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1. Introduction

Let A be a unital algebra over a unital commutative ring R with the center Z(A). Recall that a
linear map G onA is called a derivation if G(xy) = G(x)y + xG(y) for each x, y ∈ A, G is a generalized
derivation if there exists a linear map D onA such that G(xy) = G(x)y+xD(y) = D(x)y+xG(y) for each
x, y ∈ A. Let [x, y] = xy−yx denote the commutator or the Lie product of x, y ∈ A. Define the sequence
of polynomials: p1(x) = x and pn(x1, . . . , xn) = [pn−1(x1, . . . , xn−1), xn] for each x1, . . . , xn ∈ A. The
polynomial pn(x1, . . . , xn) is called the (n − 1)-th commutator, where n ≥ 2 is an integer. A linear map
D onA is a Lie n-derivation if

D(pn(x1, . . . , xn)) =

n∑
i=1

pn(x1, . . . , xi−1,D(xi), xi+1, . . . , xn)

for each x1, . . . , xn ∈ A. In particular, every Lie 2-derivation (resp. Lie 3-derivation) is called a Lie
derivation (resp. Lie triple derivation). During the past two decades, many scholars have studied the
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structure of Lie n-derivations and achieved remarkable results. In this paper, we restrict our attention
to the generalized form of Lie n-derivations. A linear map G on A is a generalized Lie n-derivation
associated with L if

G(pn(x1, . . . , xn)) = pn(G(x1), . . . , xn) +

n∑
i=2

pn(x1, . . . , L(xi), . . . , xn) (1.1)

for each x1, . . . , xn ∈ A, where L is a linear map on A. In particular, if n = 2 (resp. n = 3), G is the
generalized Lie derivation (resp. generalized Lie triple derivation) associated with L; if G = L, G is
the classical Lie n-derivation; and if L = 0, G is the Lie n-centralizer.

Bennis et al. [7] studied another generalized version of Lie derivations, which is defined as follows:
A linear map G onA is a Lie generalized derivation if there exists a linear map D onA such that

G([x, y]) = G(x)y −G(y)x + xD(y) − yD(x)

for each x, y ∈ A. However, these two generalized versions of Lie derivations are not equivalent, and
here we focus on the first one.

A generalized Lie n-derivation G on A is proper if G = d + τ, where d : A → A is a generalized
derivation and τ : A → Z(A) is a linear map vanishing on all (n − 1)-th commutators of A. In
the recent past, the evaluation of conditions under which a generalized Lie n-derivation is proper has
attracted the attention of many researchers. Lin [13] proved that each generalized Lie n-derivation on
triangular algebras is proper under suitable assumptions. Jabeen [11] provided some conditions under
which each generalized Lie n-derivation on generalized matrix algebras is proper. Feng and Qi [10]
showed that each generalized Lie n-derivation on von Neumann algebras without central summands of
type I1 is proper. Benkovič [5] stated that under certain assumptions every generalized Lie n-derivation
G on unital algebrasA with a nontrivial idempotent is of the form

G(x) = λx + δ(x), (1.2)

for each x ∈ A, where λ ∈ Z(A) and δ is a Lie n-derivation onA.
However, the precondition of the afore-mentioned works is that L in (1.1) is an associated Lie n-

derivation. In this paper, we relax this assumption by considering L to be merely a linear map. Note
that for any linear map L : A → Z(A), if G = 0, then L satisfies (1.1), which does not necessarily
imply that L is a Lie n-derivation [6]. Consequently, the task of characterizing (1.1) when L is a linear
map presents a complex and meaningful challenge that calls for new methodologies to address.

Meanwhile, Benkovič [6] also pointed out that every generalized Lie n-derivation G associated
with a linear map L on triangular algebras is of the form (1.2) under some conditions. Motivated by
Benkovič’s work, we aim to describe generalized Lie n-derivations on generalized matrix algebras
when L is a linear map by using a method different from [6].

2. Main theorem

As preliminaries, we introduce some notations about generalized matrix algebras that play an
important role in the proof of our main result.

Let A and B be two unital algebras over a unital commutative ring R with units e and f , respectively.
A Morita context consists of A, B, two bimodules (A, B)-bimodule M and (B, A)-bimodule N, and two
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bimodule homomorphisms called the bilinear pairings ΦMN : M ⊗B N → A and ΨNM : N ⊗A M → B
satisfying the following commutative diagrams:

M ⊗B N ⊗A M
ΦMN ⊗ IM

A ⊗A M

IM ⊗ ΨNM

M ⊗B B � M

�

and N ⊗A M ⊗B N
ΨNM ⊗ IN

B ⊗B M

IN ⊗ ΦMN

N ⊗A A � N

�

If (A, B,M,N,ΦMN ,ΨNM) is a Morita context, then G = G(A,M,N, B) =

(
A M
N B

)
=

{
x =

(
a m
t b

)
|

a ∈ A,m ∈ M, t ∈ N, b ∈ B
}

forms an algebra under matrix-like addition and multiplication, where at
least one of the two bimodules M and N is distinct from zero. Such an algebra is called a generalized
matrix algebra. All associative algebras with nontrivial idempotents are isomorphic to generalized
matrix algebras. In particular, when M = 0 or N = 0, G is the triangular algebra. We further assume
that M is a faithful (A, B)-bimodule, and N is a faithful (B, A)-bimodule.

The center of G is

Z(G) =
{ (a 0

0 b

)
∈

(
A 0
0 B

)
| am = mb, na = bn for each m ∈ M, n ∈ N

}
.

Define two projections πA : G → A and πB : G :→ B by πA(x) = a and πB(x) = b, where x =

(
a m
t b

)
∈(

A M
N B

)
= G. Moreover, πA(Z(G)) ⊆ Z(A) and πB(Z(G)) ⊆ Z(B). It follows from [14, Claim 1] that

there exists a unique algebra isomorphism ϕ from πA(Z(G)) to πB(Z(G)) such that am = mϕ(a) and
ϕ(a)n = na for each a ∈ Z(A),m ∈ M, n ∈ N. Hence, for each m ∈ M, if am = mb, then a + b ∈ Z(G),
where a ∈ A and b ∈ B. For more information about generalized matrix algebras, see [18].

For each x ∈ G, we consider the following condition:

[x,G] ⊆ Z(G)⇒ x ∈ Z(G). (2.1)

Some specific examples of unital algebras satisfying the condition (2.1) are commutative algebras,
triangular algebras, matrix algebras, and prime algebras.

We are in a position to give the following theorem.

Theorem 2.1. Let G = G(A,M,N, B) be a unital (n−1)-torsion-free generalized matrix algebra, where
n ≥ 3 is an integer. Assume that

(i) Z(A) = πA(Z(G)) and Z(B) = πB(Z(G));
(ii) A or B does not contain nonzero central ideals;

(iii) A or B satisfies the condition (2.1);
(iv) For each m ∈ M and t ∈ N, the condition mN = 0 = Nm implies m = 0, Mt = 0 = tM implies

t = 0.

Suppose that G and L are linear maps on G. Then G and L satisfy

G(pn(x1, x2, . . . , xn)) = pn(G(x1), x2, . . . , xn) +

n∑
i=2

pn(x1, . . . , L(xi), . . . , xn)
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for each x1, x2, . . . , xn ∈ G if and only if G = D + τ and L = H + γ, where D is a generalized derivation
associated with a derivation H, τ and γ are linear maps from G into Z(G), and τ vanishes on each
(n − 1)-th commutator.

The sufficiency is obvious, the necessity can be realized via a series of lemmas. By direct
calculation, we have the following lemma.

Lemma 2.2. For each x ∈ G, we have

pn(x, e, . . . , e) = (−1)n−1ex f + f xe, (2.2)
pn(x, f , . . . , f ) = (−1)n−1 f xe + ex f .

Lemma 2.3.
(
eL(e)e 0

0 f L(e) f

)
∈ Z(G) and

(
eL( f )e 0

0 f L( f ) f

)
∈ Z(G).

Proof. Let m ∈ M. Applying (2.2) yields

G((−1)n−1m) = G(pn(m, e, . . . , e))

= pn(G(m), e, . . . , e) +

n∑
i=2

pn(m, e, . . . , L(e)︸︷︷︸
ith−place

, . . . , e)

= (−1)n−1eG(m) f + fG(m)e + (n − 1)((−1)n−2e[m, L(e)] f + f [m, L(e)]e)
= (−1)n−1eG(m) f + fG(m)e + (n − 1)(−1)n−2e[m, L(e)] f . (2.3)

Multiplying e from the left side and f from the right side of (2.3), thus mL(e) f = eL(e)m. Then(
eL(e)e 0

0 f L(e) f

)
∈ Z(G). Similarly, one can obtain

(
eL( f )e 0

0 f L( f ) f

)
∈ Z(G). �

In the sequel, we define linear maps ϕ : G → G and ψ : G → G by

ϕ(x) = G(x) − [x, eL(e) f − f L(e)e]

and
ψ(x) = L(x) − [x, eL(e) f − f L(e)e]

for each x ∈ G. It is easy to check that

ϕ(pn(x1, x2, . . . , xn)) = pn(ϕ(x1), x2, . . . , xn) +

n∑
i=2

pn(x1, . . . , ψ(xi), . . . , xn)

for each x1, x2, . . . , xn ∈ G.

Lemma 2.4. ϕ(e), ϕ( f ) ∈
(
A 0
0 B

)
and ψ(e), ψ( f ) ∈ Z(G).

Proof. By a simple calculation, we have

ψ(e) = L(e) − [e, eL(e) f − f L(e)e] =

(
eL(e)e 0

0 f L(e) f

)
∈ Z(G). (2.4)
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On account of [e, 1] = 0 = [G(e), 1] and (2.2), one can see that

0 = G(pn(e, 1, e, . . . , e))

= pn(G(e), 1, e, . . . , e) + pn(e, L(1), e, . . . , e) +

n∑
i=3

pn(e, 1, e, . . . , L(e)︸︷︷︸
ith−place

, . . . , e)

= pn(e, L(1), e, . . . , e)
= (−1)n−2e[e, L(1)] f + f [e, L(1)]e
= (−1)n−2eL(1) f − f L(1)e. (2.5)

Multiplying e from the left and f from the right of (2.5), one can conclude that eL(1) f =

0. Similarly, f L(1)e = 0. In view of Lemma 2.3, we have L(1) =

(
eL(1)e 0

0 f L(1) f

)
=(

e(L(e) + L( f ))e 0
0 f (L(e) + L( f )) f

)
∈ Z(G). By (2.4), we obtain ψ( f ) = ψ(1) − ψ(e) = L(1) − ψ(e) ∈

Z(G).
It follows from ψ(e) ∈ Z(G) that

0 = ϕ(pn( f , e, . . . , e))

= pn(ϕ( f ), e, . . . , e) +

n∑
i=2

pn( f , . . . , ψ(e)︸︷︷︸
ith−place

, . . . , e)

= (−1)n−1eϕ( f ) f + fϕ( f )e. (2.6)

Now observe that eϕ( f ) f = 0 and fϕ( f )e = 0, and hence ϕ( f ) ∈
(
A 0
0 B

)
. Applying the similar

calculation as above, we have ϕ(e) ∈
(
A 0
0 B

)
. �

Lemma 2.5. ϕ(M) ⊆ M and ϕ(N) ⊆ N, there exist linear maps k12 : M → Z(G) and k21 : N → Z(G)
such that ψ(M) − k12(M) ⊆ M and ψ(N) − k21(N) ⊆ N.

Proof. For each m ∈ M, since ψ(e) ∈ Z(G) and (2.2), we obtain

(−1)n−1ϕ(m) = ϕ(pn(m, e, . . . , e))

= pn(ϕ(m), e, . . . , e) +

n∑
i=2

pn(m, . . . , ψ(e)︸︷︷︸
ith−place

, . . . , e)

= (−1)n−1eϕ(m) f + fϕ(m)e. (2.7)

Multiplying e and f from both sides of (2.7), respectively, one can obtain

eϕ(m)e = 0 and fϕ(m) f = 0. (2.8)

If n is even, it follows from (2.7) that fϕ(m)e = 0.
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If n is odd, for each m,m′,m′′ ∈ M, by [m,m′] = 0 and ψ( f ) ∈ Z(G), one can see that

0 = ϕ(pn(m,m′,m′′, f , . . . , f ))
= pn(ϕ(m),m′,m′′, f , . . . , f ) + pn(m, ψ(m′),m′′, f , . . . , f )
= e[[ϕ(m),m′] + [m, ψ(m′)],m′′] f + (−1)n−3 f [[ϕ(m),m′] + [m, ψ(m′)],m′′]e
= e[[ϕ(m),m′] + [m, ψ(m′)],m′′] f

= e([ϕ(m),m′] + [m, ψ(m′)])m′′ − m′′([ϕ(m),m′] + [m, ψ(m′)]) f .

Hence, we arrive at(
e([ϕ(m),m′] + [m, ψ(m′)])e 0

0 f ([ϕ(m),m′] + [m, ψ(m′)]) f

)
∈ Z(G). (2.9)

It follows from (2.9) that

e([ϕ(m),m′] + [m, ψ(m′)])e ∈ Z(A), f ([ϕ(m),m′] + [m, ψ(m′)]) f ∈ Z(B).

In addition, by [m,m′] = 0 and ψ( f ) ∈ Z(G), we have

[m, ψ(m′)] = pn(m, f , . . . , f , ψ(m′))
= ϕ(pn(m, f , . . . , f ,m′)) − pn(ϕ(m), f , . . . , f ,m′)
= −pn(ϕ(m), f , . . . , f ,m′)
= −[(−1)n−2 fϕ(m)e + eϕ(m) f ,m′]
= (−1)n−1[ fϕ(m)e,m′]
= [ fϕ(m)e,m′]. (2.10)

Combining (2.8), (2.10) and [eϕ(m) f ,m′] = 0, we have [ fϕ(m)e,m′] = [ϕ(m),m′] = [m, ψ(m′)].
According to (2.9), we have

Z(G) 3 e([ϕ(m),m′] + [m, ψ(m′)])e + f ([ϕ(m),m′] + [m, ψ(m′)]) f

= 2(e[ϕ(m),m′]e + f [ϕ(m),m′] f )
= 2( fϕ(m)m′ − m′ϕ(m)e)
= 2([ fϕ(m)e,m′]).

Therefore,

[ fϕ(m)e,m′] ∈ Z(G). (2.11)

Hence fϕ(m)eM ⊆ Z(B) and M fϕ(m)e ⊆ Z(A). Without loss of generality, we assume that A does not
contain nonzero central ideals. Since M fϕ(m)e is a central ideal of A, we get M fϕ(m)e = 0 and then
fϕ(m)eM = 0 by (2.11). In view of condition (iv), we obtain fϕ(m)e = 0 for each m ∈ M. According
to (2.8), ϕ(M) ⊆ M.

For each m ∈ A, it follows from ψ(e) ∈ Z(G) and ϕ( f ) ∈
(
A 0
0 B

)
that

(−1)n−1ϕ(m) = ϕ(pn( f ,m, e, . . . , e))
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= pn(ϕ( f ),m, e, . . . , e) + pn( f , ψ(m), e, . . . , e)
= (−1)n−2e[ϕ( f ),m] f + f [ϕ( f ),m]e + (−1)n−2e[ f , ψ(m)] f + f [ f , ψ(m)]e
= (−1)n−2eϕ( f )m − (−1)n−2mϕ( f ) f − (−1)n−2eψ(m) f + fψ(m)e. (2.12)

Multiplying f from left and e by right of (2.12) and using the relation ϕ(M) ⊆ M, we arrive at

fψ(m)e = (−1)n−1 fϕ(m)e = 0.

This leads to ψ(M) ⊆
(
A M
0 B

)
.

Moreover, for each m,m′ ∈ M, ψ(e) ∈ Z(G) and ϕ(M) ⊆ M imply that

0 = ϕ(pn(m′,m, e, . . . , e))
= pn(ϕ(m′),m, e, . . . , e) + pn(m′, ψ(m), e, . . . , e)
= pn(m′, ψ(m), e, . . . , e)
= (−1)n−2e[m′, ψ(m)] f + f [m′, ψ(m)]e
= (−1)n−2m′ψ(m) f − (−1)n−2eψ(m)m′.

Therefore,
(
eψ(m)e 0

0 fψ(m) f

)
∈ Z(G). Define a linear map k12 : M → Z(G) by k12(m) = ψ(m) −

eψ(m) f = eψ(m)e + fψ(m) f for each m ∈ M. Then ψ(m) − k12(m) = eψ(m) f ∈ M.
In a similar manner, we obtain ϕ(N) ⊆ N, and there exists a linear map k21 : N → Z(G) such that

ψ(N) − k21(N) ⊆ N. �

Lemma 2.6. There exist linear maps τ1 : A → Z(G), τ2 : B → Z(G), γ1 : A → Z(G) and γ2 : B →
Z(G) such that ϕ(A) − τ1(A) ⊆ A, ϕ(B) − τ2(B) ⊆ B, ψ(A) − γ1(A) ⊆ A and ψ(B) − γ2(B) ⊆ B.

Proof. For each a ∈ A, in view of [a, f ] = 0, ψ( f ) ∈ Z(G) and (2.2), we have

0 = ϕ(pn(a, f , . . . , f ))

= pn(ϕ(a), f , . . . , f ) +

n∑
i=2

pn(a, f , . . . , ψ( f )︸︷︷︸
ith−place

, . . . , f )

= (−1)n−1 fϕ(a)e + eϕ(a) f .

It follows that eϕ(a) f = 0 = fϕ(a)e. Hence ϕ(a) ∈
(
A 0
0 B

)
.

Furthermore, by using ϕ( f ) ∈
(
A 0
0 B

)
and ψ(e) ∈ Z(G), we have

0 = ϕ(pn( f , a, e, . . . , e))
= pn(ϕ( f ), a, e, . . . , e) + pn( f , ψ(a), e, . . . , e)
= (−1)n−2e[ϕ( f ), a] f + f [ϕ( f ), a]e + (−1)n−2e[ f , ψ(a)] f + f [ f , ψ(a)]e
= (−1)n−1aϕ( f ) f + fϕ( f )a + (−1)n−1eψ(a) f + fψ(a)e
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= (−1)n−1eψ(a) f + fψ(a)e.

This implies eψ(a) f = fψ(a)e = 0. Hence

ψ(a) = eψ(a)e + fψ(a) f ∈
(
A 0
0 B

)
. (2.13)

Therefore, ϕ(a) ∈
(
A 0
0 B

)
and ψ(a) ∈

(
A 0
0 B

)
. Then ϕ(b) ∈

(
A 0
0 B

)
and ψ(b) ∈

(
A 0
0 B

)
can be proved

analogously.
In addition, for each a ∈ A,m ∈ M and b ∈ B, using [a, b] = 0 together with ψ( f ) ∈ Z(G), we have

0 = ϕ(pn(a, b,m, f , . . . , f ))
= pn(ϕ(a), b,m, f , . . . , f ) + pn(a, ψ(b),m, f , . . . , f )
= (−1)n−3 f [[ϕ(a), b] + [a, ψ(b)],m]e + e[[ϕ(a), b] + [a, ψ(b)],m] f

= e[[ϕ(a), b] + [a, ψ(b)],m] f

= e([ϕ(a), b] + [a, ψ(b)])m − m([ϕ(a), b] + [a, ψ(b)]) f .

This implies that (
e([ϕ(a), b] + [a, ψ(b)])e 0

0 f ([ϕ(a), b] + [a, ψ(b)]) f

)
∈ Z(G). (2.14)

Besides, (
e([ϕ(a), b] + [a, ψ(b)])e 0

0 f ([ϕ(a), b] + [a, ψ(b)]) f

)
=

(
e[a, ψ(b)]e 0

0 f [ϕ(a), b] f

)
=

(
[a, eψ(b)e] 0

0 [ fϕ(a) f , b)]

)
.

It follows from (2.14) that (
[a, eψ(b)e] 0

0 [ fϕ(a) f , b)]

)
∈ Z(G). (2.15)

Multiplying (2.15) from both sides by f , we arrive at [ fϕ(a) f , b] ∈ Z(B). The condition (2.1) leads to
fϕ(a) f ∈ Z(B). There exists a unique z ∈ Z(G) such that fϕ(a) f = f z. Therefore,

ϕ(a) = eϕ(a)e + fϕ(a) f = eϕ(a)e + f z = (eϕ(a)e − ez) + z.

Define a linear map τ1 : A→ Z(G) by τ1(a) = z. Then

ϕ(a) − τ1(a) = eϕ(a)e − ez ∈ A.

By fϕ(a) f ∈ Z(B) and (2.15), we have eψ(b)e ∈ Z(A). There exists a unique z′ ∈ Z(G) such that

ψ(b) = eψ(b)e + fψ(b) f = ez′ + fψ(b) f = z′ + ( fψ(b) f − f z′).

AIMS Mathematics Volume 9, Issue 10, 29386–29403.



29394

We can also define a linear map γ2 : B→ Z(G) by γ2(b) = z′. Then

ψ(b) − γ2(b) = fψ(b) f − f z′ ∈ B.

Next, we prove that τ1 and γ2 are unique. Suppose that ϕ(a) = τ1(a) + ez = τ′′1 (a) + ez′′, which
implies that τ1(a) − τ′′1 (a) = ez′′ − ez ∈ A ∩ Z(G) = {0}. Hence τ1 = τ′′1 . A similar proof yields that γ2

is unique.
Similarly, there exist linear maps τ2 : B → Z(G) and γ1 : A → Z(G) such that ϕ(B) − τ2(B) ⊆ B,

ψ(A) − γ1(A) ⊆ A.
�

Now, for each x =

(
a m
t b

)
∈

(
A M
N B

)
= G, define linear maps d : G → G, h : G → G, τ : G → Z(G)

and γ : G → Z(G) by

τ(x) = τ1(a) + τ2(b), d(x) = ϕ(x) − τ(x),
γ(x) = γ1(a) + γ2(b) + k12(m) + k21(t), h(x) = ψ(x) − γ(x).

By Lemmas 2.5 and 2.6, it follows that

d(A) ⊆ A, d(M) = ϕ(M) ⊆ M, d(N) = ϕ(N) ⊆ N, d(B) ⊆ B,

h(A) ⊆ A, h(M) ⊆ M, h(N) ⊆ N, h(B) ⊆ B.

Lemma 2.7. d is a generalized derivation associated with a derivation h on G.

Proof. We divide the proof into the following six claims:
Claim 1: For each a ∈ A, m ∈ M, t ∈ N and b ∈ B,

d(am) = h(a)m + ad(m) = d(a)m + ah(m),
d(bt) = h(b)t + bd(t) = d(b)t + bh(t),

d(mb) = h(m)b + md(b) = d(m)b + mh(b),
d(ta) = h(t)a + td(a) = d(t)a + th(a).

Next, we prove only the first equation, and the others can be proven in a similar way. Since τ and γ
are linear maps from G into Z(G), and ψ( f ) ∈ Z(G), we have

d(am) = ϕ(am) = −ϕ(pn(m, a, f , . . . , f ))
= −pn(ϕ(m), a, f , . . . , f ) − pn(m, ψ(a), f , . . . , f )
= −pn(d(m) + τ(m), a, f , . . . , f ) − pn(m, h(a) + γ(a), f , . . . , f )
= −pn(d(m), a, f , . . . , f ) − pn(m, h(a), f , . . . , f )
= h(a)m + ad(m).

In addition,

d(am) = ϕ(am) = ϕ(pn(a,m, f , . . . , f ))
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= pn(ϕ(a),m, f , . . . , f ) + pn(a, ψ(m), f , . . . , f )
= pn(d(a),m, f , . . . , f ) + pn(a, h(m), f , . . . , f )
= d(a)m + ah(m).

Claim 2: For each a, a′ ∈ A and b, b′ ∈ B,

h(aa′) = h(a)a′ + ah(a′), d(aa′) = h(a)a′ + ad(a′),
h(bb′) = h(b)b′ + bh(b′), d(bb′) = h(b)b′ + bd(b′).

By Claim 1, for each a, a′ ∈ A,m ∈ M, one can obtain

d(aa′m) = h(aa′)m + aa′d(m) (2.16)
= d(aa′)m + aa′h(m) (2.17)

and

d(aa′m) = h(a)a′m + ad(a′m)
= h(a)a′m + ah(a′)m + aa′d(m) (2.18)
= h(a)a′m + ad(a′)m + aa′h(m). (2.19)

Comparing (2.16) with (2.18) and (2.17) with (2.19), respectively, we have

(h(aa′) − h(a)a′ − ah(a′))m = 0, (d(aa′) − h(a)a′ − ad(a′))m = 0,

for each m ∈ M. It follows that h(aa′) = h(a)a′ + ah(a′) and d(aa′) = h(a)a′ + ad(a′). Similarly, we
can prove h(bb′) = h(b)b′ + bh(b′) and d(bb′) = h(b)b′ + bd(b′) for each b, b′ ∈ B.
Claim 3: For each m ∈ M and t ∈ N,

d(mt) = h(m)t + md(t) = d(m)t + mh(t),
d(tm) = h(t)m + td(m) = d(t)m + th(m).

Let m ∈ M and t ∈ N. Since τ and γ are linear maps from G into Z(G), and ψ( f ) ∈ Z(G), it follows
that

ϕ(pn(m, f , . . . , f , t)) = pn(ϕ(m), f , . . . , f , t) + pn(m, f , . . . , f , ψ(t)).

Then

d([m, t]) + τ([m, t]) = [ϕ(m), t] + [m, ψ(t)] = [d(m), t] + [m, h(t)].

This leads to (
d(m)t + mh(t) − d(mt) 0

0 d(tm) − td(m) − h(t)m

)
= τ([m, t]) ∈ Z(G).

Multiplying e and f from both sides of the above equation, respectively, we find that d(m)t + mh(t) −
d(mt) = eτ([m, t]) ∈ Z(A) and d(tm) − td(m) − h(t)m = f τ([m, t]) ∈ Z(B). Without loss of generality,
we assume that A does not contain nonzero central ideals. Set

ε(m, t) := d(mt) − d(m)t − mh(t) ∈ Z(A).
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Therefrore, for each a ∈ A, m ∈ M, and t ∈ N,

ε(am, t) = d(amt) − d(am)t − amh(t)
= h(a)mt + ad(mt) − h(a)mt − ad(m)t − amh(t)
= ad(mt) − ad(m)t − amh(t)
= aε(m, t),

which leads that Aε(m, t) is a central ideal of A. Hence, ε(m, t) = 0. Thus d(mt) = d(m)t + mh(t).
Moreover, d(tm) = h(t)m + td(m). Using the same computational method on relation

ϕ(pn(t, f , . . . , f ,m)) = pn(ϕ(t), f , . . . , f ,m) + pn(t, f , . . . , f , ψ(m)),

we obtain d(mt) = h(m)t + md(t) and d(tm) = d(t)m + th(m) for each m ∈ M and t ∈ N.
Claim 4: For each m ∈ M and t ∈ N,

h(mt) = h(m)t + mh(t), h(tm) = h(t)m + th(m).

For each m,m′ ∈ M and t ∈ N, on account of Claim 3, we arrive at

d(mtm′) = h(m)tm′ + md(tm′)
= h(m)tm′ + mh(t)m′ + mtd(m′) (2.20)

and

d(mtm′) = h(mt)m′ + mtd(m′). (2.21)

Comparing (2.20) with (2.21), we obtain (h(mt) − h(m)t − mh(t))m′ = 0 for each m′ ∈ M. Hence
h(mt) = h(m)t + h(t). Similarly, h(tm) = h(t)m + th(m).
Claim 5: For each a ∈ A, m ∈ M, t ∈ N and b ∈ B,

h(am) = h(a)m + ah(m), h(mb) = h(m)b + mh(b),
h(ta) = h(t)a + ah(t), h(bt) = h(b)t + bh(t).

Next, we will only prove the first equation, while the other equations can be proven using similar
methods. For each a ∈ A,m ∈ M, 0 , t ∈ N, it follows from Claim 4 that

h(amt) = h(am)t + amh(t), (2.22)
h(amt) = h(a)mt + ah(mt) = h(a)mt + ah(m)t + amh(t). (2.23)

Comparing (2.22) with (2.23), we can obtain (h(am) − h(a)m − ah(m))t = 0. Besides,

d(tam) = d(t)am + th(am), (2.24)
d(tam) = d(ta)m + tah(m) = d(t)am + th(a)m + tah(m). (2.25)

Hence, (2.24) and (2.25) imply that t(h(am)− h(a)m− ah(m)) = 0 for each t ∈ N. Condition (iv) forces
that h(am) = h(a)m + ah(m) for each a ∈ A and m ∈ M.
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Claim 6: For each a, a′ ∈ A and b, b′ ∈ B,

d(aa′) = h(a)a′ + ad(a′) = d(a)a′ + ah(a′)
d(bb′) = h(b)b′ + bd(b′) = d(b)b′ + bh(b′).

In view of Claims 1 and 3, for each a, a′ ∈ A and m ∈ N, we have

d(aa′m) = d(a)a′m + ah(a′m)
= d(a)a′m + ah(a′)m + aa′h(m). (2.26)

Comparing (2.17) with (2.26), (d(aa′) − d(a)a′ − ah(a′))m = 0 for each m ∈ M. It follows that
d(aa′) = d(a)a′ + ah(a′). Combining with Claim 2, we have d(aa′) = h(a)a′ + ad(a′) = d(a)a′ + ah(a′).
Making similar discussion, we get d(bb′) = h(b)b′ + bd(b′) = d(b)b′ + bh(b′), for each b, b′ ∈ B.

Thus d(xy) = h(x)y + xd(y) = d(x)y + xh(y) and h(xy) = h(x)y + xh(y) for each x, y ∈ G, i.e., h is a
derivation and d is a generalized derivation associated with h. �

Proof of Theorem 2.1. Since τ and γ are linear maps from G into Z(G), for each xi ∈ G (i = 1, . . . , n),
by the lemmas 2.2–2.7, we have

τ(pn(x1, x2, . . . , xn)) = ϕ(pn(x1, x2, . . . , xn)) − d(pn(x1, x2, . . . , xn))
= pn(ϕ(x1), x2, . . . , xn) + pn(x1, ψ(x2), . . . , xn)

+ . . . + pn(x1, . . . , ψ(xn)) − pn(d(x1), x2, . . . , xn)
− pn(x1, h(x2), . . . , xn) . . . − pn(x1, x2, . . . , h(xn))

= 0.

Moreover, for each x ∈ G, define maps D,H : G → G as:

D(x) = d(x) + [x, eL(e) f − f L(e)e], H(x) = h(x) + [x, eL(e) f − f L(e)e].

Obviously, D is a generalized derivation associated with H, and H is also a derivation on G. Then

G(x) = ϕ(x) + [x, eL(e) f − f L(e)e]
= d(x) + τ(x) + [x, eL(e) f − f L(e)e]
= D(x) + τ(x)

and

L(x) = L(x) + [x, eL(e) f − f L(e)e]
= h(x) + γ(x) + [x, eL(e) f − f L(e)e]
= H(x) + γ(x).

The proof is completed.
�
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In the following, we investigate the relation of generalized inner derivations, Lie n-derivations,
and generalized Lie n-derivations. Let us start with strong generalized Lie n-derivations. Let A be a
unital algebra. A linear map G on A is called a strong generalized Lie n-derivation if G is the sum
of a generalized inner derivation and a Lie n-derivation. Recall that a linear map I on A is called a
generalized inner derivation if I(x) = mx + xm′ for each x ∈ A, where m and m′ are fixed elements
ofA. It is obvious that every generalized derivation onA is the sum of a derivation and a generalized
inner derivation of the form I(x) = λx for every x ∈ A, where λ ∈ Z(A).

In particular, if n = 2, Adrabi et al. [2] investigated strong generalized Lie derivations and
generalized Lie derivations on bounded quiver algebras associated with a finite acyclic quiver.
Furthermore, Bennis et al. [7] gave a complete description of the relation between generalized Lie
derivations and strong generalized Lie derivations on unital algebras with nontrivial idempotents and
trivial extension algebras. In the sequel, we present a fact.

Lemma 2.8. Let A be a unital algebra. If each Lie n-derivation on A is proper, then the following
assertions are equivalent:

(1) G is a proper generalized Lie n-derivation onA;
(2) G is a strong generalized Lie n-derivation, that is, G = I + δ, where δ is a Lie n-derivation onA

and I is a generalized inner derivation onA of the form I = λx for every x ∈ A, where λ ∈ Z(A).

Proof. (1) =⇒ (2) Let G be a proper generalized Lie n-derivation onA. Then G = d + τ, where d is a
generalized derivation onA and τ : A → Z(A) is a linear map vanishing on all (n−1)-th commutators
on A. In addition, d = h + I, where h is a derivation on A and I is a generalized inner derivation of
the form I(x) = λx for every x ∈ A with λ ∈ Z(A). Hence G = I + h + τ. Clearly δ := h + τ is a Lie
n-derivation, thus G is a strong generalized Lie derivation.

(2) =⇒ (1) If G = I + δ, where δ is a Lie n-derivation on A and I is a generalized inner derivation
on A of the form I = λx for every x ∈ A, where λ ∈ Z(A). Since every Lie n-derivation δ on A is
proper, then δ = h + τ, where h is a derivation and τ : A → Z(A) is a linear map vanishing on all
(n − 1)-th commutators on A. Therefore, G = d + τ, where d := I + h is a generalized derivation and
τ : A → Z(A) is a linear map vanishing on all (n − 1)-th commutators onA. �

Corollary 2.9. Let G = G(A,M,N, B) be a unital (n − 1)-torsion-free generalized matrix algebra,
where n ≥ 3 is an integer. Assume that

(i) Z(A) = πA(Z(G)) and Z(B) = πB(Z(G));
(ii) A or B does not contain nonzero central ideals;

(iii) A or B satisfies the condition (2.1);
(iv) For each m ∈ M and t ∈ N, the condition mN = 0 = Nm implies m = 0, Mt = 0 = tM implies

t = 0.

Suppose that G and L are linear maps on G satisfying

G(pn(x1, x2, . . . , xn)) = pn(G(x1), x2, . . . , xn) +

n∑
i=2

pn(x1, . . . , L(xi), . . . xn)

for each x1, x2, . . . , xn ∈ G, then G = I + δ, where δ is a Lie n-derivation on G and I is a generalized
inner derivation on G.
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Proof. Since every Lie n-derivation on generalized matrix algebras is proper [17], by Lemma 2.8, every
generalized Lie n-derivation associated with a linear map on generalized matrix algebras is a strong
generalized Lie n-derivation under the conditions (i)–(iv). �

3. Applications

In particular, if G = L in (1.1), G is a Lie n-derivation. In recent years, many scholars have studied
the conditions under which every Lie n-derivation is proper on generalized matrix algebras [17], unital
algebras with a nontrivial idempotent [8], von Neumann algebras without central summands of type
I1 [1], and so on. Here, we limit our attention to some applications of Theorem 2.1.

Let A be a unital algebra and Ms(A) be the algebra of all s × s matrices over A, where s ≥ 2 is

an integer. ThenMs(A) is a generalized matrix algebra with the form
(

A M1×(s−1)(A)
M(s−1)×1(A) M(s−1)×(s−1)(A)

)
.

Note that Z(Ms(A)) = Z(A) · Is, where Is is the unit of Ms(A). In addtion, Ms(A) does not contain
nonzero central ideals [9, Lemma 1] and satisfies the conditions (iii) (see [4, Example 5.6]) and (iv)
(see [17, Lemma 1]) of Theorem 2.1. As a consequence of Theorem 2.1, the following corollary holds.

Corollary 3.1. Let A be a (n − 1)-torsion-free unital algebra andMs(A) be a full matrix algebra with
s ≥ 3. Suppose that G and L are linear maps onMs(A). Then G and L satisfy

G(pn(x1, x2, . . . , xn)) = pn(G(x1), x2, . . . , xn) +

n∑
i=2

pn(x1, . . . , L(xi), . . . xn)

for each x1, x2, . . . , xn ∈ Ms(A) if and only if G = D+τ, L = H +γ, where D is a generalized derivation
associated with a derivation H, τ and γ are linear maps fromMs(A) into Z(Ms(A)), and τ vanishes
on each (n − 1)-th commutator.

Theorem 3.2. Let A be a von Neumann algebra. Suppose that G is a generalized Lie n-derivation
associated with a linear map L on A. Then G = d + τ and L = h + γ, where d is a generalized
derivation associated with a derivation h, τ and γ are linear maps from A into Z(A), and τ vanishes
on each (n − 1)-th commutator.

Proof. For every von Neumann algebraA, we consider the central projection z0 := sup{z ∈ P(Z(A)) :
zA ⊂ Z(A)}. It is clear that

A = A0 ⊕A1,

where A0 := z0A = z0Z(A) is a commutative von Neumann algebra and A1 := (1 − z0)A = z1A is a
von Neumann algebra without central summands of type I1.

For each x ∈ A, we obtain

G(x) = z1G(z1x) + z0G(z1x) + z1G(z0x) + z0G(z0x),
L(x) = z1L(z1x) + z0L(z1x) + z1L(z0x) + z0L(z0x).

First, we show that G1(x) := z0G(z1x), G2(x) := z1G(z0x), and G3(x) := z0G(z0x) are linear maps
from A to Z(A) vanishing on each (n − 1)-th commutator, and L1(x) := z0L(z1x), L2(x) := z1L(z0x),
and L3(x) := z0L(z0x) are linear maps fromA to Z(A).
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It is clear that G1(x) = z0G(z1x) ∈ z0A ⊂ Z(A) and F1(x) = z0L(z1x) ∈ Z(A). For each
x1, x2, . . . , xn ∈ A, z1 pn(x1, x2, . . . , xn) = pn(z1x1, z1x2, . . . , z1xn). By z0z1 = 0, we have

G1(pn(x1, x2, . . . , xn)) = z0G(z1 pn(x1, x2, . . . , xn)) = z0G(pn(z1x1, z1x2, . . . , z1xn))

= z0(pn(G(z1x1), z1x2, . . . , z1xn) +

n∑
i=2

pn(z1x1, . . . , L(z1xi), . . . , z1xn))

= 0.

For each x, xi ∈ A (1 ≤ i ≤ n), by z0x ∈ Z(A), we have

pn+1(G(z0x), x1, . . . , xn) = G(pn+1(z0x, x1, . . . , xn)) −
n∑

i=1

(z0x, x1, . . . , L(xi), . . . , xn) = 0,

pn+1(x1, L(z0x), x2, . . . , xn) = G(pn+1(x1, z0x, x2, . . . , xn)) − pn+1(G(x1), z0x, x2, . . . , xn))

−

n∑
i=2

(x1, z0x, . . . , L(xi), . . . , xn) = 0.

It follows from [8, Remark 2.1] that

pn+1(G(z0x),A, . . . ,A) = 0 =⇒ pn(G(z0x),A, . . . ,A) = 0 · · · =⇒ [G(z0x),A] = 0,
pn+1(A, L(z0x),A, . . . ,A) = 0 =⇒ pn(A, L(z0x),A, . . . ,A) = 0 · · · =⇒ [A, L(z0x)] = 0,

i.e., G(z0x) ∈ Z(A) and L(z0x) ∈ Z(A). Thus G2(x) = z1G(z0x) ∈ Z(A) and L2(x) = z1L(z0x) ∈ Z(A).
Moreover, for each x1, x2, . . . , xn ∈ A, by z0xi ∈ Z(A), we have

G2(pn(x1, x2, . . . , xn)) = z1G(z0 pn(x1, x2, . . . , xn)) = z1G(pn(z0x1, z0x2, . . . , z0xn)) = 0.

Similarly, G3 is a linear map from A to Z(A) vanishing on each (n − 1)-th commutator, and L3 is a
linear map fromA to Z(A).

Next we prove that G̃ := z1G is a generalized Lie n-derivation associated with L̃ := z1L onA1. Since
G is a generalized Lie n-derivation associated with a linear map L on A for each y1, y2, . . . , yn ∈ A1,
we have

G̃(pn(y1, y2, . . . , yn)) = z1G(z1 pn(y1, y2, . . . , yn)) = z1G(pn(z1y1, z1y2, . . . , z1yn))

= z1 pn(G(z1y1), z1y2, . . . , z1yn) +

n∑
i=2

z1 pn(z1y1, . . . , L(z1yi), . . . , z1yn)

= pn(G̃(y1), y2, . . . , yn) +

n∑
i=2

pn(y1, . . . , L̃(yi), . . . , yn).

Then G̃ is a generalized Lie n-derivation associated with L̃ onA1.
Let e ∈ A1 be a projection and f = 1− e. Denote A = eA1e, M = eA1 f , N = fA1e and B = fA1 f ,

then A1 =

(
A M
N B

)
. Besides, by [15, Lemma 5], we have that Z(A) = eZ(A1)e and Z(B) = f Z(A1) f .

Moreover, A1 satisfies (ii), (iii) (see [8, Cortollary 3.14]) and (iv) (see [16, Lemma 1]). Then A1
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satisfies the conditions of Theorem 2.1. Therefore, z1G = G̃ = d1 + τ1 and z1L = L̃ = h1 + γ1, where d1

is a generalized derivation associated with a derivation h1 onA1, τ1 and γ1 are linear maps fromA1 to
Z(A1), and τ1 vanishes on each (n − 1)-th commutator ofA1.

Finally, for each x ∈ A, it is enough to show that d(x) := d1(z1x) is a generalized derivation
associated with a derivation h(x) := h1(z1x) on A, τ(x) := τ1(z1x) and γ(x) := γ1(z1x) are linear maps
fromA to Z(A), and τ vanishes on each (n − 1)-th commutator onA. For each x, y ∈ A, we have

d(xy) = d1(z1xy) = d1(z1xz1y)
= d1(z1x)(z1y) + z1xh1(z1y) = d1(z1x)y + xh1(z1y)
= d(x)y + xh(y)
= h1(z1x)(z1y) + z1xd1(z1y) = h1(z1x)y + xd1(z1y)
= h(x)y + xd(y),

h(xy) = h1(z1xy) = h1(z1xz1y) = h1(z1x)(z1y) + z1xh1(z1y)
= h1(z1x)y + xh1(z1y) = h(x)y + xh(y),

τ(x) = τ1(z1x) ∈ Z(A1) ⊂ Z(A),
γ(x) = γ1(z1x) ∈ Z(A1) ⊂ Z(A),

τ(pn(x1, x2, . . . , xn)) = τ1(z1 pn(x1, x2, . . . , xn)) = τ1(pn(z1x1, z1x2, . . . , z1xn)) = 0.

Thus, for each x ∈ A,
G(x) = d(x) + (τ(x) + G1(x) + G2(x) + G3(x)),

L(x) = h(x) + (γ(x) + L1(x) + L2(x) + L3(x)),

where d is a generalized derivation associated with a derivation h onA, τ+ G1 + G2 + G3 and γ + L1 +

L2 + L3 are linear maps fromA to Z(A), and τ+ G1 + G2 + G3 vanishes on each (n− 1)-th commutator.
Hence G is a proper generalized Lie n-derivation. �

4. Conclusions

In this paper, we give a proper description of generalized Lie n-derivations on generalized matrix
algebras under certain conditions. However, it is challenging to further relax the conditions of
Theorem 2.1 or to find a more straightforward approach to prove the Theorem 2.1.
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