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Abstract: In this paper, using the mountain pass theorem we obtain a positive solution to the fractional
Laplacian problem 

(−∆)su = g(x)(u − k)q−1
+ + u

n+2s
n−2s in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ Rn is a bounded smooth domain, 0 < s < 1, 2 ≤ q < 2n/(n − 2s) and k ∈ (0,∞) is
an arbitrary number. The function g : Ω → R is a nonnegative continuous function satisfying some
integrability condition.
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1. Introduction

In recent years, motivated by problems that appear in anomalous diffusions in plasmas, flames
propagation and chemical reactions in liquids etc, fractional Laplacian problems have received
extensive attention in the literature. Also, due to its rich multi-origins, fractional Laplacian operators
turn out to have many different definitions. When studying fractional problems in the whole space Rn,
the fractional Laplacian (−∆)s is usually defined via the Fourier transformation
(−∆)s f (x) = (|2πiξ|2s f̂ (ξ))∨, see e.g. Frank and Lenzmann [12] and Di Nezza, Palatucci and
Valdinoci [11]. Equivalently, this operator can be written as the difference quotient

(−∆)s f (x) = cn,sP.V.
∫
Rn

f (x) − f (y)
|x − y|n+2s dy (1.1)
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for sufficiently regular f , where cn,s is a normalization constant, for a proof see e.g. [11]. An advantage
of the difference quotient type definition is that it can be directly extended to define the so-called
fractional p-Laplacian operator

(−∆)s
p f (x) = cn,sP.V.

∫
Rn

f (x) − f (y)
|x − y|n+sp dy,

and the so called regional fractional Laplacian operator

(−∆)s
Ω f (x) = cn,sP.V.

∫
Ω

f (x) − f (y)
|x − y|n+2s dy,

in case the problem under consideration is restricted to a bounded domain Ω ⊂ Rn, see e.g. Chen
[10] and the references therein. It is beyond the size of this paper to present all the other definitions
for fractional Laplacian operators in the literature. We refer the interested readers to the references
mentioned above.

In this paper, we are concerned with the fractional Laplacian operator (−∆)s on a bounded domain
defined via the spectral of the Laplacian operator −∆. This type of fractional Laplacian operator was
first defined by Cabré and Tan [7] for s = 1/2 and then extended by Brändle, Colorado, de Pablo and
Sánchez [4] to the whole range s ∈ (0, 1). This type of definition can be viewed as a discrete version of
Fourier transformation for functions on a bounded domain. More precisely, let s ∈ (0, 1) and Ω ⊂ Rn be
a bounded smooth domain. Let {λk, ϕk}k≥1 be the corresponding eigenvalues and eigenfunctions of −∆

on Ω with Dirichlet boundary value ϕk|∂Ω = 0 and normalization ‖ϕk‖L2(Ω) = 1. Then, for u =
∑

k≥1 ckϕk

satisfying
∑

k≥1 c2
kλ

2s
k < ∞, we define

(−∆)su =
∑
k≥1

λs
kckϕk. (1.2)

Therefore, a natural function space of (−∆)s in the sense of functional analysis is given by

H s
0(Ω) =

{
u =

∑
ckϕk ∈ L2(Ω) : ‖u‖2Hs

0(Ω) ≡
∑

c2
kλ

s
k < ∞

}
such that

〈(−∆)su, v〉 ≡
∫

Ω

(−∆)s/2u(−∆)s/2vdx =
∑
k≥1

ckdkλ
s
k

is well defined for every u =
∑

ckϕk, v =
∑

dkϕk ∈ H s
0(Ω). Observe that a remarkable feature of the

operator (−∆)s is that it is nonlocal, in the sense that for any point x ∈ Ω, the value of (−∆)su at point
x can be obtained only if one knows the distribution of u in the whole domain, so that it is possible
derive all of the coefficients ck ≡

∫
Ω

uϕkdx. For a systematical study on this type of fractional Laplacian
operators, we refer to e.g. Cabré and Tan [7] for the case s = 1/2 and Brändle et al. [4] for the general
case s ∈ (0, 1).

Now our problem under consideration can be stated as below. Fix s ∈ (0, 1) and consider the
following fractional Laplacian problem

(−∆)su = g(x)(u − k)q−1
+ + u2∗s−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)
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where 2∗s = 2n/(n − 2s), 2 ≤ q < 2∗s and k ∈ (0,∞) is an arbitrary positive number. A positive function
u ∈ H s

0(Ω) is called a (weak) solution of problem (1.3) if for every v ∈ H s
0(Ω), there holds∫

Ω

(−∆)s/2u(−∆)s/2vdx =

∫
Ω

(
g(x)(u − k)q−1

+ + u2∗s−1
)

vdx.

Precise assumptions on the coefficient function g will be given soon. Our aim is to prove that under
appropriate conditions on the function g and the parameters q, n, there does exist at least one positive
solution to the above problem.

Problem (1.3) is not totally new. Problems of type (1.3) have been extensively studied in the
literature with different leading operators. In the local case (i.e., s = 1) with k = 0, problem of type
(1.3) dates back to the famous work Brézis and Nirenberg [6], where positive solutions to the critical
growth problem was obtained: 

−∆u = λu + u2∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

In this case, the function g is the constant function λ. Since then, there are numerous extensions and
important variants which have been studied. In [1], Ambrosetti, Brezis and Cerami considered the
problem combined with concave and convex nonlinearities

−∆u = λuq + up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where 0 < q < 1 < p and λ > 0. They proved among many other results that when λ is sufficiently
small, this problem has a positive solution, see [1, Theorem 2.1] for more results. Quite recently, this
problem was extended by Barrios, Colorado, Servadei,and Soria [3] to the nonlocal setting

(−∆)s u = λuq + up in Ω,

u > 0 in Ω,

u = 0 on Rn\Ω,

where 0 < s < 1, 0 < q < p = n+2s
n−2s and λ > 0, and (−∆)su is defined via the difference quotient

(1.1). Note that in this problem the boundary condition is in fact assumed on the complement of Ω.
They obtained similar results [3, Theorem 1.1, 1.2] as that of [1, Theorem 2.1]. In [15] Servadei and
Valdinoci considered the even more general integrodifferential problem of Brézis and Nirenberg typeLKu = λu + f (x, u) + |u|

4s
n−2s u in Ω,

u = 0 on Rn\Ω,

where s ∈ (0, 1) and LK is a nonlocal operator with kernel function K such that (−∆)s plays a model
case. Under various natural assumptions they proved several existence results to this problem, see [15,
Theorem 1–3]. In particular, as an application, they obtained a positive solution in the model case

AIMS Mathematics Volume 6, Issue 8, 8415–8425.



8418

LK = (−∆)s and f ≡ 0, see [15, Theorem 4]. Similar to [3], but with the leading operator (−∆)s defined
in the spectral way (1.2), Barrios, Colorado, de Pablo and Sánchez [2] considered the problem

(−∆)s u = λuq + up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

with 0 < q < p = n+2s
n−2s . Then also obtained existence and nonexistence results under various

assumptions on λ, see [2, Theorem 1.1, 1.2, 1.3] for details. For the case p < n+2s
n−2s , see Brändle,

Colorado, de Pablo and Sánchez [4].
In the case g . constant, Gazzola [13] studied this type of problem with p-Laplacian operator −∆p

as the leading term, 
−div(|∇u|p−2∇u) = g(x)(u − k)q−1

+ + up∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

where 1 < p < n, p∗ = np/(n − p) and positive solutions were obtained among other results, see [13,
Theorem 2]. Inspired by the work of Gazzola [13] and Cabré and Tan [7], Wang studied problem (1.3)
with s = 1/2 and obtained a positive solution to her problem. We mention that Li and Xiang [14]
extended Wang’s work [17] to the setting of regional fractional Laplacion problems.

Inspired by Wang’s work [17], in this paper we study problem (1.3) with s belonging to the full
range (0, 1). Throughout we assume that 2 ≤ q < 2∗s and g satisfies

(G1) g ∈ C(Ω) is a nonnegative nontrivial function, and
(G2) g ∈ L2n/(2n−(n−2s)q)(Ω). In addition, if q = 2, then ‖g‖Ln/2s(Ω) < S , where S is defined as in (1.6)

in the below.
Our main result reads as follows.

Theorem 1.1. Assume that s ∈ (0, 1) and g satisfies (G1) (G2). Then problem (1.3) admits a positive
solution for every k ∈ (0,∞), provided either q ≥ 2 and n > 2s(1 + 2/q), or q = 2 and n = 4s.

It is clear that the nonlocality of (−∆)s makes it difficult to deal with problem (1.3) directly. Our
strategy is to use a localization method. In the global case Ω = Rn, a localization principle for fractional
Laplacian problem was first systematically developed by Caffarelli and Silvestre [9]. In our local case,
a localization principle was also developed by Cabré and Tan [7] for the case s = 1/2 and by Brändle
et al. [4] for the general case s ∈ (0, 1). To state the localization principle, we need to introduce some
notations. Denote

C = Ω × (0,∞) and ∂LC = ∂Ω × (0,∞)

with coordinates (x, y) ∈ C for x ∈ Ω and y > 0. According to Brändle et al. [4], for every u ∈ H s
0(Ω),

there exists a unique 2s-harmonic extension ū which is equal to u on Ω × {y = 0} in the sense of trace
with ū = 0 on the lateral boundary ∂LC, and satisfies the equation

div(y1−2s∇ū) = 0 in C.
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Following Brändle et al. [4], introduce the function space

X2s
0 (C) = C∞0 (Ω × [0,∞))

‖·‖X2s
0 (C) with ‖z‖X2s

0 (C) =

(
κs

∫
C

y1−2s|∇z|2dxdy
)1/2

,

where κs = 21−2sΓ(1 − s)/Γ(s) is a normalization constant such that the 2s-harmonic extension ū of u
satisfies ‖ū‖X2s

0 (C) = ‖u‖Hs
0(Ω). Then, problem (1.3) is equivalent to

div(y1−2s∇ū) = 0, ū > 0 in C,
ū = 0 on ∂LC,
∂ū
∂ν2s = g(x)(ū − k)q−1

+ + ū2∗s−1 on Ω × {y = 0},

(1.4)

where
∂ū
∂ν2s (x, 0) = − lim

y→0+

1
κs

y1−2suy(x, y).

That is, u ∈ H s
0(Ω) is a solution to problem (1.3) if and only if ū ∈ X2s

0 (C) is a solution to problem (1.4)
which means that

κs

∫
C

y1−2s∇ū · ∇Φdxdy =

∫
Ω

(
g(x)(u − k)q−1

+ + u2∗s−1
)
Φdx

holds for all Φ ∈ X2s
0 (C). This explains the localization method.

So, to prove Theorem 1.1, we turn to the equivalent problem (1.4). Note that problem (1.4) is
variational with the energy functional J : X2s

0 (C)→ R being given by

J(ū) =
1
2
‖ū‖2X2s

0 (C) −

∫
Ω

(
1
q

g(x)(ū − k)q
+ +

1
2∗s

ū2∗s
+

)
dx

for ū ∈ X2s
0 (C). To find a critical point of J , we will use the mountain pass theorem (see e.g. Struwe

[16, Chapter 6]).
Before ending the introduction, we record the following inequality (see [4, Theorem 2.1]) for later

use: there exists C = C(n, s) > 0 such that, for every w ∈ X2s(Rn+1
+ ), the closure of C∞0 (Rn+1

+ ) under the
seminorm ‖u‖2

X2s(Rn+1
+ )

=
∫
Rn+1

+

κsy1−2s|∇w(x, y)|2dxdy, there holds

C
(∫
Rn
|w(x, 0)|2

∗
s dx

)2/2∗s

≤

∫
Rn+1

+

κsy1−2s|∇w(x, y)|2dxdy. (1.5)

Let

S = inf


∫
Rn+1

+

κsy1−2s|∇w(x, y)|2dxdy(∫
Rn |w(x, 0)|2∗s dx

)2/2∗s
: w ∈ X2s(Rn+1

+ ),w . 0

 (1.6)

be the best constant for inequality (1.5). It is known [4, Theorem 2.1] that S is attained by the functions

Uε,x0(x, y) = (P1−2s
y ∗ uε,x0)(x), (x, y) ∈ Rn × [0,∞) (1.7)
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for all ε > 0 and x0 ∈ R
n, where P1−2s

y (x) = k1−2sy−n(1 + |x|/y)−(n+2s)/2 is the so-called s-Poisson kernel
and

uε,x0(x) = cn

(
ε

|x − x0|
2 + ε2

)(n−2s)/2

.

The constant cn > 0 is chosen such that∫
Rn+1

+

κsy1−2s|∇Uε,x0 |
2dxdy =

∫
Rn
|Uε,x0(x, 0)|2

∗
s dx = S n/2s.

Our notations are standard. We use C to denote positive constants that are different from line to
line. For simplicity, we will use ‖ · ‖ to denote the norm ‖ · ‖X2s

0 (C) throughout.

2. Proof of the main result

This section is devoted to the proof of Theorem 1.1. Our method is to use the well known mountain
pass theorem, see e.g. Struwe [16, Theorem 6.1]. The first lemma points out that

Lemma 2.1. J satisfies the mountain pass geometry.

The proof is standard, and we omit the details. We shall also need

Lemma 2.2. Under the assumptions (G1) and (G2), there hold

g(um − k)q−1
+ → g(u − k)q−1

+ in L
2n

n+2s (Ω)

and
g(um − k)q

+ → g(u − k)q
+ in L2s(Ω)

for every (um) ⊂ X2s
0 (C) that converges weakly to u ∈ X2s

0 (C).

Lemma 2.2 is a consequence of Vitali’s convergence theorem. We omit the details, see also Wang
[17, Lemma 2.1] and Gazzola [13, Lemma 1].

We say that (um) ∈ X2s
0 (C) is a (PS )c sequence, if J(um)→ c ∈ R and J ′(um)→ 0 as m→ ∞. Say

that the functional J satisfies (PS )c compactness condition if (um) ∈ X2s
0 (C) is a (PS )c sequence, then

it contains a convergent subsequence in X2s
0 (C). Next lemma says that this happens when c is below a

critical value, as that was observed by Brezis and Nirenberg [6].

Lemma 2.3. J satisfies the (PS )c condition provided c < s
nS

n
2s .

Proof. Let (um) ⊂ X2s
0 (C) be a (PS )c sequence. First we claim that (um) is a bounded sequence in

X2s
0 (C). This will follow from a simple combination of the (PS )c assumption. Let β ≥ 2. Then

J(um) −
1
β
〈J ′(um), um〉 = c + o(1) + o(1)‖um‖.

Taking β = q when q > 2 yields(1
2
−

1
q

)
‖um‖

2 +
k
q

∫
Ω

g(x)(um − k)q−1
+ dx +

(1
q
−

1
2∗s

) ∫
Ω

(um)2∗s
+ dx = c + o(1) + o(1)‖um‖.
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Then the assumption g ≥ 0 implies that(1
2
−

1
q

)
‖um‖

2 ≤ c + o(1) + o(1)‖um‖. (2.1)

When q = 2, take 2∗s > β > 2. Then using the assumption (G2) and Hölder’s inequality gives(1
2
−

1
β

)(
1 −
‖g‖L n

2s

S

)
‖um‖

2 ≤ c + o(1) + o(1)‖um‖. (2.2)

Now the boundedness of (um) ⊂ X2s
0 (C) follows from (2.1) and (2.2).

Next we prove that (um) has a convergent subsequence in X2s
0 (C). Since we have proved the

boundedness of (um) in X2s
0 (C), we may assume without loss of generality that, up to a subsequence,

um ⇀ u in X2s
0 (C),

um(·, 0)→ u(·, 0) in L2(Ω),
um(·, 0)→ u(·, 0) a.e. in Ω,

for some u ∈ X2s
0 (C). Put vm = um − u. It suffices to prove that ‖vm‖ → 0.

It is standard to find that J ′(u) = 0. To examine the sequence closer, note that

‖um‖
2 = ‖vm + u‖2 = ‖vm‖

2 + ‖u‖2 + o(1).

Using Lemma 2.2 we find that ∫
Ω

g(um − k)q
+ →

∫
Ω

g(u − k)q
+,

By Lemma 2 of Brézis and Lieb [5],∫
Ω

(um)2∗s
+ =

∫
Ω

(vm)2∗s
+ +

∫
Ω

u2∗s
+ + o(1).

As a result, we obtain the first decomposition

J(um) =
1
2
‖um‖

2 −

∫
Ω

(1
q

g(x)(um − k)q
+ +

1
2∗s

(um)2∗s
+

)
dx

=
1
2

(‖vm‖
2 + ‖u‖2) −

∫
Ω

1
q

g(x)(u − k)q
+ −

1
2∗s

∫
Ω

(
(vm)2∗s

+ + u2∗s
+

)
+ o(1)

= J(u) +
1
2
‖vm‖

2 −
1
2∗s

∫
Ω

(vm)2∗s
+ + o(1).

Similarly, we also have the second decomposition

o(1) = 〈J ′(um), um〉 = ‖um‖
2 −

∫
Ω

(
g(x)(um − k)q−1

+ + (um)2∗s−1
+

)
· umdx

= ‖vm‖
2 + ‖u‖2 −

∫
Ω

g(x)(u − k)q−1
+ · u −

∫
Ω

(vm)2∗s
+ −

∫
Ω

u2∗s
+ + o(1)

= 〈J ′(u), u〉 + ‖vm‖
2 −

∫
Ω

(vm)2∗s
+ + o(1)

= ‖vm‖
2 −

∫
Ω

(vm)2∗s
+ + o(1),
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where we used used the assumption J ′(um) → 0 in the first equality and the fact J ′(u) = 0 in the last
line.

To continue, note that ‖vm‖ ≤ C(‖um‖ + ‖u‖) is a bounded sequence. So we may assume ‖vm‖
2 →

b ≥ 0. Then the above second decomposition gives∫
Ω

(vm)2∗s
+ = ‖vm‖

2 + o(1)→ b.

Recall the trace inequality (1.5). This implies S b
2

2∗s ≤ b. As a consequence, we infer that either b = 0
or b ≥ S

n
2s holds.

We have to exclude the case b ≥ S
n
2s . To this end, note that J ′(u) = 0 implies J(u) ≥ 0. Thus the

first decomposition leads to

J(um) ≥
1
2
‖vm‖

2 −
1
2∗s

∫
Ω

(vm)2∗s
+ + o(1).

If b ≥ S
n
2s , then taking limit in this inequality gives c ≥ s

nS
n
2s , which contradicts with our assumption

c < s
nS

n
2s . Hence b = 0. That is vm → 0 in X2s

0 (C). The proof is finished. �

To proceed, we may assume that 0 ∈ Ω and g(0) > 0 with no loss of generality. By the assumption
(G1) we can assume Br(0) ⊂ {x ∈ Ω : g(x) > g(0)} for some r > 0 sufficiently small. For simplicity,
write uε = uε,0,Uε = Uε,0, where uε,x0 ,Uε,x0 are defined as in (1.7). Let 0 < ρ < r and take a cut-off

function η ∈ C∞(C) such that 0 ≤ η ≤ 1 and η(x, y) ≡ 1 for |x| < ρ

2 and y ≥ 0, and η(x, y) ≡ 0 for
|x| ≥ ρ. These auxiliary functions and parameters are used to construct a special path in X2s

0 (C) starting
from the origin such that the following lemma holds.

Lemma 2.4. For ε > 0 sufficiently small there holds

max
t≥0
J(tηUε) <

s
n

S
n
2s .

Proof. Write vε = ηUε and γ(t) = tvε for t ≥ 0. Suffices to show that maxt>0J(γ(t)) < s
nS

n
2s for ε

sufficiently small. By a direct computation we have

J(γ(t)) =
1
2
‖tvε‖2 −

∫
Ω

1
q

g(x)(tvε − k)q
+ −

1
2∗s

∫
Ω

(tvε)2∗s

=
t2

2
‖vε‖2 −

∫
Ω

1
q

g(x)(tvε − k)q
+ −

t2∗s

2∗s

∫
Ω

v2∗s
ε .

Since the second term on the right hand side is nonnegative, there holds

J(γ(t)) ≤
t2

2
‖vε‖2 −

t2∗s

2∗s

∫
Ω

v2∗s
ε → −∞ as t → ∞.

Also note that vε is a bounded function. So for t sufficiently small, we have (tvε − k)+ ≡ 0. Hence for t
sufficiently small,

J(γ(t)) =
t2

2
‖vε‖2 −

t2∗s

2∗s

∫
Ω

v2∗s
ε > 0 for t → 0.
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So J(γ(t)) achieves a positive maximum on (0,∞).
Let tε be such that J(γ(tε)) = maxt>0J(γ(t)). We claim that for ε sufficiently small, there exist

constants C1,C2 independent of ε such that

0 < C1 ≤ tε ≤ C2. (2.3)

Notice that

J(γ(t)) ≤
t2

2
‖vε‖2 −

t2∗s

2∗s

∫
Ω

v2∗s
ε ≤ 0 for t ≥ tε ,

where tε = (2∗s‖vε‖
2/2

∫
Ω

v2∗s
ε )(n−2s)/4s. We infer that J(γ(t)) ≤ 0 holds for all t ≥ tε , which implies

tε ≤ tε ≤ C2 as ε → 0

for some C2 > 0 independent of ε. On the other hand, by Lemma 2.1, tε cannot converge to zero.
Therefore there exists C1 > 0 such that

tε ≥ C1

for ε sufficiently small. The claim is proved.
To further compute the maximum J(γ(tε)), according to [2], there hold

‖vε‖2 = S
n
2s + O(εn−2s) and

∫
Ω

v2∗s
ε = S

n
2s + O(εn)

for ε sufficiently small. Thus

t2
ε

2
‖vε‖2 −

t2∗s
ε

2∗s

∫
Ω

v2∗s
ε =

t2
ε

2
(S

n
2s + O(εn−2s)) −

t2∗s
ε

2∗s
(S

n
2s + O(εn))

=
s
n

S
n
2s +

 t2
ε − 1

2
−

t2∗s
ε − 1

2∗s

 S
n
2s + O(εn−2s)

≤
s
n

S
n
2s + O(εn−2s),

where we used in the last line the fact that t2−1
2 −

t2
∗
s−1
2∗s
≤ 0 for all t ≥ 0. Therefore we derive the estimate

J(γtε) ≤
s
n

S
n
2s −

∫
Ω

1
q

g(x)(tεvε − k)q
+ + O(εn−2s). (2.4)

We need to estimate
∫

Ω
g(tεvε − k)q

+. For ε sufficiently small, we always have∫
Ω

g(tεvε − k)q
+ ≥ g(0)

∫
Bρ/2(0)

(tεUε − k)q
+.

In the case q ≥ 2 and n > 2s(1 + 2/q), there holds∫
Bρ/2(0)

(tεUε − k)q
+ ≥ C

∫
Bε (0)

ε−
n−2s

2 q = Cεn− n−2s
2 q
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for some C > 0 independent of ε, where we have used the estimate (2.3) for tε . In the case q = 2, n = 4s,
note that on the set {ε < |x| < ε3/4}, there holds

Uε(x) ≥
ε s

(2|x|2)s ≥
ε−

1
2 s

2s > 2k

for ε sufficiently small. Hence,

g(0)
∫

Bρ/2(0)
(tεuε − k)2

+ ≥ C
∫
{ε<|x|<ε3/4}

ε2s

|x|4s = Cε2s| ln ε |

for some C > 0 independent of ε. Thus, there exists C > 0 such that∫
Ω

g(tεvε − k)q
+ ≥

Cεn− n−2s
2 q, if q ≥ 2 and n > 2s(1 + 2/q)

Cε2s ln ε if q = 2, n = 4s.
(2.5)

Combining (2.4) and (2.5) yields

J(γtε) ≤

 s
nS

n
2s −Cεn− n−2s

2 q
(
1 − ε

n−2s
2 q−2s

)
if q ≥ 2 and n > 2s(1 + 2/q),

s
nS

n
2s −Cε2s(| ln ε| − 1) if q = 2, n = 4s.

In the case q ≥ 2 and n > 2s(1 + 2/q), it holds n−2s
2 q − 2s > 0. Therefore, in both cases we can deduce

that
J(γtε) <

s
n

S
n
2s ,

provided ε is sufficiently small. The proof is complete. �

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. First choose e = t0ηUε , where ε and η are chosen as in Lemma 2.4 and t0 is
sufficiently large such that J(t0ηUε) < 0, and then let

Γ =
{
γ ∈ C

(
[0, 1], X2s

0 (C)
)

: γ(0) = 0 and γ(1) = e
}

and
c0 = inf

γ∈Γ
max

t≥0
J(γ(t)).

By Lemma 2.4, we have c0 <
s
nS n/2s. Since J satisfies the geometry of mountain pass, there exists a

sequence (um) ⊂ X2s
0 (C) satisfying J(um) → c0 and J ′(um) → 0 as m → ∞. Therefore, Lemma 2.3

implies that problem (1.4) admits a nonnegative nontrivial solution. Finally, a maximum principle of
Cabré and Sire [8, Remark 4.2] implies that the solution is positive in Ω. The proof is complete. �
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