Citation: Yuxuan Zhang, Xinmiao Rong, Jimin Zhang. A diffusive predator-prey system with prey refuge and predator cannibalism[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070
[1] | W. Chen and M. Wang, Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion, Math. Comput. Model., 42 (2005), 31–44. |
[2] | M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington- DeAngelis functional response, J. Math. Anal. Appl., 295 (2004), 15–39. |
[3] | S. B. Hsu, T. W. Hwang and Y. Kuang, Global analysis of Michaelis-Menten type ratio-dependent predator-prey system, J. Math. Biol., 42 (2003), 489–506. |
[4] | N. Min and M. Wang, Hopf bifurcation and steady-state bifurcation for a Leslie-Gower preypredator model with strong Allee effect in prey, Discrete Cont. Dyn-A., 39 (2018), 1071–1099. |
[5] | W. Ni and M. Wang, Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Differ. Equations, 261 (2016), 4244–4274. |
[6] | X. Yan and C. Zhang, Stability and turing instability in a diffusive predator-prey system with Beddington-DeAngelis functional response, Nonlinear Analysis RWA, 20 (2014), 1–13. |
[7] | F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944–1977. |
[8] | J. Ohlberger, O. Langangen, N. C. Stenseth, L. A. Vollestad, Community-level consequences of cannibalism, Am. Nat., 180 (2012), 791–801. |
[9] | V. H. W. Rudolf, M. Kamo and M. Boots, Cannibals in space: the coevolution of cannibalism and dispersal in spatially structured populations, Am. Nat., 175 (2010), 513–524. |
[10] | A. Basheer, E. Quansah, S. Bhowmick, et al., Prey cannibalism alters the dynamics of Holling- Tanner-type predator-prey models Nonlinear Dyn., 85 (2016), 2549–2567. |
[11] | L. V. Shevtsova and G. A. Zhdanova, V.A. Movchan, A.B. Primak, Experimental interrelationship between Dreissena and planktic invertribates, Hydrobiol. J., 11 (1986), 36–39. |
[12] | S. Chakraborty and J. Chattopadhyay, Effect of cannibalism on a predator-prey system with nutritional value: a model based study, Dyn. Syst., 26 (2011), 13–22. |
[13] | M. A. Elgar and B. J. Crespi, Cannibalism: Ecology and Evolution Among Diverse Taxa, Oxford University Press, New York, 1992. |
[14] | G. A. Polis, The evolution and dynamics of intraspecific predation, Annu. Rev. Ecol. Syst., 12 (1981), 225-251. |
[15] | S. Fasani and S. Rinaldi, Remarks on cannibalism and pattern formation in spatially extended prey-predator systems, Nonlinear Dyn., 67 (2012), 2543–2548. |
[16] | M. Genkai-Kato and N. Yamamura, Profitability of prey determines the response of population abundances to enrichment, Proc. R. Soc. Lond. B., 267 (2000), 2397–2401. |
[17] | M. Genkai-Kato, Nutritional value of algae: A critical control on the stability of Daphnia-algal systems, J. Plankton Res., 26 (2004), 711–717. |
[18] | C. Kohlmeier and W. Ebenhöh, The stabilizing role of cannibalism in a predator-prey system, Bull. Math. Biol., 57 (1995), 401–411. |
[19] | G. Q. Sun, G. Zhang, Z. Jin, et al., Predator cannibalism can give rise to regular spatial pattern in a predator-prey system, Nonlinear Dyn., 58 (2009), 75–84. |
[20] | J. B. Collings, Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 57 (1995), 63–76. |
[21] | C. B. Huffaker and C. E. Kennett, Experimental studies on predation: predation and cyclamen-mite populations on strawberries in California, Hilgardia, 26 (1956). |
[22] | L. Chen, F. Chen and L. Chen, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge, Nonlinear Analysis RWA, 11 (2010), 246–252. |
[23] | A. P. Maiti, B. Dubey and J. Tushar, A delayed prey-predator model with Crowley-Martin-type functional response including prey refuge, Math. Method. Appl. Sci., 40 (2017), 5792–5809. |
[24] | J. P. Tripathi, S. Abbas and M. Thakur, Dynamical analysis of a prey-predator model with Beddington-DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177–196. |
[25] | F. Wei and Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington- DeAngelis type functional response and stage structure for prey incorporating refuge, Appl. Math. Model., 40 (2016), 126–134. |
[26] | Y. Du and J. Shi, A diffusive predator-prey model with a protection zone, J. Differ. Equations, 229 (2006), 63–91. |
[27] | X. Chang and J. Wei, Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge, Math. Biosci. Eng., 10 (2013), 979–996. |
[28] | R. Cui, J. Shi and B. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differ. Equations, 256 (2014), 108–129. |
[29] | Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differ. Equations, 246 (2009), 3932–3956. |
[30] | L. N. Guin and P. K. Mandal, Effect of prey refuge on spatiotemporal dynamics of the reactiondi ffusion system, Comput. Math. Appl. 68 (2014), 1325–1340. |
[31] | X. Guan, W. Wang and Y. Cai, Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Analysis RWA, 12 (2011), 2385–2395. |
[32] | X. He and S. Zheng, Protection zone in a diffusive predator-prey model with Beddington- DeAngelis functional response, J. Math. Biol., 75 (2017), 239–257. |
[33] | Y. Cai, Z. Gui, X. Zhang, et al., W. Wang, Bifurcations and pattern formation in a predator-prey model, Int. J. Bifurcat. Chaos, 28 (2018), 1850140. |
[34] | K. D. Prasad and B. Prasad, Biological pest control using cannibalistic predators and with provision of additional food: a theoretical study, Theor. Ecol., 11 (2018), 191–211. |
[35] | A. M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B, 237 (1952), 37–72. |
[36] | C. G. Jäger, S. Diehl and M. Emans, Physical determinants of phytoplankton production, algal stoichiometry, and vertical nutrient fluxes, Am. Nat., 175 (2010), 91–104. |
[37] | R. Han and B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear crossdi ffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Analysis RWA, 45 (2019), 822–853. |
[38] | M. Scheffer and S. Rinaldi, Minimal models of top-down control of phytoplankton, Freshwater Biol., 45 (2000), 265–283. |
[39] | W. Wang, X. Gao, Y. Cai, et al., Turing patterns in a diffusive epidemic model with saturated infection force, J. Franklin I., 355 (2018), 7226–7245. |
[40] | Y. Lou and W. Ni, Diffusion vs cross-diffusion: an elliptic approach, J. Differ. Equations, 154 (1999), 157–190. |
[41] | C. Lin,W. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equations, 72 (1988), 1–27. |
[42] | L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Mathematical Science, New York, 1973. |
[43] | R. Peng, J. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471–1488. |