In this paper we introduce a bulk-surface reaction-diffusion (BS-RD) model in three space dimensions (3D) that extends the so-called DIB morphochemical model to account for the electrolyte contribution in the application, in order to study structure formation during discharge-charge processes in batteries. Here we propose to approximate the model by the bulk-surface virtual element method (BS-VEM) on a tailor-made mesh that proves to be competitive with fast bespoke methods for PDEs on Cartesian grids. We present a selection of numerical simulations that accurately match the classical morphologies found in experiments. Finally, we compare the Turing patterns obtained by the coupled 3D BS-RD model with those obtained with the original 2D version.
Citation: Massimo Frittelli, Ivonne Sgura, Benedetto Bozzini. Turing patterns in a 3D morpho-chemical bulk-surface reaction-diffusion system for battery modeling[J]. Mathematics in Engineering, 2024, 6(2): 363-393. doi: 10.3934/mine.2024015
In this paper we introduce a bulk-surface reaction-diffusion (BS-RD) model in three space dimensions (3D) that extends the so-called DIB morphochemical model to account for the electrolyte contribution in the application, in order to study structure formation during discharge-charge processes in batteries. Here we propose to approximate the model by the bulk-surface virtual element method (BS-VEM) on a tailor-made mesh that proves to be competitive with fast bespoke methods for PDEs on Cartesian grids. We present a selection of numerical simulations that accurately match the classical morphologies found in experiments. Finally, we compare the Turing patterns obtained by the coupled 3D BS-RD model with those obtained with the original 2D version.
[1] | B. Bozzini, D. Lacitignola, I. Sgura, Spatio-temporal organization in alloy electrode-position: a morphochemical mathematical model and its experimental validation, J. Solid State Electrochem., 17 (2013), 467–469. https://doi.org/10.1007/s10008-012-1945-7 doi: 10.1007/s10008-012-1945-7 |
[2] | D. Lacitignola, B. Bozzini, I. Sgura, Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, Eur. J. Appl. Math., 26 (2015), 143–173. https://doi.org/10.1017/S0956792514000370 doi: 10.1017/S0956792514000370 |
[3] | D. Lacitignola, B. Bozzini, R. Peipmann, I. Sgura, Cross-diffusion effects on a morphochemical model for electrodeposition, Appl. Math. Model., 57 (2018), 492–513. https://doi.org/10.1016/j.apm.2018.01.005 doi: 10.1016/j.apm.2018.01.005 |
[4] | D. Lacitignola, B. Bozzini, M. Frittelli, I. Sgura, Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition, Commun. Nonlinear Sci. Numer. Simulat., 48 (2017), 484–508. https://doi.org/10.1016/j.cnsns.2017.01.008 doi: 10.1016/j.cnsns.2017.01.008 |
[5] | D. Lacitignola, I. Sgura, B. Bozzini, T. Dobrovolska, I. Krastev, Spiral waves on the sphere for an alloy electrodeposition model, Commun. Nonlinear Sci. Numer. Simulat., 79 (2019), 104930. https://doi.org/10.1016/j.cnsns.2019.104930 doi: 10.1016/j.cnsns.2019.104930 |
[6] | A. Madzvamuse, A. W. Chung, C. Venkataraman, Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems, Proc. R. Soc. A, 471 (2015), 20140546. https://doi.org/10.1098/rspa.2014.0546 doi: 10.1098/rspa.2014.0546 |
[7] | A. Madzvamuse, A. W. Chung, The bulk-surface finite element method for reaction-diffusion systems on stationary volumes, Finite Elem. Anal. Des., 108 (2016), 9–21. https://doi.org/10.1016/j.finel.2015.09.002 doi: 10.1016/j.finel.2015.09.002 |
[8] | M. Frittelli, A. Madzvamuse, I. Sgura, The bulk-surface virtual element method for reaction-diffusion PDEs: analysis and applications, Commun. Comput. Phys., 33 (2023), 733–763. https://doi.org/10.4208/cicp.OA-2022-0204 doi: 10.4208/cicp.OA-2022-0204 |
[9] | P. Hansbo, M. G. Larson, S. Zahedi, A cut finite element method for coupled bulk-surface problems on time-dependent domains, Comput. Meth. Appl. Math., 307 (2016), 96–116. https://doi.org/10.1016/j.cma.2016.04.012 doi: 10.1016/j.cma.2016.04.012 |
[10] | K. Deckelnick, C. M. Elliott, T. Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations, SIAM J. Numer. Anal., 52 (2014), 2137–2162. https://doi.org/10.1137/130948641 doi: 10.1137/130948641 |
[11] | M. Cheng, L. Ling, Kernel-based meshless collocation methods for solving coupled bulk-surface partial differential equations, J. Sci. Comput., 81 (2019), 375–391. https://doi.org/10.1007/s10915-019-01020-2 doi: 10.1007/s10915-019-01020-2 |
[12] | M. Frittelli, I. Sgura, Matrix-oriented FEM formulation for reaction-diffusion PDEs on a large class of 2D domains, Appl. Numer. Math., 2023. https://doi.org/10.1016/j.apnum.2023.07.010 doi: 10.1016/j.apnum.2023.07.010 |
[13] | V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016), 377–441. https://doi.org/10.1137/130912839 doi: 10.1137/130912839 |
[14] | M. Frittelli, A. Madzvamuse, I. Sgura, Virtual element method for elliptic bulk-surface PDEs in three space dimensions, Numer. Methods Partial Differ. Equations, 39 (2023), 4221–4247. https://doi.org/10.1002/num.23040 doi: 10.1002/num.23040 |
[15] | I. Sgura, A. S. Lawless, B. Bozzini, Parameter estimation for a morphochemical reaction- diffusion model of electrochemical pattern formation, Inverse Probl. Sci. Eng., 27 (2019), 618–647. https://doi.org/10.1080/17415977.2018.1490278 doi: 10.1080/17415977.2018.1490278 |
[16] | I. Sgura, L. Mainetti, F. Negro, M. G. Quarta, B. Bozzini, Deep-learning based parameter identification enables rationalization of battery material evolution in complex electrochemical systems, J. Comput. Sci., 66 (2023), 101900. https://doi.org/10.1016/j.jocs.2022.101900 doi: 10.1016/j.jocs.2022.101900 |
[17] | A. Quarteroni, Numerical models for differential problems, Milano: Springer, 2009. https://doi.org/10.1007/978-88-470-1071-0 |
[18] | J. Smoller, Shock waves and reaction-diffusion equations, New York: Springer, 1994. https://doi.org/10.1007/978-1-4612-0873-0 |
[19] | B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl., 66 (2013), 376–391. https://doi.org/10.1016/j.camwa.2013.05.015 doi: 10.1016/j.camwa.2013.05.015 |
[20] | L. Mascotto, The role of stabilization in the virtual element method: a survey, Comput. Math. Appl., 151 (2023), 244–251. https://doi.org/10.1016/j.camwa.2023.09.045 doi: 10.1016/j.camwa.2023.09.045 |
[21] | L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The Hitchhiker's guide to the virtual element method, Math. Mod. Meth. Appl. Sci., 24 (2014), 1541–1573. https://doi.org/10.1142/S021820251440003X doi: 10.1142/S021820251440003X |
[22] | M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman, Preserving invariance properties of reaction-diffusion systems on stationary surfaces, IMA J. Numer. Anal., 39 (2019), 235–270. https://doi.org/10.1093/imanum/drx058 doi: 10.1093/imanum/drx058 |
[23] | A. Kazarnikov, H. Haario, Statistical approach for parameter identification by Turing patterns, J. Theor. Biol., 501 (2020), 110319. https://doi.org/10.1016/j.jtbi.2020.110319 doi: 10.1016/j.jtbi.2020.110319 |
[24] | M. C. D'Autilia, I. Sgura, V. Simoncini, Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications, Comput. Math. Appl., 79 (2020), 2067–2085. https://doi.org/10.1016/j.camwa.2019.10.020 doi: 10.1016/j.camwa.2019.10.020 |
[25] | I. Sgura, B. Bozzini, D. Lacitignola, Numerical approximation of Turing patterns in electrodeposition by ADI methods, J. Comput. Appl. Math., 236 (2012), 4132–4147. https://doi.org/10.1016/j.cam.2012.03.013 doi: 10.1016/j.cam.2012.03.013 |