In this paper, using the mountain pass theorem we obtain a positive solution to the fractional Laplacian problem
$ \begin{equation*} \label{eq: main problem} \begin{cases} (-\Delta)^su = g(x)(u-k)_{+}^{q-1}+u^{\frac{n+2s}{n-2s}}& \rm{in}\ \,\Omega,\\ u>0& \rm{in}\ \,\Omega,\\ u = 0& \rm{on}\ \,\partial\Omega, \end{cases} \end{equation*} $
where $ \Omega\subset {\mathbb R}^{n} $ is a bounded smooth domain, $ 0 < s < 1, 2\leq q < {2n}/(n-2s) $ and $ k\in(0, \infty) $ is an arbitrary number. The function $ g:{\Omega}\to {\mathbb R} $ is a nonnegative continuous function satisfying some integrability condition.
Citation: Xiuhong Long, Jixiu Wang. A fractional Laplacian problem with critical nonlinearity[J]. AIMS Mathematics, 2021, 6(8): 8415-8425. doi: 10.3934/math.2021488
In this paper, using the mountain pass theorem we obtain a positive solution to the fractional Laplacian problem
$ \begin{equation*} \label{eq: main problem} \begin{cases} (-\Delta)^su = g(x)(u-k)_{+}^{q-1}+u^{\frac{n+2s}{n-2s}}& \rm{in}\ \,\Omega,\\ u>0& \rm{in}\ \,\Omega,\\ u = 0& \rm{on}\ \,\partial\Omega, \end{cases} \end{equation*} $
where $ \Omega\subset {\mathbb R}^{n} $ is a bounded smooth domain, $ 0 < s < 1, 2\leq q < {2n}/(n-2s) $ and $ k\in(0, \infty) $ is an arbitrary number. The function $ g:{\Omega}\to {\mathbb R} $ is a nonnegative continuous function satisfying some integrability condition.
[1] | A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519–543. doi: 10.1006/jfan.1994.1078 |
[2] | B. Barrios, E. Colorado, A. de Pablo, U. Sánchez, On some critical problems for the Laplacian operator, J. Differ. Equations, 252 (2012), 6133–6162. doi: 10.1016/j.jde.2012.02.023 |
[3] | B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875–900. doi: 10.1016/j.anihpc.2014.04.003 |
[4] | C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39–71. doi: 10.1017/S0308210511000175 |
[5] | H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. doi: 10.1090/S0002-9939-1983-0699419-3 |
[6] | H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477. doi: 10.1002/cpa.3160360405 |
[7] | X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052–2093. doi: 10.1016/j.aim.2010.01.025 |
[8] | X. Cabré, J. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23–53. doi: 10.1016/j.anihpc.2013.02.001 |
[9] | L. A. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations, 32 (2007), 1245–1260. doi: 10.1080/03605300600987306 |
[10] | H. Chen, The Dirichlet elliptic problem involving regional fractional Laplacian, J. Math. Phys., 59 (2018), 071504. doi: 10.1063/1.5046685 |
[11] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[12] | R. L. Frank, E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in ${\mathbb R}$, Acta Math., 210 (2013), 261–318. doi: 10.1007/s11511-013-0095-9 |
[13] | F. Gazzola, Critical growth quasilinear elliptic problems with shifting subcritical perturbation, Differ. Integr. Equations, 14 (2001), 513–528. |
[14] | Q. Li, C. L. Xiang, The fractional problem with shifting subcritical perturbation, in press. |
[15] | R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc., 367 (2015), 67–102. |
[16] | M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Berlin: Springer-Verlag, Second edition, 1996. |
[17] | J. Wang, On a nonlocal problem with critical Sobolev growth, Appl. Math. Lett., 99 (2020), 105959. doi: 10.1016/j.aml.2019.06.030 |