Let $ \aleph $ be a factor von Neumann algebra with $ dim > 1 $ that operates on a Hilbert space. Within the manuscript, we let out the characterization of Lie type derivation on factor von Neumann algebra of zero product as well as at projection product and notice that it has standard form.
Citation: Mohd Arif Raza, Aisha Jabeen, Abdul Nadim Khan, Husain Alhazmi. Linear maps on von Neumann algebras acting as Lie type derivation via local actions[J]. AIMS Mathematics, 2021, 6(8): 8453-8465. doi: 10.3934/math.2021490
Let $ \aleph $ be a factor von Neumann algebra with $ dim > 1 $ that operates on a Hilbert space. Within the manuscript, we let out the characterization of Lie type derivation on factor von Neumann algebra of zero product as well as at projection product and notice that it has standard form.
[1] | I. Z. Abdullaev, $n$-Lie derivations on von Neumann algebra, Uzbek. Mat. Zh., 5 (1992), 3–9. |
[2] | F. Y. Lu, W. Jing, Characterizations of Lie derivations of ${B(X)}$, Linear Algebra Appl., 432 (2010), 89–99. doi: 10.1016/j.laa.2009.07.026 |
[3] | P. Ji, W. Qi, X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear A., 61 (2013), 417–428. doi: 10.1080/03081087.2012.689982 |
[4] | P. Ji, W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 435 (2011), 1137–1146. doi: 10.1016/j.laa.2011.02.048 |
[5] | X. Qi, Characterization of (generalized) Lie derivations on $\mathcal{J}$-subspace lattice algebras by local action, Aequat. Math., 87 (2014), 53–69. doi: 10.1007/s00010-012-0177-3 |
[6] | L. Liu, Lie triple derivations on factor von Neumann algebras, Bull. Korean Math. Soc., 52 (2015), 581–591. doi: 10.4134/BKMS.2015.52.2.581 |
[7] | Y. Wang, Lie $n$-derivations of unital algebras with idempotents, Linear Algebra Appl., 458 (2014), 512–525. doi: 10.1016/j.laa.2014.06.029 |
[8] | X. Qi, Characterizing Lie $n$-derivations for reflexive algebras, Linear Multilinear A., 63 (2015), 1693–1706. doi: 10.1080/03081087.2014.968519 |
[9] | Z. Xiao, Y. Yang, Lie $n$-derivations of incidence algebras, Comm. Algebra, 48 (2020), 105–118. doi: 10.1080/00927872.2019.1632334 |
[10] | M. Khrypchenko, F. Wei, Lie-type derivations of finitary incidence algebras, Rocky Mountain J. Math., 50 (2020), 163–175. |
[11] | R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras, vol. Ⅰ, Ⅱ New York: Academic Press, 1986. |