(1)−φ(1)φ(1)∗φ(1)∗+9φ(1)φ(1)φ(1)∗. | (3.5) |
Multiplying Eq (3.3) by 2 and subtracting Eq (3.5) yield that
0=φ(1)3+3φ(1)φ(1)∗φ(1)−φ(1)(φ(1)∗)2−3φ(1)2φ(1)∗, |
which implies
φ(1)3−φ(1)[φ(1)∗]2=3φ(1)2φ(1)∗−3φ(1)φ(1)∗φ(1). | (3.6) |
It follows from Eqs (3.1) and (3.6) that
φ(1)3=φ(1)[φ(1)∗]2,φ(1)2φ(1)∗=φ(1)φ(1)∗φ(1). |
Now combine the above two equations and Eq (3.3), then we get φ(1)=φ(1)φ(1)∗φ(1). Hence, φ(1) is a partial isometry.
If furthermore φ(1)=1, then we can show the following main theorem.
Theorem 3.2. Let φ:A→B be a linear continuous skew Lie triple homomorphism at the identity. If φ(1)=1, then φ is a Jordan ∗-homomorphism.
Proof. (1) Since φ(1)=1, by putting t=0 in Eq (3.2), we obtain that
3φ(a)+φ(a)=φ(a)−φ(a)+φ(a)+φ(a)+φ(a)∗−φ(a)−φ(a)−φ(a)∗+φ(a)∗+φ(a)+φ(a)+φ(a)∗, |
i.e., φ(a)=φ(a)∗. As in the proof of Theorem 2.2, we can see that φ(x∗)=φ(x)∗ for all x∈A.
(2) Since φ(1)=1 and φ(a)=φ(a)∗, it follows from Eq (3.4) that
φ(a2)=φ(a)2,a∈Asa. |
Replacing a by a+b for a,b∈Asa, we get
φ(ab+ba)=φ(a)φ(b)+φ(b)φ(a),a,b∈Asa. |
Now for each x∈A, there are a,b∈Asa such that x=a+ib. So
φ(x2)=φ(a2−b2+i(ab+ba))=φ(a)2−φ(b)2+i(φ(a)φ(b)+φ(b)φ(a))=φ(x)2, |
and so φ is a Jordan ∗-homomorphism.
For any partial isometry e in a C∗-algebra A, e∗e and ee∗ are projections. A can be decomposed as a direct sum of the form
A=ee∗Ae∗e⊕(1−ee∗)Ae∗e⊕ee∗A(1−e∗e)⊕(1−ee∗)A(1−e∗e). |
From Lemma 3.1, it follows that φ(1) is a partial isometry. Let φ(1)φ(1)∗=p and φ(1)∗φ(1)=q, then we can decompose B as
B=pBq⊕p⊥Bq⊕pBq⊥⊕p⊥Bq⊥, |
where p⊥=1−p and q⊥=1−q. Let B0(φ(1))=pBq,B2(φ(1))=p⊥Bq⊥, we can show the following corollary.
Corollary 3.1. Let φ:A→B be a linear continuous skew Lie triple homomorphism at the identity. If φ(1)∗=φ(1), then φ(a)=φ(a)∗ for all a∈Asa and φ(A)⊂B0(φ(1)).
Proof. Since φ(1)∗=φ(1), p=q=φ(1)2. By putting t=0 in Eq (3.2), we obtain that
4φ(a)=φ(a)φ(1)φ(1)−φ(1)φ(a)φ(1)+φ(1)φ(1)φ(a)+φ(a)φ(1)∗φ(1)+φ(1)φ(a)∗φ(1)−φ(1)φ(1)∗φ(a)−φ(a)φ(1)∗φ(1)∗−φ(1)φ(a)∗φ(1)∗+φ(1)φ(1)∗φ(a)∗+φ(a)φ(1)φ(1)∗+φ(1)φ(a)φ(1)∗+φ(1)φ(1)φ(a)∗=2φ(a)p+2pφ(a)∗. | (3.7) |
Hence, φ(a)=φ(a)∗ for all a∈Asa. It follows from Eq (3.7) that
φ(a)=12φ(a)p+12pφ(a). |
So p⊥φ(a)p⊥=pφ(a)p⊥=p⊥φ(a)p=0 and so φ(a)=pφ(a)p∈B0(φ(1)). Therefore, φ(A)⊂B0(φ(1)).
Corollary 3.2. Let φ:A→B be a linear continuous skew Lie triple homomorphism at the identity. Then φ is a Jordan ∗-homomorphism if and only if φ(1) is a projection.
Proof. If φ is a Jordan ∗-homomorphism, then φ(1)=φ(12)=φ(1)2 and φ(1)∗=φ(1). So φ(1) is a projection.
Conversely, if φ(1) is a projection, then φ(1)=p is the identity of the subalgebra B0(φ(1)). By Corollary 3.1, we can regard φ as a map from A into B0(φ(1)). Hence, by Theorem 3.2, φ is a Jordan ∗-homomorphism.
It is not hard to see that the continuity of the linear map φ is very important in this paper. The automatical continuity of some maps on operator algebra is an important problem (see for example [22]). Let φ be a linear map which is skew Lie triple derivable at the identity or is a skew Lie triple homomorphism at the identity. It is natural to ask whether φ is automatically continuous.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by the National Natural Science Foundation of China (No.11901451), Talent Project Foundation of Yunnan Provincial Science and Technology Department (No.202105AC160089), and Natural Science Foundation of Yunnan Province (No.202101BA070001198)
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
Z. Bai, S. Du, The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra Appl., 436 (2012), 2701–2708. https://doi.org/10.1016/j.laa.2011.11.009 doi: 10.1016/j.laa.2011.11.009
![]() |
[2] |
D. Benkovič, N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl., 437 (2012), 2271–2284. https://doi.org/10.1016/j.laa.2012.06.009 doi: 10.1016/j.laa.2012.06.009
![]() |
[3] |
X. Qi, J. Hou, Additive Lie (ξ-Lie) derivations and generalized Lie (ξ-Lie) derivations on prime algebras, Acta Math. Sin., 29 (2013), 383–392. https://doi.org/10.1007/s10114-012-0502-8 doi: 10.1007/s10114-012-0502-8
![]() |
[4] |
B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge, 120 (1996), 455–473. https://doi.org/10.1017/S0305004100075010 doi: 10.1017/S0305004100075010
![]() |
[5] |
W. Yu, J. Zhang, Nonlinear ∗-Lie derivations on factor von Neumann algebras, Linear Algebra Appl., 437 (2012), 1979–1991. https://doi.org/10.1016/j.laa.2012.05.032 doi: 10.1016/j.laa.2012.05.032
![]() |
[6] |
W. Yu, J. Zhang, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015
![]() |
[7] |
W. Yu, J. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl., 432 (2010), 2953–2960. https://doi.org/10.1016/j.laa.2009.12.042 doi: 10.1016/j.laa.2009.12.042
![]() |
[8] |
J. Alaminos, M. Brešar, J. Extremera, A. Villena, Characterizing Jordan maps on C∗-algebras through zero products, P. Edinburgh Math. Soc., 53 (2010), 543–555. https://doi.org/10.1017/S0013091509000534 doi: 10.1017/S0013091509000534
![]() |
[9] |
D. Liu, J. Zhang, Jordan higher derivable maps on triangular algebras by commutative zero products, Acta Math. Sin., 32 (2016), 258–264. https://doi.org/10.1007/s10114-016-5047-9 doi: 10.1007/s10114-016-5047-9
![]() |
[10] |
J. Zhu, C. Xiong, Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 397 (2005), 367–379. https://doi.org/10.1016/j.laa.2004.11.012 doi: 10.1016/j.laa.2004.11.012
![]() |
[11] |
B. Fadaee, H. Ghahramani, Linear maps on C∗-algebras behaving like (anti-) derivations at orthogonal elements, B. Malays. Math. Sci. So., 43 (2020), 2851–2859. https://doi.org/10.1007/s40840-019-00841-6 doi: 10.1007/s40840-019-00841-6
![]() |
[12] |
G. An, X. Zhang, J. He, Characterizations of ∗-antiderivable mappings on operator algebras, Open Math., 20 (2022), 517–528. https://doi.org/10.1515/math-2022-0047 doi: 10.1515/math-2022-0047
![]() |
[13] |
K. Fallahi, H. Ghahramani, Anti-derivable linear maps at zero on standard operator algebras, Acta Math. Hung., 167 (2022), 287–294. https://doi.org/10.1007/s10474-022-01243-0 doi: 10.1007/s10474-022-01243-0
![]() |
[14] |
A. Essaleh, A. Peralta, Linear maps on C∗-algebras which are derivations or triple derivations at a point, Linear Algebra Appl., 538 (2018), 1–21. https://doi.org/10.1016/j.laa.2017.10.009 doi: 10.1016/j.laa.2017.10.009
![]() |
[15] |
J. Zhu, C. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 422 (2017), 721–735. https://doi.org/10.1016/j.laa.2006.12.002 doi: 10.1016/j.laa.2006.12.002
![]() |
[16] |
J. Zhu, S. Zhao, Characterizations all-derivable points in nest algebras, P. Am. Math. Soc., 141 (2013), 2343–2350. https://doi.org/10.1090/S0002-9939-2013-11511-X doi: 10.1090/S0002-9939-2013-11511-X
![]() |
[17] |
Z. Bai, S. Du, Maps preserving product XY−YX∗ on von Neumann algebras, J. Math. Anal. Appl., 386 (2012), 103–109. https://doi.org/10.1016/j.jmaa.2011.07.052 doi: 10.1016/j.jmaa.2011.07.052
![]() |
[18] |
J. Cui, C. Li, Maps preserving product XY−YX∗ on factor von Neumann algebras, Linear Algebra Appl., 431 (2009), 833–842. https://doi.org/10.1016/j.laa.2009.03.036 doi: 10.1016/j.laa.2009.03.036
![]() |
[19] |
C. J. Li, F. Y. Lu, X. C. Fang, Nonlinear ξ-Jordan ∗-derivations on von Neumann algebras, Linear Multilinear A., 62 (2014), 466–473. https://doi.org/10.1080/03081087.2013.780603 doi: 10.1080/03081087.2013.780603
![]() |
[20] |
W. Jing, Nonlinear ∗-Lie derivations of standard operator algebras, Quaest. Math., 39 (2016), 1037–1046. https://doi.org/10.2989/16073606.2016.1247119 doi: 10.2989/16073606.2016.1247119
![]() |
[21] |
C. J. Li, F. F. Zhao, Q. Y. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sin., 32 (2016), 821–830. https://doi.org/10.1007/s10114-016-5690-1 doi: 10.1007/s10114-016-5690-1
![]() |
[22] | G. Pisier, Similarity problems and completely bounded maps, Springer, 1995. https://doi.org/10.1007/978-3-662-21537-1 |