Review Topical Sections

Cutting-edge progress in offshore wind and tidal stream power technology—State-of-the-Art

  • Received: 14 September 2024 Revised: 29 December 2024 Accepted: 23 January 2025 Published: 28 February 2025
  • The growing global demand for clean and sustainable energy has underscored the critical importance of offshore wind and tidal stream power technologies in addressing energy and environmental challenges. While these technologies hold significant potential to harness marine energy resources, gaps remain in understanding their readiness levels, integration potential, and pathways to overcome existing barriers. This study aims to bridge these gaps by providing a comprehensive review of the latest advancements in offshore wind and tidal stream power systems, focusing on innovations in turbine design, materials, and hybrid systems that combine wind and tidal energy. The methodology involves an extensive review and synthesis of recent research, project reports, and industry developments to evaluate the current technological state, challenges, and opportunities. Key findings include notable progress in turbine efficiency and hybrid system integration, which collectively improve energy conversion efficiency, scalability, and reliability. However, the study identifies persistent barriers such as high costs, environmental impact, and competition with more established renewable energy sources like solar and onshore wind. This paper emphasizes the importance of hybrid systems as a transformative approach to maximizing marine resource utilization and enhancing energy supply stability. The findings have significant implications for guiding future research, fostering innovation, and informing investment strategies in the marine renewable energy sector.

    Citation: Ladislas Mutunda Kangaji, Atanda Raji, Efe Orumwense. Cutting-edge progress in offshore wind and tidal stream power technology—State-of-the-Art[J]. AIMS Energy, 2025, 13(1): 188-230. doi: 10.3934/energy.2025007

    Related Papers:

  • The growing global demand for clean and sustainable energy has underscored the critical importance of offshore wind and tidal stream power technologies in addressing energy and environmental challenges. While these technologies hold significant potential to harness marine energy resources, gaps remain in understanding their readiness levels, integration potential, and pathways to overcome existing barriers. This study aims to bridge these gaps by providing a comprehensive review of the latest advancements in offshore wind and tidal stream power systems, focusing on innovations in turbine design, materials, and hybrid systems that combine wind and tidal energy. The methodology involves an extensive review and synthesis of recent research, project reports, and industry developments to evaluate the current technological state, challenges, and opportunities. Key findings include notable progress in turbine efficiency and hybrid system integration, which collectively improve energy conversion efficiency, scalability, and reliability. However, the study identifies persistent barriers such as high costs, environmental impact, and competition with more established renewable energy sources like solar and onshore wind. This paper emphasizes the importance of hybrid systems as a transformative approach to maximizing marine resource utilization and enhancing energy supply stability. The findings have significant implications for guiding future research, fostering innovation, and informing investment strategies in the marine renewable energy sector.



    加载中


    [1] Rautenbach C, Barnes MA, de Vos M (2019) Tidal characteristics of South Africa. Deep Sea Res Part I: Oceanogr Res Pap 150: 103079. https://doi.org/10.1016/j.dsr.2019.103079 doi: 10.1016/j.dsr.2019.103079
    [2] Verma J, Kumar D (2021) Recent developments in energy storage systems for marine environment. Mater Adv 2: 6800–6815. https://doi.org/10.1039/D1MA00746G doi: 10.1039/D1MA00746G
    [3] Nasab NM, Kilby J, Bakhtiaryfard L (2022) Integration of wind and tidal turbines using spar buoy floating foundations. 10: 1165–1189. https://doi.org/10.3934/energy.2022055
    [4] Melikoglu M (2017) Current status and future of ocean energy sources : A global review. Ocean Eng 148: 563–573. https://doi.org/10.1016/j.oceaneng.2017.11.045 doi: 10.1016/j.oceaneng.2017.11.045
    [5] Khan N, Kalair A, Abas N, et al. (2017) Review of ocean tidal, wave and thermal energy technologies. Renewable Sustainable Energy Rev 72: 590–604. https://doi.org/10.1016/j.rser.2017.01.079 doi: 10.1016/j.rser.2017.01.079
    [6] Rehman S, Alhems LM, Alam M, et al. (2022) A review of energy extraction from wind and ocean : Technologies, merits, efficiencies, and cost. Ocean Eng 267: 113192. https://doi.org/10.1016/j.oceaneng.2022.113192 doi: 10.1016/j.oceaneng.2022.113192
    [7] Mtukushe NF, Ojo EE (2021) The study of electrical power generation from tidal energy in South Africa. 2021 South. African Univ. Power Eng. Conf. Mechatronics/Pattern Recognit. Assoc. South Africa, SAUPEC/RobMech/PRASA 2021, 7–12. https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377011
    [8] Akinbami OM, Oke SR, Bodunrin MO (2021) The state of renewable energy development in South Africa: An overview. Alexandria Eng J 60: 5077–5093. https://doi.org/10.1016/j.aej.2021.03.065 doi: 10.1016/j.aej.2021.03.065
    [9] Tarafdar S, Abroshan M, Mirsalim M, et al. (2013) Permanent magnet linear synchronous generator for an oscillating hydrofoil in a tidal current regime. Int J Eng Technol 5: 231–236. https://doi.org/10.7763/IJET.2013.V5.549 doi: 10.7763/IJET.2013.V5.549
    [10] Khooban MH, Gheisarnejad M (2020) Islanded microgrid frequency regulations concerning the integration of tidal power units: Real-Time implementation. IEEE Trans Circuits Syst Ⅱ Express Briefs 67: 1099–1103. https://doi.org/10.1109/TCSⅡ.2019.2928838 doi: 10.1109/TCSⅡ.2019.2928838
    [11] Ranjan T, Thanthirige M, Goggins J, et al. (2023) A state-of-the-art review of structural testing of tidal turbine blades. Energies 16: 4061. https://doi.org/10.3390/en16104061 doi: 10.3390/en16104061
    [12] Funke SW, Farrell PE, Piggott MD (2014) Tidal turbine array optimisation using the adjoint approach. Renewable Energy 63: 658–673. https://doi.org/10.1016/j.renene.2013.09.031 doi: 10.1016/j.renene.2013.09.031
    [13] Zeyringer M, Fais B, Keppo I, et al. (2018) The potential of marine energy technologies in the UK—Evaluation from a systems perspective. Renewable Energy 115: 1281–1293. https://doi.org/10.1016/j.renene.2017.07.092 doi: 10.1016/j.renene.2017.07.092
    [14] Fard RN, Tedeschi E (2018) Integration of distributed energy resources into offshore and subsea grids. 3: 36–45. https://doi.org/10.24295/CPSSTPEA.2018.00004
    [15] Rahman ML, Oka S, Shirai Y (2010) Hybrid power generation system using offshore-wind turbine and tidal turbine for power fluctuation compensation (HOT-PC). IEEE Trans Sustainable Energy 1: 92–98. https://doi.org/10.1109/TSTE.2010.2050347 doi: 10.1109/TSTE.2010.2050347
    [16] Raza SA, Ali SW, Sadiq M, et al. (2021) Offshore wind farm-grid integration: A review on infrastructure, challenges, and grid solutions. IEEE Access 9: 102811–102827. https://doi.org/10.1109/ACCESS.2021.3098705 doi: 10.1109/ACCESS.2021.3098705
    [17] Boersma S, Doekemeijer BM, Gebraad PMO, et al. (2017) A tutorial on control-oriented modeling and control of wind farms. 2017 American Control Conference (ACC), 1–18. https://doi.org/10.23919/ACC.2017.7962923
    [18] Soukissian TH, Denaxa D, Karathanasi F, et al. (2017) Marine renewable energy in the Mediterranean Sea: Status and perspectives. Energies 10: 1–56. https://doi.org/10.3390/en10101512 doi: 10.3390/en10101512
    [19] Li J, Wang G, Li Z, et al. (2020) A review on development of offshore wind energy conversion system. Int J Energy Res 44: 9283–9297. https://doi.org/10.1002/er.5751 doi: 10.1002/er.5751
    [20] Tavakoli S, Khojasteh D, Haghani M, et al. (2023) A review on the progress and research directions of ocean engineering. Ocean Eng 272: 113617. https://doi.org/10.1016/j.oceaneng.2023.113617 doi: 10.1016/j.oceaneng.2023.113617
    [21] Zhou Y (2022) Ocean energy applications for coastal communities with artificial intelligence—A state-of-the-art review. Energy AI 10: 100189. https://doi.org/10.1016/j.egyai.2022.100189 doi: 10.1016/j.egyai.2022.100189
    [22] Shao H, Henriques R, Morais H, et al. (2023) Power quality monitoring in electric grid integrating offshore wind energy : A review. Renewable Sustainable Energy Rev 191: 114094. https://doi.org/10.1016/j.rser.2023.114094 doi: 10.1016/j.rser.2023.114094
    [23] Kai LY, Sarip S, Kaidi HM, et al. (2021) Current status and possible future applications of marine current energy devices in Malaysia : A review. IEEE Access 9: 86869–86888. https://doi.org/10.1109/ACCESS.2021.3088761 doi: 10.1109/ACCESS.2021.3088761
    [24] Itiki R, Di Santo SG, Itiki C, et al. (2019) A comprehensive review and proposed architecture for offshore power system. Int J Electr Power Energy Syst 111: 79–92. https://doi.org/10.1016/j.ijepes.2019.04.008 doi: 10.1016/j.ijepes.2019.04.008
    [25] Petracca E, Faraggiana E, Ghigo A, et al. (2022) Design and techno-economic analysis of a novel hybrid offshore wind and wave energy system. Energies 15: 2739. https://doi.org/10.3390/en15082739 doi: 10.3390/en15082739
    [26] Zhang J, Moreau L, Machmoum M, et al. (2014) State of the art in tidal current energy extracting technologies. 2014 First International Conference on Green Energy ICGE 2014, 1–7. https://doi.org/10.1109/ICGE.2014.6835388
    [27] Strasser T, Andrén F, Kathan J, et al. (2015) A review of architectures and concepts for intelligence in future electric energy systems. IEEE Trans Ind Electron 62: 2424–2438. https://doi.org/10.1109/TIE.2014.2361486 doi: 10.1109/TIE.2014.2361486
    [28] Zainol MZ, Ismail N, Zainol I, et al. (2017) A review on the status of tidal energy technology worldwide. Sci Int 29: 659–667. Available from: https://www.researchgate.net/publication/317617074.
    [29] Kalair A, Abas N, Kalair AR, et al. (2017) Review of harmonic analysis, modeling and mitigation techniques. Renewable Sustainable Energy Rev 78: 1152–1187. https://doi.org/10.1016/j.rser.2017.04.121 doi: 10.1016/j.rser.2017.04.121
    [30] Wei S, Zhang L, Xu Y, et al. (2017) Hierarchical optimization for the double-sided ring structure of the collector system planning of large offshore wind farms. IEEE Trans Sustainable Energy 8: 1029–1040. https://doi.org/10.1109/TSTE.2016.2646061 doi: 10.1109/TSTE.2016.2646061
    [31] Pape M, Kazerani M (2022) A generic power converter sizing framework for series-connected DC offshore wind farms. IEEE Trans Power Electron 37: 2307–2320. https://doi.org/10.1109/TPEL.2021.3106578 doi: 10.1109/TPEL.2021.3106578
    [32] Bose BK (2017) Artificial intelligence techniques in smart grid and renewable energy systems —some example applications. Proc IEEE 105: 2262–2273. https://doi.org/10.1109/JPROC.2017.2756596 doi: 10.1109/JPROC.2017.2756596
    [33] Robins PE, Neill SP, Lewis MJ, et al. (2015) Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Appl Energy 147: 510–522. https://doi.org/10.1016/j.apenergy.2015.03.045 doi: 10.1016/j.apenergy.2015.03.045
    [34] Carlos EWUL (2014) Performance of pitch and stall regulated tidal stream turbines. IEEE Trans Sustainable Energy 5: 64–72. https://doi.org/10.1109/TSTE.2013.2272653 doi: 10.1109/TSTE.2013.2272653
    [35] Kaldellis JK, Boulogiorgou D (2024) Renewable energy: Wind energy. Living With Climate Change 2024: 513–557. https://doi.org/10.1016/B978-0-443-18515-1.00017-4 doi: 10.1016/B978-0-443-18515-1.00017-4
    [36] Rafiei M, Salvatore F, Capponi FG (2019) Generator topologies for horizontal axis tidal turbine. Lect Notes Electr Eng 615: 447–459. https://doi.org/10.1007/978-3-030-37161-6_34 doi: 10.1007/978-3-030-37161-6_34
    [37] Li G, Zhu W (2023) Tidal current energy harvesting technologies : A review of current status and life cycle assessment. Renewable Sustainable Energy Rev 179: 113269. https://doi.org/10.1016/j.rser.2023.113269 doi: 10.1016/j.rser.2023.113269
    [38] King J, Tryfonas T (2009) Tidal stream power technology—state of the art. OCEANS 2009-EUROPE. https://doi.org/10.1109/OCEANSE.2009.5278329
    [39] Khojasteh D, Shamsipour A, Huang L, et al. (2023) A large-scale review of wave and tidal energy research over the last 20 years. Ocean Eng 282: 114995. https://doi.org/10.1016/j.oceaneng.2023.114995 doi: 10.1016/j.oceaneng.2023.114995
    [40] Abd Rahim MW, Rahman AA, Izham M, et al. (2023) Tidal energy in Malaysia: An overview of potentials, device suitability, issues and outlook. Reg Stud Mar Sci 61: 102853. https://doi.org/10.1016/j.rsma.2023.102853 doi: 10.1016/j.rsma.2023.102853
    [41] Gattuso J, Magnan AK, Bopp L, et al. (2018) Ocean solutions to address climate change and its effects on marine ecosystems. https://doi.org/10.3389/fmars.2018.00337
    [42] Touimi K, Benbouzid M (2020) Optimal Design of a multigrid permanent magnet. 13: 487. https://doi.org/10.3390/en13020487
    [43] Sousounis MC (2018) Electro-Mechanical Modelling of Tidal Arrays. The University of Edinburgh, Ph.D. dissertation. Available from: http://hdl.handle.net/1842/31089.
    [44] Zhang Y, Zhao Y, Sun W, et al. (2021) Ocean wave energy converters : Technical principle, device realization, and performance evaluation. Renewable Sustainable Energy Rev 141: 110764. https://doi.org/10.1016/j.rser.2021.110764 doi: 10.1016/j.rser.2021.110764
    [45] Gustavo M, Gimenez J (2011) Technical and regulatory exigencies for grid connection of wind generation. Wind Farm—Tech Regul Potential Estim Siting Assess. https://doi.org/10.5772/16474
    [46] Blaabjerg F, Liu H, Loh PC (2014) Marine energy generation systems and related monitoring and control. IEEE Instrum Meas Mag 17: 27–32. https://doi.org/10.1109/MIM.2014.6810042 doi: 10.1109/MIM.2014.6810042
    [47] Alcorn R, O'Sullivan DL (2013) Electrical design for ocean energy wave and tidal energy systems. Inst Eng Technol, 53. https://doi.org/10.13140/2.1.1934.8804 doi: 10.13140/2.1.1934.8804
    [48] Marten A, Akmatov V, Sørensen TB, et al. (2018) Kriegers flak-combined grid solution: coordinated cross-border control of a meshed HVAC/HVDC offshore wind power grid. https://doi.org/10.1049/iet-rpg.2017.0792
    [49] Sousounis MC, Shek JKH (2017) Mitigation of torque pulsations in variable pitch tidal current turbines using speed control. Proc 12th Eur Wave Tidal Energy Conf. https://doi.org/10.13140/RG.2.2.32130.17603
    [50] Baykov A, Dar'enkov A, Kurkin A, et al. (2019) Mathematical modelling of a tidal power station with diesel and wind units. J King Saud Univ—Sci 31: 1491–1498. https://doi.org/10.1016/j.jksus.2019.01.009 doi: 10.1016/j.jksus.2019.01.009
    [51] Wang L, Lin CY, Wu HY, et al. (2018) Stability analysis of a microgrid system with a hybrid offshore wind and ocean energy farm fed to a power grid through an HVDC link. IEEE Trans Ind Appl 54: 2012–2022. https://doi.org/10.1109/TIA.2017.2787126 doi: 10.1109/TIA.2017.2787126
    [52] Karimirad M (2014) Offshore Energy Structures, 1st edition, Cham, Switzerland: Springer Cham Heidelberg New York Dordrecht London. https://doi.org/10.1007/978-3-319-12175-8
    [53] Rusu E (2013) The expected dynamics of the european offshore wind sector in the climate change context. J Mar Sci Eng 11: 1967. https://doi.org/10.3390/jmse11101967 doi: 10.3390/jmse11101967
    [54] Alfahi STY, Alkahtani AA, Al-Shetwi AQ, et al. (2021) Supraharmonics in power grid: identification, standards, and measurement techniques. IEEE Access 9: 103677–103690. https://doi.org/10.1109/ACCESS.2021.3099013 doi: 10.1109/ACCESS.2021.3099013
    [55] Errami Y, Ieee SM, Maaroufi M (2011) Modelling and control strategy of PMSG based variable speed wind energy conversion system. 2011 Int Conf Multimed Comput Syst 2: 1–6. https://doi.org/10.1109/ICMCS.2011.5945736 doi: 10.1109/ICMCS.2011.5945736
    [56] Mousavi GSM (2012) An autonomous hybrid energy system of wind/tidal/microturbine/battery storage. Int J Electr Power Energy Syst 43: 1144–1154. https://doi.org/10.1016/j.ijepes.2012.05.060 doi: 10.1016/j.ijepes.2012.05.060
    [57] Cheng M, Zhu Y (2014) The state of the art of wind energy conversion systems and technologies : A review. Energy Convers Manag 88: 332–347. https://doi.org/10.1016/j.enconman.2014.08.037 doi: 10.1016/j.enconman.2014.08.037
    [58] Liu M, Sun Z, Liu G, et al. (2019) Study on the influence of large-scale wind power integration on transient stability of power system. APAP 2019—8th IEEE Int Conf Adv Power Syst Autom Prot, 1156–1159. https://doi.org/10.1109/APAP47170.2019.9224650
    [59] Abo-Khalil AG, Alghamdi AS (2021) MPPT of permanent magnet synchronous generator in tidal energy systems using support vector regression. Sustainability 13: 1–15. https://doi.org/10.3390/su13042223 doi: 10.3390/su13042223
    [60] Potgieter JHJ, Kamper MJ (2015) Design Optimization of directly grid-connected PM machines for wind energy applications. IEEE Trans Ind Appl 51: 2949–2958. https://doi.org/10.1109/TIA.2015.2394506 doi: 10.1109/TIA.2015.2394506
    [61] Krylov D, Kholod O, Radohuz S (2020) Active rectifier with different control system types. 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS), Kyiv, Ukraine. https://doi.org/10.1109/IEPS51250.2020.9263226
    [62] Yan J, Lin H, Feng Y, et al. (2014) Control of a grid-connected direct-drive wind energy conversion system. 66: 371–380. https://doi.org/10.1016/j.renene.2013.12.037
    [63] Krylov DS, Kholod O (2021) The efficiency of the active-controlled rectifier operation in the mains voltage distortion mode. 2: 30–35. https://doi.org/10.20998/2074-272X.2021.2.05
    [64] Chhipa AA, Chakrabarti P, Bolshev V, et al. (2022) Modeling and control strategy of wind energy conversion system with grid-connected doubly-fed induction generator. Energies, 15. https://doi.org/10.3390/en15186694 doi: 10.3390/en15186694
    [65] Tripathi RN, Singh A, Hanamoto T (2015) Design and control of LCL filter interfaced grid connected solar photovoltaic (SPV) system using power balance theory. Int J Electr Power Energy Syst 69: 264–272. https://doi.org/10.1016/j.ijepes.2015.01.018 doi: 10.1016/j.ijepes.2015.01.018
    [66] García-Triviño P, Gil-Mena AJ, Llorens-Iborra F, et al. (2015) Power control based on particle swarm optimization of grid-connected inverter for hybrid renewable energy system. Energy Convers Manag 91: 83–92. https://doi.org/10.1016/j.enconman.2014.11.051 doi: 10.1016/j.enconman.2014.11.051
    [67] Vukobratović M, Marić P, Nikolovski S, et al. (2018) Distributed generation harmonic interaction in the active distribution network. Teh Vjesn 25: 1720–1730. https://doi.org/10.17559/TV-20171025123650 doi: 10.17559/TV-20171025123650
    [68] Sousounis MC, Shek JKH, Mueller MA (2016) Modelling, control and frequency domain analysis of a tidal current conversion system with onshore converters. IET Renewable Power Gener 10: 158–165. https://doi.org/10.1049/iet-rpg.2014.0331 doi: 10.1049/iet-rpg.2014.0331
    [69] Moreira AB, Dos Santos Barros TA, De Castro Teixeira VS, et al. (2019) Control of powers for wind power generation and grid current harmonics filtering from doubly fed induction generator: comparison of two strategies. IEEE Access 7: 32703–32713. https://doi.org/10.1109/ACCESS.2019.2899456 doi: 10.1109/ACCESS.2019.2899456
    [70] Naderipour A, Zin AAM, Bin Habibuddin MH, et al. (2017) An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions. PLoS One 12: 1–17. https://doi.org/10.1371/journal.pone.0164856 doi: 10.1371/journal.pone.0164856
    [71] Patil A, Gadgune S (2022) DC side voltage regulation of three phase PWM rectifier control using sliding mode controller. 2022 International Conference on Futuristic Technologies, INCOFT 2022, 1–4. https://doi.org/10.1109/INCOFT55651.2022.10094557
    [72] Abu-Siada A, Budiri J, Abdou AF (2018) Solid state transformers topologies, controllers, and applications: State-of-the-art literature review. Electronics, 7. https://doi.org/10.3390/electronics7110298 doi: 10.3390/electronics7110298
    [73] Reznik A, Simões MG, Al-Durra A, et al. (2012) LCL filter design and performance analysis for small wind turbine systems. PEMWA 2012—2012 IEEE Power Electron Mach Wind Appl, 1–7. https://doi.org/10.1109/PEMWA.2012.6316408
    [74] Cai Y, Member S, He Y, et al. (2023) Integrated design of filter and controller parameters inverter based on harmonic state-space model. IEEE Trans Power Electron 38: 6455–6473. https://doi.org/10.1109/TPEL.2023.3241091 doi: 10.1109/TPEL.2023.3241091
    [75] Ranjan A, Giribabu D (2023) Design of LCL filter for grid connected three phase three level inverter to meet IEEE 519 standards. 2023 IEEE Int Students' Conf Electr Electron Comput Sci SCEECS, 1–6. https://doi.org/10.1109/SCEECS57921.2023.10061817
    [76] Zhan P, Lin W, Wen J, et al. (2012) Design of LCL filters for the back-to-back converter in a doubly fed induction generator. 2012 IEEE Innov Smart Grid Technol—Asia, ISGT Asia 2012, 1–6. https://doi.org/10.1109/ISGT-Asia.2012.6303305
    [77] Reznik A, Simoes MG, Al-Durra A, et al. (2014) LCL filter design and performance analysis for grid-interconnected systems. IEEE Trans Ind Appl 50: 1225–1232. https://doi.org/10.1109/TIA.2013.2274612 doi: 10.1109/TIA.2013.2274612
    [78] Musasa K, Nwulu NI, Gitau MN, et al. (2017) Review on DC collection grids for offshore wind farms with high-voltage DC transmission system. IET Power Electron 10: 2104–2115. https://doi.org/10.1049/iet-pel.2017.0182 doi: 10.1049/iet-pel.2017.0182
    [79] Mansouri A, El A, Lajouad R et al. (2023) Wind energy based conversion topologies and maximum power point tracking: A Comprehensive Review and Analysis. e-Prime—Adv Electr Eng Electron Energy 6: 100351. https://doi.org/10.1016/j.prime.2023.100351 doi: 10.1016/j.prime.2023.100351
    [80] Liang X (2017) Emerging power quality challenges due to integration of renewable energy sources. IEEE Trans Ind Appl 53: 855–866. https://doi.org/10.1109/TIA.2016.2626253 doi: 10.1109/TIA.2016.2626253
    [81] Yaramasu V, Wu B, Sen PC, et al. (2015) High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proc IEEE 103: 740–788. https://doi.org/10.1109/JPROC.2014.2378692 doi: 10.1109/JPROC.2014.2378692
    [82] Sanjuan SL (2010) Voltage oriented control of three-phase boost PWM converters: design, simulation, and implementation of a 3-phase boost battery charger. Chalmers University of Technology, Gothenburg, Sweden, M.S. thesis. Available from: https://doi:publications.lib.chalmers.se/records/fulltext/173977/173977.
    [83] Ni K, Hu Y, Liu Y, et al. (2017) Performance analysis of a four-switch three-phase grid-side converter with modulation simplification in a doubly-fed induction generator-based wind turbine (DFIG-WT) with different external disturbances. Energies, 10. https://doi.org/10.3390/en10050706
    [84] Amenedo JLR, Gomez SA, Alonso-Martinez J, et al. (2021) Grid-Forming converters control based on the reactive power synchronization method for renewable power plants. IEEE Access 9: 67989–68007. https://doi.org/10.1109/ACCESS.2021.3078078 doi: 10.1109/ACCESS.2021.3078078
    [85] Tola OJ, Tsado J, Umoh EA, et al. (2022) Modeling and simulation of marine current energy conversion system with six-phase permanent magnet synchronous generator. Eurasia Proc Sci Technol Eng Math 21: 1–10. https://doi.org/10.55549/epstem.1224038 doi: 10.55549/epstem.1224038
    [86] Brantsæter H, Kocewiak Ł, Årdal AR, et al. (2015) Passive filter design and offshore wind turbine modelling for system level harmonic studies. Energy Procedia 80: 401–410. https://doi.org/10.1016/j.egypro.2015.11.444 doi: 10.1016/j.egypro.2015.11.444
    [87] Deng J, Cheng F, Yao L, et al. (2023) A review of system topologies, key operation and control technologies for offshore wind power transmission based on HVDC. IET Gener Transm Distrib 17: 3345–3363. https://doi.org/10.1049/gtd2.12894 doi: 10.1049/gtd2.12894
    [88] Jain A, Shankar S, Vanitha V (2018) Power generation using Permanent Magnet Synchronous Generator (PMSG) based variable speed wind energy conversion system (WECS): An overview. J Green Eng 7: 477–504. https://doi.org/10.13052/jge1904-4720.742 doi: 10.13052/jge1904-4720.742
    [89] Korompili A, Wu Q, Zhao H (2016) Review of VSC HVDC connection for offshore wind power integration. Renewable Sustainable Energy Rev 59: 1405–1414. https://doi.org/10.1016/j.rser.2016.01.064 doi: 10.1016/j.rser.2016.01.064
    [90] Patra RR, Asha RMA, Krishna PB (2023) Active power control of Hybrid-HVDC line connected to offshore DFIG-based wind farm during mainland grid voltage fluctuations. 2023 IEEE IAS Glob Conf Renew Energy Hydrog Technol GlobConHT 2023, 1–7. https://doi.org/10.1109/GlobConHT56829.2023.10087847
    [91] Roy A, Auger F, Dupriez-Robin F, et al. (2018) Electrical power supply of remote maritime areas: A review of hybrid systems based on marine renewable energies. Energies, 11. https://doi.org/10.3390/en11071904 doi: 10.3390/en11071904
    [92] Krneta N, Sano K (2024) AC fault ride-through method of HVDC interconnector for islanded AC grid with offshore wind farm and loads. IEEE Access 12: 62099—62106. https://doi.org/10.1109/ACCESS.2024.3394322 doi: 10.1109/ACCESS.2024.3394322
    [93] Sousounis MC, Shek JKH, Mueller MA (2016) Filter design for cable overvoltage and power loss minimization in a tidal energy system with onshore converters. IEEE Trans Sustainable Energy 7: 400–408. https://doi.org/10.1109/TSTE.2015.2424258 doi: 10.1109/TSTE.2015.2424258
    [94] Chen H, Tang T, Ait-Ahmed N, et al. (2018) Attraction, challenge and current status of marine current energy. IEEE Access 6: 12665–12685. https://doi.org/10.1109/ACCESS.2018.2795708 doi: 10.1109/ACCESS.2018.2795708
    [95] Abdelsalam I, Adam GP, Williams BW (2016) Current source back-to-back converter for wind energy conversion systems. IET Renewable Power Gener 10: 1552–1561. https://doi.org/10.1049/iet-rpg.2016.0177 doi: 10.1049/iet-rpg.2016.0177
    [96] Rajendran S, Diaz M, Cárdenas R, et al. (2022) A review of generators and power converters for multi-mw wind energy conversion systems. Processes, 10. https://doi.org/10.3390/pr10112302 doi: 10.3390/pr10112302
    [97] Raza M (2021) Voltage and reactive power correlation in multi-objective optimization of an offshore grid. Automatika 62: 454–470. https://doi.org/10.1080/00051144.2021.1984632 doi: 10.1080/00051144.2021.1984632
    [98] Garcia P, Kyozuka Y (2021) Tidal stream energy as a potential continuous power producer: A case study for West Japan. Energy Convers Manag 245: 114533. https://doi.org/10.1016/j.enconman.2021.114533 doi: 10.1016/j.enconman.2021.114533
    [99] Chen H, Aït-Ahmed N, Zaïm EH, et al. (2012) Marine tidal current systems: State of the art. IEEE Int Symp Ind Electron, 1431–1437. https://doi.org/10.1109/ISIE.2012.6237301 doi: 10.1109/ISIE.2012.6237301
    [100] Yin X, Zhao X (2021) Optimal power extraction of a two-stage tidal turbine system based on backstepping disturbance rejection control. Int J Electr Power Energy Syst 132: 107158. https://doi.org/10.1016/j.ijepes.2021.107158 doi: 10.1016/j.ijepes.2021.107158
    [101] Knight C, Mcgarry S, Hayward J, et al. (2014) A review of ocean energy converters, with an Australian focus. 2: 295–320. https://doi.org/10.3934/energy.2014.3.295
    [102] Touimi K, Benbouzid M, Tavner P (2018) Tidal stream turbines: With or without a Gearbox? Ocean Eng 170: 74–88. https://doi.org/10.1016/j.oceaneng.2018.10.013 doi: 10.1016/j.oceaneng.2018.10.013
    [103] Elzalabani M, Fahmy FH, Nafeh AESA, et al. (2015) Modelling and simulation of tidal current turbine with permanent magnet synchronous generator. TELKOMNIKA Indones J Electr Eng, 13. https://doi.org/10.11591/telkomnika.v13i1.7017 doi: 10.11591/telkomnika.v13i1.7017
    [104] Tian W, Mao Z, Ding H (2018) Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. Int J Nav Archit Ocean Eng 10: 782–793. https://doi.org/10.1016/j.ijnaoe.2017.10.006 doi: 10.1016/j.ijnaoe.2017.10.006
    [105] Touimi K (2020) Design optimization of a gearbox driven tidal stream turbine. Universite de Bretagne Occidentale. https://doi.org/10.1016/j.oceaneng.2018.10.013
    [106] Habibi H, Nohooji HR, Howard I (2017) Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control. 12: 377–388. https://doi.org/10.1007/s11465-017-0431-4
    [107] Njiri JG, Söffker D (2016) State-of-the-art in wind turbine control: Trends and challenges. Renewable Sustainable Energy Rev 60: 377–393. https://doi.org/10.1016/j.rser.2016.01.110 doi: 10.1016/j.rser.2016.01.110
    [108] Bensalah A, Benhamida MA, Barakat G, et al. (2018) Large wind turbine generators: State-of-the-art review. 2018 XⅢ Int. Conf Electr Mach, 2205–2211. https://doi.org/10.1109/ICELMACH.2018.8507165
    [109] Rourke FO, Boyle F, Reynolds A (2010) Marine current energy devices: Current status and possible future applications in Ireland. Renewable Sustainable Energy Rev 14: 1026–1036. https://doi.org/10.1016/j.rser.2009.11.012 doi: 10.1016/j.rser.2009.11.012
    [110] Zhou Z, Benbouzid M, Charpentier J, et al. (2017) Developments in large marine current turbine technologies—A review. Renewable Sustainable Energy Rev 71: 852–858. https://doi.org/10.1016/j.rser.2016.12.113 doi: 10.1016/j.rser.2016.12.113
    [111] Hu C, Tang C, Yuwen C, et al. (2021) Coupled interactions analysis of a floating tidal current power station in uniform flow. J Mar Sci Eng, 9. https://doi.org/10.3390/jmse9090958 doi: 10.3390/jmse9090958
    [112] Chen H, Li Q, Benbouzid M, et al. (2021) Development and research status of tidal current power generation systems in China. J Mar Sci Eng, 9. https://doi.org/10.3390/jmse9111286 doi: 10.3390/jmse9111286
    [113] Si Y, Liu X, Wang T, et al. (2022) State-of-the-art review and future trends of development of tidal current energy converters in China. Renewable Sustainable Energy Rev 167: 112720. https://doi.org/10.1016/j.rser.2022.112720 doi: 10.1016/j.rser.2022.112720
    [114] Zhang Y, Shek JKH, Mueller MA (2023) Controller design for a tidal turbine array, considering both power and loads aspects. Renewable Energy 216: 119063. https://doi.org/10.1016/j.renene.2023.119063 doi: 10.1016/j.renene.2023.119063
    [115] Lamy JV, Azevedo IL (2020) Do tidal stream energy projects o ff er more value than offshore wind farms? A case study in the United Kingdom. Energy Policy 113: 28–40. https://doi.org/10.1016/j.enpol.2017.10.030 doi: 10.1016/j.enpol.2017.10.030
    [116] Ma Y, Hu C, Li L (2021) Hydrodynamics and wake flow analysis of a Π-type vertical axis twin-rotor tidal current turbine in surge motion. Ocean Eng 224: 10862. https://doi.org/10.1016/j.oceaneng.2021.108625 doi: 10.1016/j.oceaneng.2021.108625
    [117] Hussain A, Arif SM, Aslam M (2017) Emerging renewable and sustainable energy technologies: State of the art. Renewable Sustainable Energy Rev 71: 12–28. https://doi.org/10.1016/j.rser.2016.12.033 doi: 10.1016/j.rser.2016.12.033
    [118] Tekobon J, Chabour F, Nichita C (2017) Development of HILS emulator for a hybrid wind— tidal power system. Proc 2016 Int Conf Electr Sci Technol Maghreb, 1–8. https://doi.org/10.1109/CISTEM.2016.8066821
    [119] Lande-sudall D, Stallard T, Stansby P (2018) Co-located offshore wind and tidal stream turbines: Assessment of energy yield and loading. Renewable Energy 118: 627–643. https://doi.org/10.1016/j.renene.2017.10.063 doi: 10.1016/j.renene.2017.10.063
    [120] Nkwanyana TB, Siti MW, Wang Z, et al. (2023) An assessment of hybrid-energy storage systems in the renewable environments. J Energy Storage 72: 108307. https://doi.org/10.1016/j.est.2023.108307 doi: 10.1016/j.est.2023.108307
    [121] Kanagji L, Raji A, Orumwense E (2024) Optimizing sustainability offshore hybrid tidal-wind energy storage systems for an off-grid coastal city in South Africa. Sustainability 16: 913. https://doi.org/10.3390/su16219139 doi: 10.3390/su16219139
    [122] Caraiman G, Nichita C, Mînzu V, et al. (2011) Concept study of offshore wind and tidal hybrid conversion based on real time simulation. Renewable Energy Power Qual J 1: 812–817. https://doi.org/10.24084/repqj09.459 doi: 10.24084/repqj09.459
    [123] Lande-sudall D, Stallard T, Stansby P (2019) Co-located deployment of o ff shore wind turbines with tidal stream turbine arrays for improved cost of electricity generation. Renewable Sustainable Energy Rev 104: 492–503. https://doi.org/10.1016/j.rser.2019.01.035 doi: 10.1016/j.rser.2019.01.035
    [124] Faridnia N, Habibi D, Lachowicz S, et al. (2019) Optimal scheduling in a microgrid with a tidal generation. Energy 171: 435–443. https://doi.org/10.1016/j.energy.2018.12.079 doi: 10.1016/j.energy.2018.12.079
    [125] Rahman ML, Nishimura K, Motobayashi K, et al. (2014) Characteristic of small-scale BESS for HOTT generation system. Dig Tech Pap—InnoTek 2014 2014 IEEE Innov Technol Conf, 1–9. https://doi.org/10.1109/InnoTek.2014.6877363
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(213) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(35)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog