In this paper, we will prove that a closed Möbius minimal and Möbius isotropic hypersurface without umbilic points in the unit sphere $ \mathbb{S}^{5} $ is Möbius equivalent to either the torus $ \mathbb{S}^{2}(\frac{1}{\sqrt{2}})\times\mathbb{S}^{2}(\frac{1}{\sqrt{2}})\rightarrow \mathbb{S}^{5} $ or the Cartan minimal hypersurface in $ \mathbb{S}^{5} $ with four distinct principal curvatures.
Citation: Bangchao Yin, Shujie Zhai. Classification of Möbius minimal and Möbius isotropic hypersurfaces in $ \mathbb{S}^{5} $[J]. AIMS Mathematics, 2021, 6(8): 8426-8452. doi: 10.3934/math.2021489
In this paper, we will prove that a closed Möbius minimal and Möbius isotropic hypersurface without umbilic points in the unit sphere $ \mathbb{S}^{5} $ is Möbius equivalent to either the torus $ \mathbb{S}^{2}(\frac{1}{\sqrt{2}})\times\mathbb{S}^{2}(\frac{1}{\sqrt{2}})\rightarrow \mathbb{S}^{5} $ or the Cartan minimal hypersurface in $ \mathbb{S}^{5} $ with four distinct principal curvatures.
[1] | E. Cartan, Sur des familles remarquables d'hypersurfaces isoparam$\acute{e}$triques dans les espaces spheriques, Math. Z., 45 (1939), 335-367. doi: 10.1007/BF01580289 |
[2] | S. P. Chang, A closed hypersurface with constant scalar curvature and constant mean curvature in $\mathbb{S}^{4}$ is isoparametric, Comm. Anal. Geom., 1 (1993), 71–100. doi: 10.4310/CAG.1993.v1.n1.a4 |
[3] | S. P. Chang, On minimal hypersurfaces with constant scalar curvatures in $\mathbb{S}^{4}$, J. Differ. Geom., 37 (1993), 523–534. |
[4] | Q. T. Deng, H. L. Gu, Q. Y. Wei, Closed Willmore minimal hypersurfaces with constant scalar curvature in $\mathbb{S}^{5}(1)$ are isoparametric, Adv. Math., 314 (2017), 278–305. doi: 10.1016/j.aim.2017.05.002 |
[5] | Z. Guo, H. Li, C. P. Wang, The second variational formula for Willmore submanifolds in $\mathbb{S}^{n}$, Results Math., 40 (2001), 205–225. doi: 10.1007/BF03322706 |
[6] | Z. Guo, J. B. Fang, L. M. Lin, Hypersurfaces with isotropic Blaschke tensor, J. Math. Soc. Japan, 63 (2011), 1155–1186. |
[7] | Z. J. Hu, H. Li, Classification of hypersurfaces with parallel Möbius second fundamental form in $\mathbb{S}^{n+1}$, Sci. China Ser. A, 47 (2004), 417–430. doi: 10.1360/03ys0134 |
[8] | Z. J. Hu, H. Z. Li, C. P. Wang, Classification of Möbius isoparametric hypersurfaces in $\mathbb{S}^{5}$, Monatsh. Math., 151 (2007), 201–222. doi: 10.1007/s00605-006-0420-x |
[9] | Z. J. Hu, S. J. Zhai, Möbius isoparametric hypersurfaces with three distinct principal curvatures, Ⅱ, Pac. J. Math., 249 (2011), 343–370. doi: 10.2140/pjm.2011.249.343 |
[10] | Z. J. Hu, S. J. Zhai, Submanifolds with parallel Möbius second fundamental form in the unit sphere, Results Math., 73 (2018), 1–46. doi: 10.1007/s00025-018-0773-1 |
[11] | H. Li, Willmore hypersurfaces in a sphere, Asian J. Math., 5 (2001), 365–377. doi: 10.4310/AJM.2001.v5.n2.a4 |
[12] | H. Li, H. L. Liu, C. P. Wang, G. S. Zhao, Möbius isoparametric hypersurfaces in $\mathbb{S}^{n+1}$ with two distinct principal curvatures, Acta Math. Sin. 18 (2002), 437–446. |
[13] | T. Z. Li, J. Qing, C. P. Wang, Möbius curvature, Laguerre curvature and Dupin hypersurface, Adv. Math., 311 (2017), 249–294. doi: 10.1016/j.aim.2017.02.024 |
[14] | H. L. Liu, C. P. Wang, G. S. Zhao, Möbius isotropic submanifolds in $\mathbb{S}^{n}$, Tohoku Math. J., 53 (2001), 553–569. |
[15] | T. Lusala, M. Scherfner, L. A. M. Sousa Jr, Closed minimal Willmore hypersurfaces of $\mathbb{S}^5(1)$ with constant scalar curvature, Asian J. Math., 9 (2005), 65–78. doi: 10.4310/AJM.2005.v9.n1.a6 |
[16] | C. K. Peng, C. L. Terng, The scalar curvature of minimal hypersurfaces in spheres, Math. Ann., 266 (1983), 105–113. doi: 10.1007/BF01458707 |
[17] | Z. Z. Tang, W. J. Yan, On the Chern conjecture for isoparametric hypersurfaces, arXiv preprint arXiv: 2001.10134, 2020. |
[18] | C. P. Wang, Möbius geometry of submanifolds in $\mathbb{S}^{n}$, Manuscripta Math., 96 (1998), 517–534. doi: 10.1007/s002290050080 |