Mathematics

Research article

Maps on C^{*}-algebras are skew Lie triple derivations or homomorphisms at one point

Zhonghua Wang ${ }^{1}$ and Xiuhai Fei $^{2}{ }^{2, *}$
${ }^{1}$ School of Science, Xi'an Shiyou University, Xi'an, China
${ }^{2}$ School of Mathematics and Physics, West Yunnan University, Lincang, China
* Correspondence: Email: xiuhaifei@snnu.edu.cn.

Abstract

In this paper, we show that every continuous linear map between unital C^{*}-algebras is skew Lie triple derivable at the identity is a *-derivation and that every continuous linear map between unital C^{*}-algebras which is a skew Lie triple homomorphism at the identity is a Jordan $*$-homomorphism.

Keywords: C^{*}-algebra; skew Lie triple derivation; Jordan derivation; skew Lie triple homomorphism Mathematics Subject Classification: 46L57, 47C15

1. Introduction and basic definitions

Homomorphisms and derivations are the most intensively studied classes of operators on Banach algebras or other algebras. Let A be an algebra and M be an A-bimodule, $d: A \rightarrow M$ be a linear map. If for any $x, y \in A$,

$$
\begin{equation*}
d(x y)=d(x) y+x d(y), \tag{1.1}
\end{equation*}
$$

then d is called a derivation. If for any $x \in A, d\left(x^{2}\right)=d(x) x+x d(x)$, then d is called a Jordan derivation. Additionally, if for any $x, y \in A, d([x, y])=[d(x), y]+[x, d(y)]$, where $[x, y]=x y-y x$ is the Lie product of x and y, then d is called a Lie derivation. Clearly, a derivation is a Jordan derivation and is a Lie derivation. However, a Jordan or Lie derivation need not certainly be a derivation. The standard problem is to find conditions implying that a Jordan or a Lie derivation is actually a derivation. Along this line, there are fruitful results. See for example [1-7].

Recently, many studies are concerned with finding the standard form of linear maps satisfying the derivation type equation for special pairs of x and y. For example, [8-13] studied linear maps which satisfy the derivation type equation for any x, y with $x y=0$ and [14-16] studied linear maps which satisfy the derivation type equation for any x, y with $x y=1$.

A map φ from a $*$-algebra A into a bimodule M over A is called a skew Lie derivation if

$$
\begin{equation*}
\varphi\left([a, b]_{*}\right)=[\varphi(a), b]_{*}+[a, \varphi(b)]_{*} \tag{1.2}
\end{equation*}
$$

for all $a, b \in A$, is called skew Lie derivable at the point $z \in A$ if (1.2) holds for all $a, b \in A$ with $a b=z$, where $[a, b]_{*}=a b-b a^{*}$. A linear map φ from A into another C^{*}-algebra B is called a skew Lie homomorphism at z if $\varphi\left([a, b]_{*}\right)=[\varphi(a), \varphi(b)]_{*}$ for all $a, b \in A$ with $a b=z$. If φ is a skew Lie homomorphism at all elements of A, then it is called a skew Lie homomorphism on A. For their special importance, these maps attracted many authors' attention in the past decades (see [17-20]).

In [21], Li, Zhao and Chen introduced the concept of nonlinear skew Lie triple derivations and showed every nonlinear skew Lie triple derivation between factors is an additive $*$-derivation.
Difinition 1.1. An additive map $\varphi: A \rightarrow M$ is called a nonlinear skew Lie triple derivation if

$$
\begin{equation*}
\varphi\left(\left[[a, b]_{*}, c\right]_{*}\right)=\left[[\varphi(a), b]_{*}, c\right]_{*}+\left[[a, \varphi(b)]_{*}, c\right]_{*}+\left[[a, b]_{*}, \varphi(c)\right]_{*} \tag{1.3}
\end{equation*}
$$

for all a, b, c in A, and is called skew Lie triple derivable at the point $z \in A$ if Eq (1.3) holds for all $a, b, c \in A$ with $a b=z$ and $c=a$.

For unital C^{*}-algebras A and B, in the present paper, we study two types of continuous maps. One of them is the type of continuous linear maps from A into B, which are skew Lie triple derivable at the identity. Another is the type of continuous linear maps from A into B, which are skew Lie triple homomorphisms at the identity (see Section 3 for more details).

2. Skew Lie triple derivations at the identity

In this section, we will study linear maps between unital C^{*}-algebras which are skew Lie triple derivable at the identity. Throughout this section, B will be a unital C^{*}-algebra, A will be a C^{*}-subalgebra of B and $1_{A}=1_{B}, A_{s a}$ will be the set of all self-adjoint elements in $A, \varphi: A \rightarrow B$ will be a linear map. First, let us explore the behavior of the identity 1 under φ when φ is skew Lie triple derivable at the identity.
Lemma 2.1. If $\varphi: A \rightarrow B$ is skew Lie triple derivable at the identity, then $\varphi(1)=\varphi(1)^{*}$.
Proof. Since $1 \cdot 1=1$ and $\left[[1,1]_{*}, 1\right]_{*}=0$, we have

$$
0=\left[[\varphi(1), 1]_{*}, 1\right]_{*}+\left[[1, \varphi(1)]_{*}, 1\right]_{*}+\left[[1,1]_{*}, \varphi(1)\right]_{*}=\varphi(1)-\varphi(1)^{*}-\left(\varphi(1)-\varphi(1)^{*}\right)^{*},
$$

from which it follows that $\varphi(1)=\varphi(1)^{*}$.
Theorem 2.1. Let $\varphi: A \rightarrow B$ be a continuous linear map which is skew Lie triple derivable at the identity, then it is $a *$-derivation.
Proof. (1) First, we show φ is selfadjoint, i.e., $\varphi\left(x^{*}\right)=\varphi(x)^{*}$ for all $x \in A$. Put any $a \in A_{s a}$, $\mathrm{e}^{i t a}$ is a unitary for each $t \in \mathbb{R}$ and $\left[\left[\mathrm{e}^{i t a}, \mathrm{e}^{-i t a}\right]_{*}, \mathrm{e}^{i t a}\right]_{*}=\mathrm{e}^{3 i t a}-\mathrm{e}^{-i t a}$. Thus we deduce that

$$
\begin{align*}
& \varphi\left(\mathrm{e}^{3 i t a}\right)-\varphi\left(\mathrm{e}^{-i t a}\right) \\
= & {\left[\left[\varphi\left(\mathrm{e}^{\mathrm{i} t a}\right), \mathrm{e}^{-i t a}\right]_{*}, \mathrm{e}^{i t a}\right]_{*}+\left[\left[\mathrm{e}^{\mathrm{i} t a}, \varphi\left(\mathrm{e}^{-i t a}\right)\right]_{*}, \mathrm{e}^{\mathrm{i} t a}\right]_{*}+\left[\left[\mathrm{e}^{i t a}, \mathrm{e}^{-i t a}\right]_{*}, \varphi\left(\mathrm{e}^{\mathrm{i} t a}\right)\right] } \\
= & -\mathrm{e}^{-i t a} \varphi\left(\mathrm{e}^{i t a}\right)^{*} \mathrm{e}^{i t a}+\mathrm{e}^{i t a} \varphi\left(\mathrm{e}^{\mathrm{i} t a}\right) \mathrm{e}^{i t a}+\mathrm{e}^{i t a} \varphi\left(\mathrm{e}^{-i t a}\right) \mathrm{e}^{i t a}-\mathrm{e}^{\mathrm{ita} a} \varphi\left(\mathrm{e}^{\mathrm{i} t a}\right)^{*} \mathrm{e}^{-i t a} \\
& -\mathrm{e}^{-2 i t a} \varphi\left(\mathrm{e}^{i t a}\right)+\varphi\left(\mathrm{e}^{i t a}\right) \mathrm{e}^{2 i t a}+\varphi\left(\mathrm{e}^{i t a}\right)-\varphi\left(\mathrm{e}^{-i t a}\right)+\mathrm{e}^{2 i t a} \varphi\left(\mathrm{e}^{-i t a}\right)^{*}-\mathrm{e}^{2 i t a} \varphi\left(\mathrm{e}^{i t a}\right)^{*} . \tag{2.1}
\end{align*}
$$

By taking derivative of Eq (2.1) at t, we obtain that

$$
\begin{align*}
& \varphi\left(3 a \mathrm{e}^{3 i t a}\right)+\varphi\left(a \mathrm{e}^{-i t a}\right) \\
& =a \mathrm{e}^{-i t a} \varphi\left(\mathrm{e}^{\mathrm{ita}}\right)^{*} \mathrm{e}^{\mathrm{ita}}+\mathrm{e}^{-\mathrm{ita} a} \varphi\left(a \mathrm{e}^{\mathrm{ita}}\right)^{*} \mathrm{e}^{\mathrm{ita} a}-\mathrm{e}^{-\mathrm{ita} a} \varphi\left(\mathrm{e}^{\mathrm{i} t a}\right)^{*} a \mathrm{e}^{\mathrm{ita}} \\
& +a \mathrm{e}^{\mathrm{i} t a} \varphi\left(\mathrm{e}^{\mathrm{ita} a}\right) \mathrm{e}^{\mathrm{i} t a}+\mathrm{e}^{\mathrm{i} t a} \varphi\left(a \mathrm{e}^{\mathrm{i} t a}\right) \mathrm{e}^{\mathrm{ita} a}+\mathrm{e}^{\mathrm{i} t a} \varphi\left(\mathrm{e}^{\mathrm{ita} a}\right) a \mathrm{e}^{i t a} \\
& +a \mathrm{e}^{i t a} \varphi\left(\mathrm{e}^{-\mathrm{ita}}\right) \mathrm{e}^{\mathrm{ita} a}-\mathrm{e}^{\mathrm{i} t a} \varphi\left(a \mathrm{e}^{-i t a}\right) \mathrm{e}^{\mathrm{i} t a}+\mathrm{e}^{\mathrm{i} t a} \varphi\left(\mathrm{e}^{-\mathrm{itta}}\right) a \mathrm{e}^{i t a} \\
& -a \mathrm{e}^{i t a} \varphi\left(\mathrm{e}^{-i t a}\right)^{*} \mathrm{e}^{-i t a}-\mathrm{e}^{i t a} \varphi\left(a \mathrm{e}^{-i t a}\right)^{*} \mathrm{e}^{-i t a}+\mathrm{e}^{\mathrm{i} t a} \varphi\left(\mathrm{e}^{-\mathrm{ita} a}\right)^{*} a \mathrm{e}^{-\mathrm{itta}} \\
& +2 a \mathrm{e}^{-2 i t a} \varphi\left(\mathrm{e}^{i t a}\right)-\mathrm{e}^{-2 i t a} \varphi\left(a \mathrm{e}^{i t a}\right)+\varphi\left(a \mathrm{e}^{i t a}\right) \mathrm{e}^{2 i t a}+2 \varphi\left(\mathrm{e}^{i t a}\right) a \mathrm{e}^{2 i t a}+\varphi\left(a \mathrm{e}^{i t a}\right)+\varphi\left(a \mathrm{e}^{-i t a}\right) \\
& +2 a \mathrm{e}^{2 i t a} \varphi\left(\mathrm{e}^{-\mathrm{itta}}\right)^{*}+\mathrm{e}^{2 i t a} \varphi\left(a \mathrm{e}^{-i t a}\right)^{*}-2 a \mathrm{e}^{2 i t a} \varphi\left(\mathrm{e}^{\mathrm{ita} a}\right)^{*}+\mathrm{e}^{2 i t a} \varphi\left(a \mathrm{e}^{i t a}\right)^{*} . \tag{2.2}
\end{align*}
$$

Put $t=0$ and $a=1 \mathrm{in} \operatorname{Eq}(2.2)$, then we get $\varphi(1)=0$. Again put $t=0$ in $\operatorname{Eq}(2.2)$, noted that $\varphi(1)=0$, we get

$$
\varphi(a)=\varphi(a)^{*}, \quad a \in A_{s a} .
$$

For each $x \in A$, there are $a, b \in A_{s a}$ such that $x=a+i b$. Hence, $\varphi\left(x^{*}\right)=\varphi(a)-i \varphi(b)=\varphi(x)^{*}$.
(2) Now we show φ is a $*$-derivation. Taking derivative of $\mathrm{Eq}(2.2)$ in $t=0$ yields that

$$
\begin{equation*}
\varphi\left(a^{2}\right)=\varphi(a) a+a \varphi(a) . \tag{2.3}
\end{equation*}
$$

Put any $a, b \in A_{s a}$, then

$$
\varphi\left((a+b)^{2}\right)=\varphi(a+b)(a+b)+(a+b) \varphi(a+b) .
$$

So

$$
\begin{equation*}
\varphi(a b+b a)=\varphi(a) b+a \varphi(b)+\varphi(b) a+b \varphi(a) . \tag{2.4}
\end{equation*}
$$

For any $x \in A$, there are $a, b \in A$ such that $x=a+i b$. Hence,

$$
\begin{aligned}
\varphi\left(x^{2}\right) & =\varphi\left(\left(a^{2}-b^{2}\right)+i(a b+b a)\right) \\
& =(\varphi(a) a+a \varphi(a)-\varphi(b) b-b \varphi(b))+i(\varphi(a) b+a \varphi(b)+\varphi(b) a+b \varphi(a)) \\
& =\varphi(x) x+x \varphi(x)
\end{aligned}
$$

Therefore, φ is a Jordan derivation. By [4, Theorem 6.3], φ is a $*$-derivation.

3. Skew Lie triple homomorphisms at the identity

Let A, B be unital C^{*}-algebras, $\varphi: A \rightarrow B$ linear map. If

$$
\varphi\left(\left[[x, y]_{*}, x\right]_{*}\right)=\left[[\varphi(x), \varphi(y)]_{*}, \varphi(x)\right]_{*}
$$

for all $x, y \in A$ with $x y=1$, then φ is called a skew Lie triple homomorphism at the identity. Recall that a Jordan $*$-homomorphism between C^{*}-algebras is a linear map φ such that $\varphi\left(x^{2}\right)=\varphi(x)^{2}$ and $\varphi\left(x^{*}\right)=\varphi(x)^{*}$. In this section we prove that every linear continuous skew Lie triple homomorphism at the identity is a Jordan $*$-homomorphism. Throughout this section A and B will be unital C^{*}-algebras.
Lemma 3.1. Let $\varphi: A \rightarrow B$ be a linear continuous skew Lie triple homomorphism at the identity. Then $\varphi(1)$ is a partial isometry.

Proof. Since the product of 1 and itself is 1 and $\left[[1,1]_{*}, 1\right]_{*}=0$, then

$$
0=\left[[\varphi(1), \varphi(1)]_{*}, \varphi(1)\right]_{*}=\varphi(1)^{3}-\varphi(1) \varphi(1)^{*} \varphi(1)-\varphi(1) \varphi(1)^{*} \varphi(1)^{*}+\varphi(1) \varphi(1) \varphi(1)^{*} .
$$

Hence,

$$
\begin{equation*}
\varphi(1)^{3}-\varphi(1) \varphi(1)^{*} \varphi(1)^{*}=\varphi(1) \varphi(1)^{*} \varphi(1)-\varphi(1) \varphi(1) \varphi(1)^{*} . \tag{3.1}
\end{equation*}
$$

For any $a \in A_{s a}, \mathrm{e}^{\mathrm{i} t a}$ is a unitary for each real number t and $\left[\left[\mathrm{e}^{i t a}, \mathrm{e}^{-i t a}\right]_{*}, \mathrm{e}^{\mathrm{i} t a}\right]_{*}=\mathrm{e}^{3 i t a}-\mathrm{e}^{-i t a}$. Thus we deduce that

$$
\begin{aligned}
\varphi\left(\mathrm{e}^{3 i t a}\right)-\varphi\left(\mathrm{e}^{-i t a}\right)= & {\left[\left[\varphi\left(\mathrm{e}^{i t a}\right), \varphi\left(\mathrm{e}^{-i t a}\right)\right]_{*}, \varphi\left(\mathrm{e}^{i t a}\right)\right]_{*} } \\
= & \varphi\left(\mathrm{e}^{\mathrm{ita} a}\right) \varphi\left(\mathrm{e}^{-i t a}\right) \varphi\left(\mathrm{e}^{\mathrm{i} t a}\right)-\varphi\left(\mathrm{e}^{-i t a}\right) \varphi\left(\mathrm{e}^{i t a}\right)^{*} \varphi\left(\mathrm{e}^{i t a}\right) \\
& -\varphi\left(\mathrm{e}^{i t a}\right) \varphi\left(\mathrm{e}^{-i t a}\right)^{*} \varphi\left(\mathrm{e}^{i t a}\right)^{*}+\varphi\left(\mathrm{e}^{i t a}\right) \varphi\left(\mathrm{e}^{i t a}\right) \varphi\left(\mathrm{e}^{-i t a}\right)^{*} .
\end{aligned}
$$

Take derivative at t, then

$$
\begin{align*}
3 \varphi\left(a \mathrm{e}^{3 i t a}\right)+\varphi\left(a \mathrm{e}^{-i t a}\right)= & \varphi\left(a \mathrm{e}^{\mathrm{ita}}\right) \varphi\left(\mathrm{e}^{-i t a}\right) \varphi\left(\mathrm{e}^{i t a}\right)-\varphi\left(\mathrm{e}^{\mathrm{i} t a}\right) \varphi\left(a \mathrm{e}^{-i t a}\right) \varphi\left(\mathrm{e}^{i t a}\right) \\
& +\varphi\left(\mathrm{e}^{\mathrm{i} t a}\right) \varphi\left(\mathrm{e}^{-i t a}\right) \varphi\left(a \mathrm{e}^{i t a}\right)+\varphi\left(a \mathrm{e}^{-i t a}\right) \varphi\left(\mathrm{e}^{\mathrm{ita}}\right)^{*} \varphi\left(\mathrm{e}^{\mathrm{i} t a}\right) \\
& +\varphi\left(\mathrm{e}^{-i t a}\right) \varphi\left(a \mathrm{e}^{i t a}\right)^{*} \varphi\left(\mathrm{e}^{i t a}\right)-\varphi\left(\mathrm{e}^{-i t a}\right) \varphi\left(\mathrm{e}^{i t a}\right)^{*} \varphi\left(a \mathrm{e}^{i t a}\right) \\
& -\varphi\left(a \mathrm{a}^{\mathrm{i} t a}\right) \varphi\left(\mathrm{e}^{-i t a}\right)^{*} \varphi\left(\mathrm{e}^{\mathrm{ita}}\right)^{*}-\varphi\left(\mathrm{e}^{\mathrm{ita}}\right) \varphi\left(a \mathrm{e}^{-i t a a}\right)^{*} \varphi\left(\mathrm{e}^{i t a}\right)^{*} \\
& +\varphi\left(\mathrm{e}^{\mathrm{ita} a}\right) \varphi\left(\mathrm{e}^{-i t a}\right)^{*} \varphi\left(a \mathrm{e}^{i t a}\right)^{*}+\varphi\left(a \mathrm{a}^{i t a}\right) \varphi\left(\mathrm{e}^{i t a}\right) \varphi\left(\mathrm{e}^{-i t a}\right)^{*} \\
& +\varphi\left(\mathrm{e}^{i t a}\right) \varphi\left(a \mathrm{e}^{i t a}\right) \varphi\left(\mathrm{e}^{-i t a}\right)^{*}+\varphi\left(\mathrm{e}^{i t a}\right) \varphi\left(\mathrm{e}^{i t a}\right) \varphi\left(a \mathrm{e}^{-i t a}\right)^{*} . \tag{3.2}
\end{align*}
$$

Put $t=0$ and $a=1$, then

$$
\begin{equation*}
4 \varphi(1)=\varphi(1)^{3}+\varphi(1) \varphi(1)^{*} \varphi(1)-\varphi(1) \varphi(1)^{*} \varphi(1)^{*}+3 \varphi(1) \varphi(1) \varphi(1)^{*} . \tag{3.3}
\end{equation*}
$$

By taking derivative of Eq (3.2) at $t=0$, we get

$$
\begin{align*}
-8 \varphi\left(a^{2}\right)= & -\varphi\left(a^{2}\right) \varphi(1)^{2}+\varphi(1) \varphi\left(a^{2}\right)^{*} \varphi(1)+\varphi(1) \varphi(1)^{*} \varphi\left(a^{2}\right)^{*}-\varphi(1) \varphi\left(a^{2}\right) \varphi(1)^{*} \\
& -\varphi(1) \varphi\left(a^{2}\right) \varphi(1)+\varphi\left(a^{2}\right) \varphi(1)^{*} \varphi(1)+\varphi(1) \varphi\left(a^{2}\right)^{*} \varphi(1)^{*}-\varphi(1)^{2} \varphi\left(a^{2}\right)^{*} \\
& -\varphi(1)^{2} \varphi\left(a^{2}\right)+\varphi(1) \varphi(1)^{*} \varphi\left(a^{2}\right)+\varphi\left(a^{2}\right)\left[\varphi(1)^{*}\right]^{2}-\varphi\left(a^{2}\right) \varphi(1) \varphi(1)^{*} \\
& +2\left[\varphi(a)^{2} \varphi(1)+\varphi(a) \varphi(a)^{*} \varphi(1)-\varphi(1)\left[\varphi(a)^{*}\right]^{2}-\varphi(1) \varphi(a) \varphi(a)^{*}\right] \\
& -2\left[\varphi(a) \varphi(1) \varphi(a)+\varphi(1) \varphi(a)^{*} \varphi(a)+\varphi(a) \varphi(1)^{*} \varphi(a)^{*}+\varphi(a)^{2} \varphi(1)^{*}\right] \\
& +2\left[\varphi(1) \varphi(a)^{2}-\varphi(a) \varphi(1)^{*} \varphi(a)+\varphi(a) \varphi(a)^{*} \varphi(1)^{*}-\varphi(a) \varphi(1) \varphi(a)^{*}\right] . \tag{3.4}
\end{align*}
$$

By putting $a=1$ in Eq (3.4), we get

$$
\begin{equation*}
8 \varphi(1)=\varphi(1)^{3}-\varphi(1) \varphi(1)^{*} \varphi(1)-\varphi(1) \varphi(1)^{*} \varphi(1)^{*}+9 \varphi(1) \varphi(1) \varphi(1)^{*} . \tag{3.5}
\end{equation*}
$$

Multiplying Eq (3.3) by 2 and subtracting Eq (3.5) yield that

$$
0=\varphi(1)^{3}+3 \varphi(1) \varphi(1)^{*} \varphi(1)-\varphi(1)\left(\varphi(1)^{*}\right)^{2}-3 \varphi(1)^{2} \varphi(1)^{*},
$$

which implies

$$
\begin{equation*}
\varphi(1)^{3}-\varphi(1)\left[\varphi(1)^{*}\right]^{2}=3 \varphi(1)^{2} \varphi(1)^{*}-3 \varphi(1) \varphi(1)^{*} \varphi(1) . \tag{3.6}
\end{equation*}
$$

It follows from Eqs (3.1) and (3.6) that

$$
\varphi(1)^{3}=\varphi(1)\left[\varphi(1)^{*}\right]^{2}, \quad \varphi(1)^{2} \varphi(1)^{*}=\varphi(1) \varphi(1)^{*} \varphi(1) .
$$

Now combine the above two equations and $\operatorname{Eq}(3.3)$, then we get $\varphi(1)=\varphi(1) \varphi(1)^{*} \varphi(1)$. Hence, $\varphi(1)$ is a partial isometry.

If furthermore $\varphi(1)=1$, then we can show the following main theorem.
Theorem 3.2. Let $\varphi: A \rightarrow B$ be a linear continuous skew Lie triple homomorphism at the identity. If $\varphi(1)=1$, then φ is a Jordan $*$-homomorphism.
Proof. (1) Since $\varphi(1)=1$, by putting $t=0$ in Eq (3.2), we obtain that

$$
3 \varphi(a)+\varphi(a)=\varphi(a)-\varphi(a)+\varphi(a)+\varphi(a)+\varphi(a)^{*}-\varphi(a)-\varphi(a)-\varphi(a)^{*}+\varphi(a)^{*}+\varphi(a)+\varphi(a)+\varphi(a)^{*},
$$

i.e., $\varphi(a)=\varphi(a)^{*}$. As in the proof of Theorem 2.2, we can see that $\varphi\left(x^{*}\right)=\varphi(x)^{*}$ for all $x \in A$.
(2) Since $\varphi(1)=1$ and $\varphi(a)=\varphi(a)^{*}$, it follows from Eq (3.4) that

$$
\varphi\left(a^{2}\right)=\varphi(a)^{2}, \quad a \in A_{s a} .
$$

Replacing a by $a+b$ for $a, b \in A_{s a}$, we get

$$
\varphi(a b+b a)=\varphi(a) \varphi(b)+\varphi(b) \varphi(a), \quad a, b \in A_{s a} .
$$

Now for each $x \in A$, there are $a, b \in A_{s a}$ such that $x=a+i b$. So

$$
\varphi\left(x^{2}\right)=\varphi\left(a^{2}-b^{2}+i(a b+b a)\right)=\varphi(a)^{2}-\varphi(b)^{2}+i(\varphi(a) \varphi(b)+\varphi(b) \varphi(a))=\varphi(x)^{2},
$$

and so φ is a Jordan *-homomorphism.
For any partial isometry e in a C^{*}-algebra $A, e^{*} e$ and $e e^{*}$ are projections. A can be decomposed as a direct sum of the form

$$
A=e e^{*} A e^{*} e \oplus\left(1-e e^{*}\right) A e^{*} e \oplus e e^{*} A\left(1-e^{*} e\right) \oplus\left(1-e e^{*}\right) A\left(1-e^{*} e\right) .
$$

From Lemma 3.1, it follows that $\varphi(1)$ is a partial isometry. Let $\varphi(1) \varphi(1)^{*}=p$ and $\varphi(1)^{*} \varphi(1)=q$, then we can decompose B as

$$
B=p B q \oplus p^{\perp} B q \oplus p B q^{\perp} \oplus p^{\perp} B q^{\perp}
$$

where $p^{\perp}=1-p$ and $q^{\perp}=1-q$. Let $B_{0}(\varphi(1))=p B q, B_{2}(\varphi(1))=p^{\perp} B q^{\perp}$, we can show the following corollary.
Corollary 3.1. Let $\varphi: A \rightarrow B$ be a linear continuous skew Lie triple homomorphism at the identity. If $\varphi(1)^{*}=\varphi(1)$, then $\varphi(a)=\varphi(a)^{*}$ for all $a \in A_{s a}$ and $\varphi(A) \subset B_{0}(\varphi(1))$.
Proof. Since $\varphi(1)^{*}=\varphi(1), p=q=\varphi(1)^{2}$. By putting $t=0$ in Eq (3.2), we obtain that

$$
\begin{align*}
4 \varphi(a)= & \varphi(a) \varphi(1) \varphi(1)-\varphi(1) \varphi(a) \varphi(1)+\varphi(1) \varphi(1) \varphi(a)+\varphi(a) \varphi(1)^{*} \varphi(1) \\
& +\varphi(1) \varphi(a)^{*} \varphi(1)-\varphi(1) \varphi(1)^{*} \varphi(a)-\varphi(a) \varphi(1)^{*} \varphi(1)^{*}-\varphi(1) \varphi(a)^{*} \varphi(1)^{*} \\
& +\varphi(1) \varphi(1)^{*} \varphi(a)^{*}+\varphi(a) \varphi(1) \varphi(1)^{*}+\varphi(1) \varphi(a) \varphi(1)^{*}+\varphi(1) \varphi(1) \varphi(a)^{*} \\
= & 2 \varphi(a) p+2 p \varphi(a)^{*} . \tag{3.7}
\end{align*}
$$

Hence, $\varphi(a)=\varphi(a)^{*}$ for all $a \in A_{s a}$. It follows from Eq (3.7) that

$$
\varphi(a)=\frac{1}{2} \varphi(a) p+\frac{1}{2} p \varphi(a) .
$$

So $p^{\perp} \varphi(a) p^{\perp}=p \varphi(a) p^{\perp}=p^{\perp} \varphi(a) p=0$ and so $\varphi(a)=p \varphi(a) p \in B_{0}(\varphi(1))$. Therefore, $\varphi(A) \subset$ $B_{0}(\varphi(1))$.
Corollary 3.2. Let $\varphi: A \rightarrow B$ be a linear continuous skew Lie triple homomorphism at the identity. Then φ is a Jordan $*$-homomorphism if and only if $\varphi(1)$ is a projection.
Proof. If φ is a Jordan $*$-homomorphism, then $\varphi(1)=\varphi\left(1^{2}\right)=\varphi(1)^{2}$ and $\varphi(1)^{*}=\varphi(1)$. So $\varphi(1)$ is a projection.

Conversely, if $\varphi(1)$ is a projection, then $\varphi(1)=p$ is the identity of the subalgebra $B_{0}(\varphi(1))$. By Corollary 3.1, we can regard φ as a map from A into $B_{0}(\varphi(1))$. Hence, by Theorem 3.2, φ is a Jordan *-homomorphism.

4. Conclusions

It is not hard to see that the continuity of the linear map φ is very important in this paper. The automatical continuity of some maps on operator algebra is an important problem (see for example [22]). Let φ be a linear map which is skew Lie triple derivable at the identity or is a skew Lie triple homomorphism at the identity. It is natural to ask whether φ is automatically continuous.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No.11901451), Talent Project Foundation of Yunnan Provincial Science and Technology Department (No.202105AC160089), and Natural Science Foundation of Yunnan Province (No.202101BA070001198)

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. Z. Bai, S. Du, The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra Appl., 436 (2012), 2701-2708. https://doi.org/10.1016/j.laa.2011.11.009
2. D. Benkovič, N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl., 437 (2012), 2271-2284. https://doi.org/10.1016/j.laa.2012.06.009
3. X. Qi, J. Hou, Additive Lie (ξ-Lie) derivations and generalized Lie (ξ-Lie) derivations on prime algebras, Acta Math. Sin., 29 (2013), 383-392. https://doi.org/10.1007/s10114-012-0502-8
4. B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge, 120 (1996), 455-473. https://doi.org/10.1017/S0305004100075010
5. W. Yu, J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl., 437 (2012), 1979-1991. https://doi.org/10.1016/j.laa.2012.05.032
6. W. Yu, J. Zhang, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251255. https://doi.org/10.1016/j.laa.2006.04.015
7. W. Yu, J. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl., 432 (2010), 2953-2960. https://doi.org/10.1016/j.laa.2009.12.042
8. J. Alaminos, M. Brešar, J. Extremera, A. Villena, Characterizing Jordan maps on C^{*}-algebras through zero products, P. Edinburgh Math. Soc., 53 (2010), 543-555. https://doi.org/10.1017/S0013091509000534
9. D. Liu, J. Zhang, Jordan higher derivable maps on triangular algebras by commutative zero products, Acta Math. Sin., 32 (2016), 258-264. https://doi.org/10.1007/s10114-016-5047-9
10. J. Zhu, C. Xiong, Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 397 (2005), 367-379. https://doi.org/10.1016/j.laa.2004.11.012
11. B. Fadaee, H. Ghahramani, Linear maps on C^{*}-algebras behaving like (anti-) derivations at orthogonal elements, B. Malays. Math. Sci. So., 43 (2020), 2851-2859. https://doi.org/10.1007/s40840-019-00841-6
12. G. An, X. Zhang, J. He, Characterizations of *-antiderivable mappings on operator algebras, Open Math., 20 (2022), 517-528. https://doi.org/10.1515/math-2022-0047
13. K. Fallahi, H. Ghahramani, Anti-derivable linear maps at zero on standard operator algebras, Acta Math. Hung., 167 (2022), 287-294. https://doi.org/10.1007/s10474-022-01243-0
14. A. Essaleh, A. Peralta, Linear maps on C^{*}-algebras which are derivations or triple derivations at a point, Linear Algebra Appl., 538 (2018), 1-21. https://doi.org/10.1016/j.laa.2017.10.009
15. J. Zhu, C. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 422 (2017), 721-735. https://doi.org/10.1016/j.laa.2006.12.002
16. J. Zhu, S. Zhao, Characterizations all-derivable points in nest algebras, P. Am. Math. Soc., 141 (2013), 2343-2350. https://doi.org/10.1090/S0002-9939-2013-11511-X
17. Z. Bai, S. Du, Maps preserving product $X Y-Y X^{*}$ on von Neumann algebras, J. Math. Anal. Appl., 386 (2012), 103-109. https://doi.org/10.1016/j.jmaa.2011.07.052
18. J. Cui, C. Li, Maps preserving product $X Y-Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl., 431 (2009), 833-842. https://doi.org/10.1016/j.laa.2009.03.036
19. C. J. Li, F. Y. Lu, X. C. Fang, Nonlinear ξ-Jordan *-derivations on von Neumann algebras, Linear Multilinear A., 62 (2014), 466-473. https://doi.org/10.1080/03081087.2013.780603
20. W. Jing, Nonlinear *-Lie derivations of standard operator algebras, Quaest. Math., 39 (2016), 1037-1046. https://doi.org/10.2989/16073606.2016.1247119
21. C. J. Li, F. F. Zhao, Q. Y. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sin., 32 (2016), 821-830. https://doi.org/10.1007/s10114-016-5690-1
22. G. Pisier, Similarity problems and completely bounded maps, Springer, 1995. https://doi.org/10.1007/978-3-662-21537-1
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
