Research article

Generalized Lie $ n $-derivations on generalized matrix algebras

  • Received: 22 July 2024 Revised: 08 October 2024 Accepted: 11 October 2024 Published: 17 October 2024
  • MSC : 47B47, 47C15

  • Let $ \mathcal{G} $ be a generalized matrix algebra. We show that under certain conditions, each generalized Lie $ n $-derivation associated with a linear map on $ \mathcal{G} $ is a sum of a generalized derivation and a central map vanishing on all $ (n-1) $-th commutators and is also a sum of a generalized inner derivation and a Lie $ n $-derivation. As an application, generalized Lie $ n $-derivations on von Neumann algebras are characterized.

    Citation: Shan Li, Kaijia Luo, Jiankui Li. Generalized Lie $ n $-derivations on generalized matrix algebras[J]. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424

    Related Papers:

  • Let $ \mathcal{G} $ be a generalized matrix algebra. We show that under certain conditions, each generalized Lie $ n $-derivation associated with a linear map on $ \mathcal{G} $ is a sum of a generalized derivation and a central map vanishing on all $ (n-1) $-th commutators and is also a sum of a generalized inner derivation and a Lie $ n $-derivation. As an application, generalized Lie $ n $-derivations on von Neumann algebras are characterized.



    加载中


    [1] I. Abdullaev, $n$-Lie derivations on von Neumann algebras, Uzbek. Mat. Zh., 5–6 (1992), 3–9.
    [2] A. Adrabi, D. Bennis, B. Fahid, Lie generalized derivations on bound quiver algebras, Comm. Algebra, 49 (2021), 1950–1965. https://doi.org/10.1080/00927872.2020.1859524 doi: 10.1080/00927872.2020.1859524
    [3] M. Ashraf, M. Akhtar, M. Ansari, Generalized Lie (Jordan) triple derivations on arbitrary triangular algebras, Bull. Malays. Math. Sci. Soc., 44 (2021), 3767–3776. https://doi.org/10.1007/s40840-021-01148-1 doi: 10.1007/s40840-021-01148-1
    [4] D. Benkovič, D. Eremita, Multiplicative Lie $n$-derivations of triangular rings, Linear Algebra Appl., 436 (2012), 4223–4240. https://doi.org/10.1016/j.laa.2012.01.022 doi: 10.1016/j.laa.2012.01.022
    [5] D. Benkovič, Generalized Lie derivations of unital algebras with idempotents, Oper. Matrices, 12 (2018), 357–367. https://doi.org/10.7153/oam-2018-12-23 doi: 10.7153/oam-2018-12-23
    [6] D. Benkovič, Generalized Lie $n$-derivations of triangular algebras, Comm. Algebra, 47 (2019), 5294–5302. https://doi.org/10.1080/00927872.2019.1617875 doi: 10.1080/00927872.2019.1617875
    [7] D. Bennis, V. Ebrahimi, R. Hamid, B. Fahid, M. Bahmani, On generalized Lie derivations, Afr. Mat., 31 (2020), 423–435.
    [8] Y. Ding, J. Li, Characterizations of Lie $n$-derivations of unital algebras with nontrivial idempotents, Filomat, 32 (2018), 4731–4754. https://doi.org/10.2298/fil1813731d doi: 10.2298/fil1813731d
    [9] Y. Du, Y. Wang, Lie derivations of generalized matrix algebras, Linear Algebra Appl., 437 (2012), 2719–2726. https://doi.org/10.1016/j.laa.2012.06.013 doi: 10.1016/j.laa.2012.06.013
    [10] X. Feng, X. Qi, Nonlinear generalized Lie $n$-derivations on von {N}eumann algebras, Bull. Iranian Math. Soc., 45 (2019), 569–581. https://doi.org/10.1007/s41980-018-0149-z doi: 10.1007/s41980-018-0149-z
    [11] A. Jabee, Multiplicative generalized Lie triple derivations on generalized matrix algebras, Quaest. Math., 44 (2021), 243–257. https://doi.org/10.2989/16073606.2019.1683635 doi: 10.2989/16073606.2019.1683635
    [12] R. Kadison, J. Ringrose, Fundamentals of the theory of operator algebras, Vol. II: Advanced theory, 1986.
    [13] W. Lin, Nonlinear generalized Lie $n$-derivations on triangular algebras, Comm. Algebra, 46 (2018), 2368–2383. https://doi.org/10.1080/00927872.2017.1383999 doi: 10.1080/00927872.2017.1383999
    [14] L. Liu, On local Lie derivations of generalized matrix algebras, Banach J. Math. Anal., 14 (2020), 249–268. https://doi.org/10.1007/s43037-019-00018-0 doi: 10.1007/s43037-019-00018-0
    [15] C. Miers, Lie homomorphisms of operator algebras, Pacific J. Math., 38 (1971), 717–735. https://doi.org/10.2140/pjm.1971.38.717 doi: 10.2140/pjm.1971.38.717
    [16] C. Miers, Lie triple derivations of von {N}eumann algebras, Proc. Amer. Math. Soc., 71 (1978), 57–61. https://doi.org/10.2307/2042216 doi: 10.2307/2042216
    [17] Y. Wang, Y. Wang, Multiplicative Lie $n$-derivations of generalized matrix algebras, Linear Algebra Appl., 438 (2013), 2599–2616. https://doi.org/10.1016/j.laa.2012.10.052 doi: 10.1016/j.laa.2012.10.052
    [18] H. Yuan, Z. Liu, Lie $n$-centralizers of generalized matrix algebras, AIMS Math., 8 (2023), 14609–14622. https://doi.org/10.3934/math.2023747 doi: 10.3934/math.2023747
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(103) PDF downloads(16) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog