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1. Introduction

Let N be an algebra over complex field C. A mapping (linear) U : 8§ — N is considered as a
derivation (respectively Lie derivation) on N if U(w @) = U(w )@, + @ O(w@,) (resp. U([@, @,]) =
[O(@), @,] + @1, O(w3)]) holds for all w,, @, € N. Right away we explore a popular family of maps.
Characterize the arrangement of polynomials:

gzl(fl) =0
P81, 82) = [P1(80), (2] = [, ]

yn({la {2’ Tt ?{H) = [gn—l(é/l’ 2:25 et ’gn—l)v gn]

Forn > 2, the polynomial Z,({1, &, -+ , &) is known as (n-1)-th commutator. A Lie n-derivation on
N is defined as

U(igzn(él’ 425 e ’én)) = Z t@n(gl’ {27 s "7 a{i—la U(él)a §i+l7 et agn)
i=1
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forall 1,43, -+ ,{n € N, where U'is a linear map U : 8 — N. Along these lines, Abdullaev [1] initiated
and conceived the idea of Lie n-derivation on von Neumann algebras. Notice that any Lie 2-derivation
is known as Lie derivation and Lie 3-derivation is said to be Lie triple derivation. Therefore Lie, Lie
triple, Lie n-derivation are comprehensively recognized as Lie type derivations on N .

In the recent past assessment of the conditions under which a linear map becomes a derivation (Lie
derivation) fascinate the courtesy of many algebraists (see [2—-6] and in their bibliographic content).
Commonly, the object of the above studies was to attain the stipulations under which derivations (Lie
derivations) can be absolutely determined by way of the action on some subsets of the algebras. On
the analysis of local actions of Lie derivations on operator algebras, although there numerous research
articles have been published. In 2010, Lu and Jing [2] initiated the study of local actions of Lie
derivations of operator algebras and they characterized the action of Lie derivation on Z({). Exactly,
they established that if £ is Banach space of dimension greater then two and a linear map U : #({) —
HAB() such that O([wy, @,]) = [O(w)), @] + [w, O(w,)] for all @, w, € HA() with w @, = 0
(resp. @@, = %, where ¢ is a fixed nontrivial idempotent), then there exists an operator r €
HB() and a linear map ¢ : AB({) — CI vanishes at all the commutators [w, @,] with @@, = 0
(resp. @@, = %) such that U(w,) = rw; — @ r + ¢(w) for all @, € HB({). Motivated by the
work of Lu and Jing [2], Ji and Qi in [4] studied the conditions under which Lie derivations can be
completely determined by their actions on the triangular algebras. Namely, they proved that under
certain restrictions on triangular algebra .7 over commutative ring %, if U : 7 — 7 is an Z-linear
map such that U([@, @;]) = [O(w@), @3] + [w@, O(w,)] for all @, w, € 7 with w @, = 0 (resp.
w @, = p, where p is the standard idempotent of .77), then there exists a derivation § : . — 7
and an Z-linear map ¢ : .7 — Z(.7) vanishes at all the commutators [w, @,] with @@, = 0 (resp.
w @, = p) such that U = ¢ + ¢. In 2013, Ji et al. [3] characterized Lie derivations on factor von
Neumann algebra with dimension greater than 4 and obtained the similar conclusion. Furthermore,
Qi [5] characterized Lie derivation on _¢ -subspace lattice algebras and proved the same result due to
Lu and Jing [2] on _Z -subspace lattice algebra Alg.#, where .Z" is _# -subspace lattice on a Banach
space { over the real or complex field with dimension greater than 2.

Apart from these, Liu [6] investigated the Lie triple derivation on factor von Neumann algebra with
dim > 1 and stated that a linear map U : N — N satisfying O([[@, @»], @3]) = [[O(@)), @3], @3] +
[[@1, O(@,)], @3] + [[@1, @], O(ws)] for all @, w,,w; € N with @@, = 0 (resp. w 1w, = ¥,
where % is a fixed nontrivial projection of 8). Then there exist an operator 7 € N and a linear map
v : X — CI annihilates each 2-commutator y([[@, @;], @3]) = 0 with @@, = 0 (resp. w @, = ¥)
such that U(0) = {T — T + y(¢) for all £ € N. Recently, many authors examined Lie n-derivation on
various kind of algebras (see [7-10] and references therein). However, so far, there is no known study
about of the local actions of Lie type derivations on operator algebras, it needs to be analyzed further.
A linear map U : N — N is said to be Lie n-derivable at a given point Z € N if

O Pallns & 56D = ), Pallis o L1, O, Lt 5 L)
i=1

for all {1, {3, -+ ,{n € N with £14; = Z. The condition of being a Lie n-derivable map at some point can
easily be seen to be much weaker than the condition of being a Lie n-derivation.

Spurred by using the above cited references, it is very natural to examine Lie type derivation on
factor von Neumann algebra of dim > 1. In this manuscript, we characterize Lie type derivation on
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factor von Neumann algebra which has standard form at zero product as well as at projection product.
2. Preliminaries

Across the whole manuscript, let Z(¢) be an algebra of all bound linear operators on .77, where
2 be a complex Hilbert space. Recognize that a von Neumann algebra N acting on .77 is a self-adjoint,
weakly closed algebra of operators containing an identity operator. A factor von Neumann algebra is a
von Neumann algebra whose center contains only scalar operators. The factor-von-Neumann algebra (
i.e., the center of N is CI, where [ is the identity of N) is referred by N C A(). Let 2, and 2, be two
projections in N satisfying 2, + 2, = I and let N;; = Z;R2;, 1 <i,j<2.ThenNX = 3} N;;. This

1<i,j<2
signifies {j; € N;;, 1 < i, j < 2 according to what accepts, whenever we start reading ;;. TheJ: factor von
Neumann algebra N is widely known to be prime (i.e., a lack of nontrivial tensor product decomposition
for N8). Towards the concept of von Neumann algebras, we conclude with recommendations to [11].
We often use the following observation while proving the key result of this manuscript.

Lemma 2.1. Let (ii € N,’i,i =1,2. U§11Y12 = Y12§22f01" all Yy, € 812, then {11 +{»n € ClI.

Proof As N is prime, then for any (11 S 811, Y, € le, we find that 511Y11Y12 = Y11Y12§22 = Y11§11Y12.
This leads to £11Y;; = Y114 Clearly, 8;; is a factor von Neumann algebra on 2,5 and hence
{i = 412, A € C. In the similar manner, { = 4,2,, 4, € C. This implies that 4; = A, and then
i+ 4 eCL o

3. Characterization at zero product

During this segment, the characterization of Lie n-derivation on factor von Neumann algebras at
zero product is considered as follows:

Theorem 3.1. Let N be a factor von Neumann algebra with dim > 1 acting on a Hilbert space and a
linear map U : N — N satisfying

OPalln Lo &) = ) Pl Cave oo 5 L, O, L+ 5 )
i=1

forall(;,(5, - ,n € Nwith (1{; = 0. Then there exist an operator T € N and a linear mapy : 8§ — CI
that annihilates every (n-1)-th commutator &n({1,{2, -+ ,{n) with {13 = 0 such that O() = (T —
T +y() forall { € N.

Let 2y = 2,0(2))2, — 2,0(Z2)Z2, and let us define a map 6 : N — N as an inner derivation
0(0) = [£, 2] for all x € N. Clearly U’ = U — ¢ is also a Lie n-derivation. Since

U'(2) U(2) -2, 2,0(2)2, - 2,0(£))2]
= 0(2)-202)2, - 2,0(£2)2,

= 2,0(2)2, + 2,0(2))2,,

we get 2,0'(2))2, = 2,U0'(21)Z2, = 0. One need only consider these Lie n-derivation U : N —» N
that satisfy 2,0(2)2, = 2,0(2))Z, =0.
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Lemma 3.1. U(2)),0(2,) € CI.
PI"OOf: Now {12@@1 = 0 for all §12 S 812, then

U(‘@n(gl% Qb T o@1))

P02, 21,0+, 20) + Y Pallin, Q1,0+, V() , D)
k=2

kth—place
(D' 2,0(12) 2 + 2,0(012) 21 + (-1)™ 2 = D[, T(2))].
3.1

V((-1)""¢1)

Multiplying from the left side 2; and from the right side of the aforementioned equation 2,, we find
that 2,0(2,){1» = 1,0(Z2,)2, and by Lemma 2.1, we have U(2,) € CI.

Now using 2,2, = 0, it follows that

0 = O(Pu(2, 21, ,2))

Po(O(22), 21+, 20+ ) Po(22,21,...,T(2),..., 21)
k=2 kth—place

= (—D)"'2,0(2,)2; + 2,0(2,)2,.

This implies that 2,0(2,)2, = 2,0(2,)2, = 0. Also, on using Z (2,12, 2y, -+ ,21) = 0 and
applying the similar calculation as above, we get U(2,) € CI. O

Lemma 3.2. UN;;)) CN;;,1 <i#j<2.
Proof. Now consider the case fori = 1 and j = 2. On using (3.1) and U(Z2,) € CI, we have

V) = 20({n)2 + (1) 2,0(010) 2.

It follows that 2,0({12) 2, = 2,0({12)2, = 0. Also, if n is even, then 2.2,0({1,)<Z; = 0. But when
n is odd, then for any {;,, Y1, € Ny, we calculate that

0 = U(f-@n({u, YlZ’Zl2,_B@1,"' ,—o@l))
= Pn(0(12), Y12, 212, - 21, . —=21) + Pu(12, O(Y12), Z12, =21, -+ . —2))
+ P12, Y12, 0(Z12), =2y, -+ ,-2))

+ Z L9211(412’ Y129212’ _9«0219 e ,U(_Ql)’ Y _6@1)
————

k=4 kth—place

= [[O(12), Y121, Zi2] + [[£12, O(Y12], Zi2].

This leads to [O({12), Y12] + [{12, O(Y12)] = Al € CI. Then

[O({12), Y12l Al = [£12,0(Y12)]
= AU - P12, -2, ,—2,,0(Y1n))
= U +0( P12, =21, -, =21, Y1) = Pu(0(12), -2, -+, =21, Y12)

= AU -PZ(0n), -2, ,—21, Y1)
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= AU - [2,0(1)21,Y12].

This gives [2,U({12) 2y, Y12] € CI and hence 2,0((15)2,Y, = 0. Since N is prime, we have
2,0(£12) 21 = 0. Therefore, U(N1,) C Ni,. In the similar manner, we can show that U(NX,;) C N,;. O

Lemma 3.3. There exist linear functionals y; on N;; such that O(;) —vi((i) € N;; for any {;; € K, i =
1,2.

Proof. Since (112, = 0 and from Lemma 3.1, we have

0

(P11, 2s, -+, D))

Pn(O(11), Zo, -+, Zo) + Z Pol11, 22y, 0(22), -+, 2))
k=2 v

kth—place

2,012 + (D) 2,0(01) 2.

Then 2,0({11)2, = 2,0(L11)Z2, = 0. Now for any ¢, € Ny, and Yy, € Ny,, we arrive at

0 = UO(Puli1,(22: Y12, Do, -+, D))
= Zu(0(11), 82, Y2, 2oy, 22) + Pu(11, 0(2), Y12, Zo, -+, 2)

+‘@n(§11’ 422’ U(Y12)9 QZ’ Y o@2) + Z r@n(gll’ {223 YlZa ‘929 RS U(‘Q2)a ceey ‘92)

k=4

= [[O(11), {221, Yial + [[£11, O(4a2], Yol

This leads to [U({11), £22] + [£11, O({n)] = Al € CI. By multiplying the above equation by 2,, on both
ends, we conclude that [2,U(¢ 11)32,_4“22] = 12, which leads to [2,0({11)2,, (2] = 0. Then there
exists A € C such that 2,0({,)2, = 12, and hence

kth—place

O(411) 2,012 + 2,0(01)2,

Qlu(én)gl - /_19@1 + /_1]

A linear functional one can describe as y; on N;; by Zl(( 1) = A€ Cand combining with the above
equation, we have U(é/ll) - ’}/1(511)1 = 0@10(&1)9@1 - /10@1 S NU for all é/ll S NU.

With the similar arguments, we can get a linear functional y, on N5, such that y,({2;) = A€ Cand
U(£22) — v2(da)] € Ry, for all £y € Ny, m]

Now, we define a linear map y : 8§ — N by y({) = OK) — vi(2,{2)] — y2(2:(2,)I for all
{ € N. It can be easily seen that y(2;) = 0, y(N;;)) € N;j,i,7 = 1,2 and x(¢;;) = V() for all
{,JEN,JJSH&]SZ

Lemma 3.4. (1) x(iiYij) = x({i)Yij + ux(Yy)) for any £ € Ny, Yy € Nij, 1 <i# j <2
(2) x(&i;Y;) =x (i)Y i+ Gx (X)) for any i € 8, Y, € Njj, 1 <i# j<2.

Proof. (1) Since Y;;;; = 0, i # j, it follows that
x(&iYi) = 0(iYi))
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U(‘@n(Yija é{ii’ _Qia T _Ql))
PO, Gty =L+, =2 + Pn(Yij, O Gi), =L+, —2))

+ C@I'l()]i'a{ih_cgia'"7_'()‘(31')7~"’_Qi)
S i w2)

kth—place

x(WGi)Yij + Lix(Yi)).

(2) Similar to (1). O

Lemma 3.5. x({i;Yi) = x({i)Yi + Sy (Yi) for all £, Yy € Ny, i=1,2.

Proof. For any Y;; € 8;;, we have
{iiYiiX(Yij) +X(§iiYii)Yij X(fiiYiiYij)

Gix(YiYip) + x(&iYi)Yij

CiYix(Yi)) + Gix(Yi)Yij + x(&iYi) Y.

It follows that)(({,-l-Yl-i)Y,-j = {ii/\,/(Yii)Yij +X(§iiYii)Yij' Since N is prime, we find that)(({,-,-Y,-l-) = X(gii)Yii +
Lix(Yy) forall £, Yy € Ny, i =1,2. o

Lemma 3.6. x(;;Y;) = x(§i)Yji + {ix(Yyi) for any £i; € R, YV € Ny, 1 <i# j<2.
Proof. For any {1 € N3, {122, =0, then

U(‘@n(§]27917"' ,Q]’YZI)) ‘@n(U(§12)7Qb'” ’Q]’Y21)+ yﬂ(Y127°@]7”' ’QI’U(Y21))

n-1
+Z Po(l12, 21, -+, 0(2)), ..., 21, Y2)
k=2 v

kth—place

= Za(((12), 21, -, 21, Y01) + Palli2, 21, -+, 21, x (Y1)
U(12Yo1 = Y21412) = x(§i2)Yor + Liox(Ya1) = x(Yo1)d12 — Yorx(412).

As x(0) = O) — y1(21L2)] — v2(2,{ 2))I for all £ € N. This implies that

X(12Ya1 = Yo1812) + yi(§2Yo)I — y2 (Yo {121
= x(&2)Ya + Liox(Ya1) = x(Y21) 12 — Yarx(&12).

Multiplying the aforementioned equation to the left and right side by {;, respectively, we get some of
that

Ciox(Yo)dio + $12Yo1x(412) (3.2)
x(12)Y21412 + S1ox (Ya1) 1o (3.3)

$iox(Ya1812) — $iyi(l12Ya1) + S22 (Ya1d12)
X (&2 Y1)l + vi(§12Ya1)dh2 — va(Yai1di2)din

Even before we comparing these two above expressions, we notice that

$iox(Y21812) = $yi(§12Yar) + $12y2(Ya1d12) — $12Yo1x(d12)
= x(&2Yo)l2 + $oyi(§i2Yar) = $12y2 (Y21 d12) — x(§12)Y21412. 3.4)
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On application of Lemma 3.4, we get

X (12Y21412)
X(&2Y21)012 + S1ox(£12Y21).

Liox(Y21412) + x(£12)Y21412

From (3.4) it follows that {12y1({12Y21) = £12¥2(Y21£{12) = 0 and hence y({12Y21)] —y2(Y21{12)I = 0. This

imply to x({12Y21) = x(12)Ya1 + {12y (Yay) and x(Y21412) = x(Y21)l12 + Yo x({1o) for all {1, € Ryp, Yo €
Noi. o

Proof of Theorem 3.1. In view of Lemma 3.4-3.6, it can be easily seen that y is an additive derivation.
Now in order to complete the proof, we define a map y({) = U({) — x(¢) for all £ € N. It is easy to
observe that y({;;) € CI, fori = 1,2 and y({;;) = 0 for i # j. Clearly, y is map from N to CI. Also,
by [11] we know that every derivation is an inner derivation, then there exists an operator 7 € N such
that y() = (T — T forall £ € N.

Now we show that y(Zu({1, (2, ..., 4n) = 0forall 41,43, ..., 4, €N

V(Pn(l1, 8- 4)

V(PG Gas o 6) = X( PG, v+, )
= D Pl O L) = ) Pl X )
k=1 k=1

= Z@n(gla""X(gk)a""é/n)_Z@n(gl""’X(gk)""’é/n)
k=1 k=1
0.

We can draw the conclusion according to the above observations if U : 8 — N is a Lie n-derivation,
then there exists an additive derivation y of N and a map y : 8 — CI vanishing at Z,({1,2, ..., ¢n)
with 1, = O0forall £1,3,...,{, € Nsuchthat U = y + . O

4. Characterization at projection product

This segment is devoted to the analysis of a characterization by action of the nontrivial projection
product of Lie n-derivations on factor von Neumann algebras and demonstrates the following
observations:

Theorem 4.1. Let U : X — N be a linear map such that

O Pull o5 G) = D, Pl b+ L, O, Lo+ 5 L),
i=1

where N is a factor von Neumann algebra with dim > 1 acting on a Hilbert space and for every
(1,80, 0 € N with (10, = 24, 2 € N a fixed nontrivial projection. Then there exist an operator
T € N and a linear map y : N — CI that annihilates every (n — 1)-th commutator Z,({1,{2, -+ ,{n)
with {1{, = 2, such that O(() = (T — T + y({) for every { € N.
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Let 2y = 2,0(2))2, - 2,0(2,)Z2, and let us define 6 : 8§ — N as an inner derivation §() =
(£, 2] for all £ € K. Clearly U’ = U — ¢ is also a Lie n-derivation. Therefore we’ve got

U'(21) O(2) - [21, 2/0(2) 2, - 2,0(2) 2]

= 2,0(2)Z, - 2,0(£)2,

to get 2,0'(2))2, = 2,0'(Z))Z2, = 0. It’s indeed reasonable, therefore, to recognize only Lie
n-derivation U : N — N satisfy 2,0(2,)2, = 2,0(2))2, = 0.

Lemma 4.1. U(2)),0(2,) € CI.
Proof. Now we know that ({1, + 2,)2; = 2, for all /1, € Ni,, then

O(Pullia+ 21,21, , 2)))
= PuOUin+ 20,21, , D)+ )| Palln+ 21, 2,0+, U(2y), -+, 1)
k=2

kth—place

O(-1)""%) = (D' 2012, + 2,0(012) 21 + (1) 2@ = D[L1, T(2))]. 4.1)

We achieve 2,0(2)){1, = £1,0(21)<2, upon multiplying the Eq (4.1) by 2, from the left side and
2, from the right side. Also, by Lemma 2.1, we get U(2)) € CI. Further, by using (2, +2)2, = 2,
we obtain

0 U(‘@n(gz+glv°@1,”'7°@1))

P(O(22+ 21), 2y, , 21+ Z P2+ 21,2y, ,0(2)),--,2)

k=2 kth—place

(-1 2,0(2,) 2, + 2,0(2,) 2.
This implies that 2,0(2,)2, = 2,0(2,)2, = 0. Also, using

P21+ 012,20+ 21 =012, 21, , 21)=0
and applying the similar calculation as above, we get U(2,) € CI. O
Lemma4.2. UN;;)) CN;;,1 <i#j<2.
Proof. Taking into account the situation for i = 1 and j = 2, applying (4.1) and U(Z2,) € CI, we have
U(n) = 2/00)2: + (D) 2,0(10)2).

It follows that 2,0({12) 2, = 2,0({12)2, = 0. Also, if n is even, then 2.2,U({1,)<2; = 0. But when
n is odd, then for any {;, € N;,, we calculate that

0 = U('@n(gl +{12a Ql"" ’Ql,glz))

n-1
= (0@ +410), 2y, , 21,00) + Z P2+ (12, 21y, 0(2)), -+, 24, 4)
k=2 v

kth—place
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+ P21 + 12, 21, , 21, 0(n)
= 2,0(12)l12 = £120(812) 20 + U(2)d12 = £120(10).

Multiplying both sides by 25, we obtain that 2,U(,){1, = 0. Moreover, we have

0 = U2+ (12,2, , 21, Y12))

n-1
= (0@ +010), 21, -, 21, Y1)+ Z P2+ (12, 2y, ,0(2y), -+, 21, Y10)
k=2 )

kth—place

+ P21 + (12, 2y, -, 21, 0(Y1R)
= 2,0(10)Y12 = Y120(412) 21 + O(Y12)¢12 = £120(Y ).

Multiplying by £, from right side and using the fact 2,0({12){12 = 0, we obtain that £;,U(Y )1 = 0.
On linearization we find {;,O(Y12)s12 + 6120(Y12)¢12 = 0 for all 15, {1, € N. It is easy to observe that

0 2,0(Y12)810(Y12)[£120(Y12)51210(Y12) 24
+2,0(Y12)120(Y12)[6120(Y12){12]0(Y12) 2,

= 2,0(Y12)(120(Y12)5120(Y12){10(Y12) 2.

Since N is prime, we have 2,U0(Y2){1,0(Y12)2; = 0, and hence 2,U(Y},)2; = 0 for all Y}, € N.
Therefore, U(N1,) C Ny,. In the similar manner, we can show that U(N,;) C Ny;. O

Lemma 4.3. There exist linear functionals y; on N;; such that O(;) — vi((i))] € N;; for any {;; € N;;, i =
1,2.

Proof. Consider for i = 1. Suppose that ;; is invertible in N;;, then there exists 1‘11 € Ny, such that
il = ¢lan = 21 Now we have

0 = U 0, 21,0, 2)

PO G112y, 21) + P O, 2y, D))

+ Y 2 an 2, 0(2), - ,2)
kzz; ——

kth—place

PO, 01 21y 20) + Pl V1), 21+, 20).
It follows from ({7 + 22)011 = 2,

0 = U(Zuli] + 22,01, 21, , D)
= PO+ 22,01, 21, D) + Pl + 25,00, 21,2 D))

+ § Pl + D001, 210, O(2), -, 2)
N——
k=3 kth—place

= PO+ 22),01, 21, D) + Pollr] + 22, 0(00), 21,0+, 2))
= 2,012 + (D) 2,0(L11)2,.
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For any Y, € Ny, and Z;; € Ny, since ({1‘11 + Y»)l1 = 24, it is easy to observe that

0 = V(P + Yo, l11: 212, Doy -, D))
= PO + Y0), G11:Z12, Doy -+, Do) + Pl + Yoo, O(11), Zio, 2o, -+ D)

+Z @n(fﬁl +Y0,01,212, 2, , 0(2y), -+, 2y)
———

k=3 kth—place

= PO + Y0), 01,212, Doy -+, Do) + Py + Yo, O11), Z12y Do, -+ 4 D)
= Z0a(0(Yn), 01l Z12, 25, -+, 22) + Pna([Yar, O], Z12, Zo, -+, 20)
= [[O(Y2), 1], Zi2] + [[Y22, O(L11)], Z12].

This leads to [2,0(Y»)Z21, {11] + [V, £,0(411)2,] = Al € CI. We achieve the following upon
multiplying the equation drive above by_Qz on both sides, [Y2, QZU(_{ 1)2,] = 12, and hence
[Y22, 2,0(11)2,] = 0. Then there exists A € C such that 2,0({11)2, = 12,.

Suppose if {7 is not invertible in N;;. Let r be a real constant satisfying r > ||/{11|]. Then r2; — {1,
is invertible in N;. Following the preceding case 2,0(rZ2, — {11)2, + 2,02, — {11)Z, = 0 and
QQU(I"Ql - (11)32 = ;132 Since U(o@l) = /71, we also have QlU({H)Qg + Qzu(gll)gl = 0 and
2,0(11)2, = 12,, where 1 = ru — A. Without loss of generality, we denote 2,U0((1,)2, = 12,.
Thus for any §11 € NU, we have U({U) = 0@10(511)31 + QZU({I])QZ = 0@10({11)21 - ;lgl + /i[

We define a linear functional y; on Ny; by y,({1;) = A. Then combining with the above equation,
we get U({11) — vi(&i)] = 2,012, — 12, € Ny forany {; € Nyy.

For i = 2, we consider (2, + Y»)2, = 2, to get 2,0(Y»n)2; + (-1)*1.2,0(Y>,)2, = 0 and then
follow the similar steps as for i = 1. Hence U(Y) — 2(Yn)I = 2,0(Y2)2, — 12, € Ny, for any
Y, € sz. O

Now, we define a linear map y : 8 — N by y({) = UQ) — y1(£1L2)] — y,(2,(2))I for all
{ € N. This would easily observed that y(2;) = 0, y(N;;)) € N;;,i,j = 1,2, and x({;;) = U(g;) for any
{,-jeN,-j,lsiqthZ.

Lemma 4.4. (1) x(£iYij) = x(§i)Yij + Gix(Yij) for any {;; € R;;, Yij € 8, 1 <i# j<2.
(2) x(ijY;) = x(ipYjj + Lix (X)) for any §i; € R, Y € R, 1 <i# j<2.

Proof. (1) Firstly, we discuss for i = 1, j = 2. If £, is invertible in N, then for any Z;; € NX,, we
have ((1‘11212 + {ff)(n = 2,. It follows that

XZn) = (Pl Zn+ 410121, 25, , 20)
= c@n(U(fﬂlle + 41_11),(11,31, Dy, Do)

+ Pl Zi2 + 510N, 21, 2o, Do)

+ P11 Z + {1 41, O(2), 2o, -+, 2)

+Z c@1'1(4(111_11212 +é/l_11’§11’°@19£2,”' 70(22)"" 722)

k=4 kth—place

= 2o Z0+ G, 010 21, Doy, Do)
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+ Pl 202 + & X (01)s 21, Doy -+, D))
= () Zon + L Z0).

Replacing Y, with {1‘11212, we have y({11Y12) = x(&11)Y12 + {ix(Yi2). Suppose if £y is not invertible
in Nj;. Let r be a real constant satisfying r > ||{11]|. Then r2; — ¢ is invertible in 8;;. Then y((r2; -
DY) = (62 — H)x(Yi) + x(r2, — 11)Y 1. Clearly, 2, is invertible in 8, so we get x(£1,Y12) =
x(&G1)Y12 + G x(Yr) from the above equation.

Fori =2, ] = 1, consider (21 + §22 - §22221)(o@1 +ZQI) = o@l, we have
—x(Y21)) = O(Pu(Z)+ (= 002V, 21+ Y01, 21, -+, 2)))
= PO+l —00Y0), 21+ Y2, 21, , 2))
+ P2 + (o — 00Y21, 0(2) + Y1), 2y, -+, 2))
+Z P2+ (o — (Y01, 21+ Y01, 2y, , 0(Z2)), -+, 2))
——

k=3 kth—place

= (21 +ln—00Yn), 21+ Y2, 21, . 2)
+ P2 + (o — (Vo1 ) (21 + Y1), 24, -+, 2))
= —x({22Y21) + x($22)Yo1 + Soox(Yar) — x(Ya1).

This 1mphes that)((ézzYzl) = X((ZZ)YZI + §Z2X(Y21) for all {22 S 822 and Y21 € 821.
(2) Fori =1, j=2.Considering (2, + {1n)(Z) — Yoo + {12Y2) = 2, and using the same approach as
above, we obtain that)(({]zng) :/\/({IZ)YZZ + {12)((Y22) for all {12 S N]z and Y, € sz.

Fori = 2, j = 1. Considering {11(Z1 ;] + ¢;}) = 21, we can prove that x({21Y11) = x(&L1)Yi +
Oux(Yhy) forall £ € 8y and Yy € Ny, m]

Lemma 4.5. x(iYi) = x(&i)Yi + Sy (Ya) for any §i, Yi € Ny, = 1,2

Proof. Same as proof of Lemma 3.5. O
Lemma 4.6. x({;;Y;i) = x(&i)Yji + Gix(Yji) for any §i; € R;j, Y € Xji, 1 <i# j<2.

Proof. For any {1, € Ky, ({12 + 21)2, = 2, then

U(gn(glz + Qla Qb RS Qla YZI))

PO+ 21), 21, , 21, Y2)
+ P+ 21,2y, , 21, 0(Ya))

n-1
+ Z Polin+ 21,21, ,0(2),- -+, 2, Y21)
k=2 v

kth—place

= '@n(X(ng)’Qla"' "Q19Y21)
+'@n(§1290@19"' thX(Yzl))

O12Y21 = Y21812) = x(§i2)Yar + Siox(Yar) = x(Ya1)d12 — Yo x(&12).

As x(0) = O) — y1(21L2))] — y2(2,£25)I for all { € N. This implies that

X (G12Yo1 = Y21812) + yi(§iaYo)] = y2(Yai1£io)]
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= x(&i2)Ya1 + Liox(Yo1) — x(Y21) 12 — Yarx(12).

Multiply the above mentioned equation by ¢}, from both side, we notice that

Liox(Ya1d12) — $i2v1(£12Y21) + {122 (Ya1d12)
X(&2Y21)l0 + vi(§i2Ya1)din — va(Yai1di2)din

Ciox(Ya)din + $12Ya1x(L12),
x(12)Y21412 + Siox (Y21) 1o

By analyzing the two expressions described above, we notice that

$iox(Y21812) = {yi(&i2Yar) + $12y2(Ya1d12) — $12Yo1x(d12)
= x(2Y2)d2 + Lyi(§i2Y2r) — $ioy2(Ya1d12) — x(£12)Ya1410.

On application of Lemma 4.4, we get

X (12Y21412)
X(&2Y21)012 + Siox(£12Y21).

Liox(Y21412) + x(£12)Y21412

From (4.4) it follows that
$2y1(£12Y21) = $12y2(Y21d12) = 0

and hence y({12Y21)I — y2(¥21{12)] = 0. This imply to
X (&12Y21) = x(12) Y21 + Siox(Ya)

and
X(Y21412) = x(Ya1)di2 + Yorx(£12)
for all {1, € Nyp, Yo € Ny

Proof of Theorem 4.1. 1t’s just like the Theorem 3.1 claims.
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