Research article

Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands

  • Received: 06 October 2020 Accepted: 25 November 2020 Published: 04 December 2020
  • An efficient management and better scheduling by the power companies are of great significance for accurate electrical load forecasting. There exists a high level of uncertainties in the load time series, which is challenging to make the accurate short-term load forecast (STLF), medium-term load forecast (MTLF), and long-term load forecast (LTLF). To extract the local trends and to capture the same patterns of short, and medium forecasting time series, we proposed long short-term memory (LSTM), Multilayer perceptron, and convolutional neural network (CNN) to learn the relationship in the time series. These models are proposed to improve the forecasting accuracy. The models were tested based on the real-world case by conducting detailed experiments to validate their stability and practicality. The performance was measured in terms of squared error, Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). To predict the next 24 hours ahead load forecasting, the lowest prediction error was obtained using LSTM with R2 (0.5160), MLP with MAPE (4.97), MAE (104.33) and RMSE (133.92). To predict the next 72 hours ahead of load forecasting, the lowest prediction error was obtained using LSTM with R2 (0.7153), MPL with MAPE (7.04), MAE (125.92), RMSE (188.33). Likewise, to predict the next one week ahead load forecasting, the lowest error was obtained using CNN with R2 (0.7616), MLP with MAPE (6.162), MAE (103.156), RMSE (150.81). Moreover, to predict the next one-month load forecasting, the lowest prediction error was obtained using CNN with R2 (0.820), MLP with MAPE (5.18), LSTM with MAE (75.12) and RMSE (109.197). The results reveal that proposed methods achieved better and stable performance for predicting the short, and medium-term load forecasting. The findings of the STLF indicate that the proposed model can be better implemented for local system planning and dispatch, while it will be more efficient for MTLF in better scheduling and maintenance operations.

    Citation: Faisal Mehmood Butt, Lal Hussain, Anzar Mahmood, Kashif Javed Lone. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 400-425. doi: 10.3934/mbe.2021022

    Related Papers:

  • An efficient management and better scheduling by the power companies are of great significance for accurate electrical load forecasting. There exists a high level of uncertainties in the load time series, which is challenging to make the accurate short-term load forecast (STLF), medium-term load forecast (MTLF), and long-term load forecast (LTLF). To extract the local trends and to capture the same patterns of short, and medium forecasting time series, we proposed long short-term memory (LSTM), Multilayer perceptron, and convolutional neural network (CNN) to learn the relationship in the time series. These models are proposed to improve the forecasting accuracy. The models were tested based on the real-world case by conducting detailed experiments to validate their stability and practicality. The performance was measured in terms of squared error, Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). To predict the next 24 hours ahead load forecasting, the lowest prediction error was obtained using LSTM with R2 (0.5160), MLP with MAPE (4.97), MAE (104.33) and RMSE (133.92). To predict the next 72 hours ahead of load forecasting, the lowest prediction error was obtained using LSTM with R2 (0.7153), MPL with MAPE (7.04), MAE (125.92), RMSE (188.33). Likewise, to predict the next one week ahead load forecasting, the lowest error was obtained using CNN with R2 (0.7616), MLP with MAPE (6.162), MAE (103.156), RMSE (150.81). Moreover, to predict the next one-month load forecasting, the lowest prediction error was obtained using CNN with R2 (0.820), MLP with MAPE (5.18), LSTM with MAE (75.12) and RMSE (109.197). The results reveal that proposed methods achieved better and stable performance for predicting the short, and medium-term load forecasting. The findings of the STLF indicate that the proposed model can be better implemented for local system planning and dispatch, while it will be more efficient for MTLF in better scheduling and maintenance operations.


    加载中


    [1] Y. Al-Rashid, L. D. Paarmann, Short-term electric load forecasting using neural network models, in: Proc. 39th Midwest Symp. Circuits Syst., IEEE, (1996), 1436–1439.
    [2] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, R. J. Hyndman, Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond, Int. J. Forecast., 32 (2016), 896–913. doi: 10.1016/j.ijforecast.2016.02.001
    [3] T. Hong, P. Pinson, S. Fan, Global Energy Forecasting Competition 2012, Int. J. Forecast., 30 (2014), 357–363. doi: 10.1016/j.ijforecast.2013.07.001
    [4] L. Hussain, M.S. Nadeem, S. A. A.Shah, Short term load forecasting system based on Support Vector Kernel methods, Int. J. Comput. Sci. Inf. Technol., 6 (2014), 93–102.
    [5] G. Gross, F. D. Galiana, Short-term load forecasting, Proc. IEEE., 75 (1987), 1558–1573. doi: 10.1109/PROC.1987.13927
    [6] P. J. Santos, A. G. Martins, A. J. Pires, Short-term load forecasting based on ANN applied to electrical distribution substations, in: 39th Int. Univ. Power Eng. Conf. UPEC 2004 - Conf. Proc., IEEE, 1(2004), 427–432.
    [7] E. Hossain, I. Khan, F. Un-Noor, S. S. Sikander, M. S. H. Sunny, Application of big data and machine learning in smart grid, and associated security concerns: A Review, IEEE Access, 7 (2019), 13960–13988. doi: 10.1109/ACCESS.2019.2894819
    [8] H. J. Sadaei, P. C. D.L. e Silva, F. G. Guimarães, M. H. Lee, Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series, Energy, 175 (2019), 365–377. doi: 10.1016/j.energy.2019.03.081
    [9] H. M. Al-Hamadi, S. A. Soliman, Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model, Electr. Power Syst. Res., 68 (2004), 47–59. doi: 10.1016/S0378-7796(03)00150-0
    [10] K.-B. Song, Y.-S. Baek, D. H. Hong, G. Jang, Short-term load forecasting for the holidays using fuzzy linear regression method, IEEE Trans. Power Syst., 20 (2005), 96–101. doi: 10.1109/TPWRS.2004.835632
    [11] D. K. Ranaweera, N. F. Hubele, G. G. Karady, Fuzzy logic for short term load forecasting, Int. J. Electr. Power Energy Syst., 18 (1996), 215–222. doi: 10.1016/0142-0615(95)00060-7
    [12] Y. He, Q. Xu, J. Wan, S. Yang, Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function, Energy, 114 (2016), 498–512. doi: 10.1016/j.energy.2016.08.023
    [13] M. Q. Raza, A. Khosravi, A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings, Renew. Sustain. Energy Rev., 50 (2015), 1352–1372. doi: 10.1016/j.rser.2015.04.065
    [14] L. C. P. Velasco, C. R. Villezas, P. N. C. Palahang, J. A. A. Dagaang, Next day electric load forecasting using Artificial Neural Networks, in: 2015 Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Control. Environ. Manag., IEEE, 2015, 1–6.
    [15] L. Hernández, C. Baladrón, J. M. Aguiar, L. Calavia, B. Carro, A. Sánchez-Esguevillas, et al., Artificial Neural Network for short-term load forecasting in distribution systems, Energies, 7 (2014), 1576–1598. doi: 10.3390/en7031576
    [16] J. Buitrago, S. Asfour, Short-term forecasting of electric loads using nonlinear autoregressive Artificial Neural Networks with exogenous vector inputs, Energies, 10 (2017), 40. doi: 10.3390/en10010040
    [17] L. Suganthi, S. Iniyan, A. A. Samuel, Applications of fuzzy logic in renewable energy systems- A review, Renew. Sustain. Energy Rev., 48 (2015), 585–607. doi: 10.1016/j.rser.2015.04.037
    [18] K-H. Kim, J-K. Park, K-J. Hwang, S-H. Kim, Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems, IEEE Trans. Power Syst., 10 (1995), 1534–1539. doi: 10.1109/59.466492
    [19] D. X. Niu, H. F. Shi, D. D. Wu, Short-term load forecasting using bayesian neural networks learned by Hybrid Monte Carlo algorithm, Appl. Soft Comput., 12 (2012), 1822–1827. doi: 10.1016/j.asoc.2011.07.001
    [20] F. Kaytez, M. C. Taplamacioglu, E. Cam, F. Hardalac, Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines, Int. J. Electr. Power Energy Syst., 67 (2015), 431–438. doi: 10.1016/j.ijepes.2014.12.036
    [21] X. Li, X. Wu, Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition, in: 2015 IEEE Int. Conf. Acoust. Speech Signal Process, IEEE, 2015, 4520–4524.
    [22] R. J. Williams, D. Zipser, A learning algorithm for continually running fully recurrent Neural Networks, Neural Comput., 1 (1989), 270–280. doi: 10.1162/neco.1989.1.2.270
    [23] M. Ghofrani, M. Ghayekhloo, A. Arabali, A. Ghayekhloo, A hybrid short-term load forecasting with a new input selection framework, Energy, 81 (2015), 777–786. doi: 10.1016/j.energy.2015.01.028
    [24] G.-F. Fan, L.-L. Peng, W.-C. Hong, Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model, Appl. Energy, 224 (2018), 13–33. doi: 10.1016/j.apenergy.2018.04.075
    [25] R. Mamlook, O. Badran, E. Abdulhadi, A fuzzy inference model for short-term load forecasting, Energy Policy, 37 (2009), 1239–1248. doi: 10.1016/j.enpol.2008.10.051
    [26] K. Metaxiotis, A. Kagiannas, D. Askounis, J. Psarras, Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher, Energy Convers. Manag., 44 (2003), 1525–1534. doi: 10.1016/S0196-8904(02)00148-6
    [27] K. Fukushima, S. Miyake, A self-organizing neural network model for a mechanism of visual pattern recognition, in: Comp. cooperation Neural Net., Springer Berlin Heidelb., 1982,267–85.
    [28] Y. LeCun, P. Haffner, L. Bottou, Y. Bengio, Object recognition with gradient-based learning, in: Shape, Cont. grop. comp. vision., Springer Berlin Heidelb., 1999,319–345.
    [29] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, Y. Guo, et al., Deep learning for visual understanding: A review, Neurocomputing, 187 (2016), 27–48. doi: 10.1016/j.neucom.2015.09.116
    [30] H.-K. Yu, Weighted fuzzy time series models for TAIEX forecasting, Phys. A Stat. Mech. Appl., 349 (2005), 609–624. doi: 10.1016/j.physa.2004.11.006
    [31] N.-Y. Wang, S.-M. Chen, Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factors high-order fuzzy time series, Expert Syst. Appl., 36 (2009), 2143–2154. doi: 10.1016/j.eswa.2007.12.013
    [32] W.-J. Lee, J. Hong, A hybrid dynamic and fuzzy time series model for mid-term power load forecasting, Int. J. Electr. Power Energy Syst., 64 (2015), 1057–1062. doi: 10.1016/j.ijepes.2014.08.006
    [33] R. Efendi, Z. Ismail, M. M. Deris, A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand, Appl. Soft Comput., 28 (2015), 422–430. doi: 10.1016/j.asoc.2014.11.043
    [34] R. Enayatifar, H. J. Sadaei, A. H. Abdullah, A. Gani, Imperialist competitive algorithm combined with refined high-order weighted fuzzy time series (RHWFTS–ICA) for short term load forecasting, Energy Convers. Manag., 76 (2013), 1104–1116. doi: 10.1016/j.enconman.2013.08.039
    [35] L. Hussain, W. Aziz, J. S. Alowibdi, N. Habib, M. Rafique, S. Saeed, et al., Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states, J. Physiol. Anthropol., 36 (2017), 21. doi: 10.1186/s40101-017-0136-8
    [36] L. Hussain, Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach, Cogn. Neurodyn., 12 (2018), 271–294. doi: 10.1007/s11571-018-9477-1
    [37] L. Hussain, I. A. Awan, W. Aziz, S. Saeed, A. Ali, F. Zeeshan, et al., Detecting congestive heart failure by extracting multimodal features and employing machine learning techniques, Biomed. Res. Int., 2020 (2020), 1–19.
    [38] Y. Asim, B. Raza, A. Kamran, M. Saima, A. K. Malik, S. Rathore, et al., A multi-modal, multi-atlas-based approach for Alzheimer detection via machine learning, Int. J. Imag. Syst. Tech., 28 (2018), 113–123. doi: 10.1002/ima.22263
    [39] L. Hussain, S. Saeed, I. A. Awan, A. Idris, M. S. A. Nadeem, Q.-A. Chaudhry, et al., Detecting brain tumor using machines learning techniques based on different features extracting strategies, Curr. Med. Imag. Rev., 15 (2019), 595–606. doi: 10.2174/1573405614666180718123533
    [40] L. Hussain, W. Aziz, S. Saeed, I. A. Awan, A. A. Abbasi, N. Maroof, Arrhythmia detection by extracting hybrid features based on refined Fuzzy entropy (FuzEn) approach and employing machine learning techniques, Waves Rand. Complex Media, 30 (2020), 656–686. doi: 10.1080/17455030.2018.1554926
    [41] L. Hussain, W. Aziz, A. A. Alshdadi, M. S. A. Nadeem, I. R. Khan, Q.-A. Chaudhry, Analyzing the dynamics of lung cancer imaging data using refined fuzzy entropy methods by extracting different features, IEEE Access, 7 (2019), 64704–64721. doi: 10.1109/ACCESS.2019.2917303
    [42] A. A. Abbasi, L. Hussain, I. A. Awan, I. Abbasi, A. Majid, M. S. A. Nadeem, Q. -A. Chaudhary, Detecting prostate cancer using deep learning convolution neural network with transfer learning approach, Cogn. Neurodyn., 5 (2020), 1–11.
    [43] L. Hussain, A. Ahmed, S. Saeed, S. Rathore, I. A. Awan, S. A. Shah, et al., Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies, Cancer Biomark., 21 (2018), 393–413. doi: 10.3233/CBM-170643
    [44] C. Lang, F. Steinborn, O. Steffens, E. W. Lang, Applying a 1D-CNN network to electricity load forecasting, in: Int. conf. time series forecas., Springer, Cham, 2020,205–218.
    [45] N. Javaid, NADEEM: A Novel Reliable Data Delivery Routing Protocol for Underwater WSNs, in: Works. Int. Conf. Adv. Inf. Netw. App., Springer, Cham, 2019,103–115.
    [46] D. Hussain, T. Hussain, A. A. Khan, S. A. A. Naqvi, A. Jamil, A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin, Earth Sci. Inform., 13 (2020), 915–927. doi: 10.1007/s12145-020-00477-2
    [47] A.M. Tudose, D.O. Sidea, I. I. Picioroaga, V. A. Boicea, C. Bulac, A CNN Based Model for Short-Term Load Forecasting: A Real Case Study on the Romanian Power System, in: 2020 55th Int. Univ. Power Eng. Conf., IEEE, 2020, 1–6.
    [48] M. Solas, N. Cepeda, J. L. Viegas, Convolutional Neural Network for Short-term Wind Power Forecasting, in: 2019 IEEE PES Innov. Smart Grid Technol. Eur., IEEE, 2019, 1–5.
    [49] A. E. Khantach, M. Hamlich, N. E. Belbounaguia, Short-term load forecasting using machine learning and periodicity decomposition, AIMS Energy, 7 (2019), 382–394. doi: 10.3934/energy.2019.3.382
    [50] G. Dudek, Forecasting time series with multiple seasonal cycles using neural networks with local learning, in: Int. Conf. Artif. Intell. Soft Comput., Springer, Berlin, Heidelberg., 2013, 52–63.
    [51] M. A. Ghorbani, R. C. Deo, Z. M. Yaseen, M. H. Kashani, B. Mohammadi, Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran, Theoret. App. Climat., 133 (2018), 1119–1131. doi: 10.1007/s00704-017-2244-0
    [52] M. E. Günay, Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey, Energy Policy, 90 (2016), 92–101.
    [53] G. Dudek, Multilayer perceptron for short-term load forecasting : From global to local approach, Neural Comput. Appl., 32 (2020), 3695–3707. doi: 10.1007/s00521-019-04130-y
    [54] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proc. thirteenth int. conf. artif. intell. stat., 2010,249–256.
    [55] S. Hochreiter, J Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [56] H. Zheng, J. Yuan, L. Chen, Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation, Energies, 10 (2017), 1168. doi: 10.3390/en10081168
    [57] Y. Zhao, Y. Shen, Y. Zhu, J. Yai, Forecasting wavelet transformed time series with attentive neural networks, in: 2018 IEEE Int. Conf. Data Min., IEEE, 2018, 1452–1457.
    [58] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, J. Schmidhuber, LSTM: A Search Space Odyssey, IEEE Trans. Neural Networks Learn. Syst., 28 (2016), 2222–2232.
    [59] P. Nagabushanam, S. T. George, S. Radha, EEG signal classification using LSTM and improved neural network algorithms, Soft Comput., 24 (2020), 9981–10003. doi: 10.1007/s00500-019-04515-0
    [60] V. Y. Senyurek, M. H. Imtiaz, P. Belsare, S. Tiffany, E. Sazonov, A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors, Biomed. Eng. Lett., 10 (2020), 195–203. doi: 10.1007/s13534-020-00147-8
    [61] A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural Networks, 18 (2005), 602–610. doi: 10.1016/j.neunet.2005.06.042
    [62] A. Graves, Long Short-Term Memory, in: Sup. Seq. Label.Recurr. Neural Networks. Stud. Comput. Intell., Springer Berlin Heidelberg, 2012, 37–45.
    [63] X. Ma, Z. Tao, Z. Wang, H. Yu, Y. Wang, Long short-term memory neural network for traffic speed prediction using remote microwave sensor data, Transp. Res. Part C Emerg. Technol., 54 (2015), 187–197. doi: 10.1016/j.trc.2015.03.014
    [64] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 640–651. doi: 10.1109/TPAMI.2016.2572683
    [65] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the gap to human-level performance in face verification, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2014, 1701–1708.
    [66] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-scale video classification with convolutional neural networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. IEEE, 2014, 1725–1732.
    [67] T. Young, D. Hazarika, S. Poria, E. Cambria, Recent trends in deep learning based natural language processing, IEEE Comput. Intell. Mag., 13 (2018), 55–75. doi: 10.1109/MCI.2018.2840738
    [68] M. Cai, M. Pipattanasomporn, S. Rahman, Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques, Appl. Energy, 236 (2019), 1078–1088.
    [69] M. Canizo, I. Triguero, A. Conde, E. Onieva, Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study, Neurocomputing, 363 (2019), 246–260. doi: 10.1016/j.neucom.2019.07.034
    [70] Z. Zeng, H. Xiao, X. Zhang, Self CNN-based time series stream forecasting, Electron. Lett., 52 (2016), 1857–1858. doi: 10.1049/el.2016.2626
    [71] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, 86 (1998), 2278–2324. doi: 10.1109/5.726791
    [72] L. Atlas, T. Homma, R. Marks, An artificial neural network for spatio-temporal bipolar patterns: Application to phoneme classification, in: Neural Inf. Process, 1988, 31–40.
    [73] J. Günther, P. M. Pilarski, G. Helfrich, H. Shen, K. Diepold, First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning, Procedia Technol., 15 (2014), 474–483. doi: 10.1016/j.protcy.2014.09.007
    [74] N. Amjady, F. Keynia, Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm, Energy, 34 (2009), 46–57. doi: 10.1016/j.energy.2008.09.020
    [75] L. Hussain, S. Saeed, A. Idris, I. A. Awan, S. A. Shah, A. Majid, et al., Regression analysis for detecting epileptic seizure with different feature extracting strategies, Biomed. Eng. Biomed. Tech., 64 (2019), 619–642.
    [76] S. Du, T. Li, X. Gong, Y. Yang, S.J. Horng, Traffic flow forecasting based on hybrid deep learning framework, in: 2017 12th Int. Conf. Intell. Syst. Knowl. Eng., IEEE, 2017, 1–6.
    [77] P.-H. Kuo, C.-J. Huang, A high precision artificial neural networks model for short-term energy load forecasting, Energies, 11 (2018), 213. doi: 10.3390/en11010213
    [78] G. M. U. Din, A. K. Marnerides, Short term power load forecasting using Deep Neural Networks, in: 2017 Int. Conf. Comput. Netw. Commun., IEEE, (2017), 594–598.
    [79] S. Fan, L. Chen, Short-term load forecasting based on an adaptive hybrid method, IEEE Trans. Power Syst., 21 (2006), 392–401. doi: 10.1109/TPWRS.2005.860944
    [80] T. Ouyang, Y. He, H. Li, Z. Sun, S. Baek, Modeling and forecasting short-term power load with copula model and deep belief network, IEEE Trans. Emerg. Top. Comput. Intell., 3 (2019), 127–136. doi: 10.1109/TETCI.2018.2880511
    [81] X. Wang, F. Fang, X. Zhang, Y. Liu, L. Wei, Y. Shi, LSTM-based Short-term Load Forecasting for Building Electricity Consumption, in: 2019 IEEE 28th Int. Symp. Ind. Electron., IEEE, 2019, 1418–1423.
    [82] F. Rodrigues, C. Cardeira, J. M. F. Calado, The daily and hourly energy consumption and load forecasting using artificial neural network method: A case study using a set of 93 households in Portugal, Energy Proced., 62 (2014), 220–229. doi: 10.1016/j.egypro.2014.12.383
    [83] I. Shah, H. Iftikhar, S. Ali, Modeling and forecasting medium-term electricity consumption using component estimation technique, Forecasting, 2 (2020), 163–179. doi: 10.3390/forecast2020009
    [84] S. H. Rafi, N. Al-Masood, Short Term Electric Load Forecasting Using High Precision Convolutional Neural Network, in: 2020 Int. Conf. Comput. Electr. Commun. Eng., IEEE, 2020, 1–7.
    [85] S. H. Rafi, N. Al-Masood, Highly Efficient Short Term Load Forecasting Scheme Using Long Short Term Memory Network, in: 2020 8th Int. Electr. Eng. Congr., IEEE, (2020), 1–4.
    [86] R. A. Abbasi, N. Javaid, M. N. J. Ghuman, Z. A. Khan, S. Ur Rehman, Amanullah, Short Term Load Forecasting Using XGBoost, in: Work. Int. Conf. Adv. Info. Netw. App., (2019), 1120–1131.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10337) PDF downloads(1376) Cited by(42)

Article outline

Figures and Tables

Figures(9)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog