With the rapid development of global industrialization, the surplus and waste heat generated during industrial production processes is becoming increasingly abundant, making the utilization of industrial surplus and waste heat a focal point of current research. The main challenge facing the utilization of industrial surplus and waste heat is the spatial and temporal mismatch between the large amount of industrial waste heat generated during the non-heating season and the heating demand during the heating season. Seasonal energy storage technology enables energy to be stored and transferred over long periods and large areas. The application of this technology in the field of industrial surplus and waste heat utilization can effectively reduce energy waste and greenhouse gas emissions, thereby lowering the costs of industrial production. Here, we provide an overview of the current status of the utilization of surplus and waste heat resources in six industrial scenarios: Thermal power plants, nuclear power plants, steel mills, oil refineries, coal mines, and data centers. The research progress of sensible heat storage (SHS), latent heat storage (LHS), and thermochemical storage (THS) is analyzed. The advantages and disadvantages of different energy storage technologies are discussed. Application cases combining industrial waste heat recovery with seasonal energy storage are enumerated and analyzed. Our aim is to provide a reference for research and practice in related fields.
Citation: Jialin Song, Haoyi Zhang, Yanming Zhang, Zhongjiao Ma, Mingfei He. Research progress on industrial waste heat recycling and seasonal energy storage[J]. AIMS Energy, 2025, 13(1): 147-187. doi: 10.3934/energy.2025006
With the rapid development of global industrialization, the surplus and waste heat generated during industrial production processes is becoming increasingly abundant, making the utilization of industrial surplus and waste heat a focal point of current research. The main challenge facing the utilization of industrial surplus and waste heat is the spatial and temporal mismatch between the large amount of industrial waste heat generated during the non-heating season and the heating demand during the heating season. Seasonal energy storage technology enables energy to be stored and transferred over long periods and large areas. The application of this technology in the field of industrial surplus and waste heat utilization can effectively reduce energy waste and greenhouse gas emissions, thereby lowering the costs of industrial production. Here, we provide an overview of the current status of the utilization of surplus and waste heat resources in six industrial scenarios: Thermal power plants, nuclear power plants, steel mills, oil refineries, coal mines, and data centers. The research progress of sensible heat storage (SHS), latent heat storage (LHS), and thermochemical storage (THS) is analyzed. The advantages and disadvantages of different energy storage technologies are discussed. Application cases combining industrial waste heat recovery with seasonal energy storage are enumerated and analyzed. Our aim is to provide a reference for research and practice in related fields.
[1] |
Eslamizadeh S, Ghorbani A, Costa RCBF, et al. (2022) Industrial community energy systems: Simulating the role of financial incentives and societal attributes. Front Environ Sci 10: 924509. https://doi.org/10.3389/fenvs.2022.924509 doi: 10.3389/fenvs.2022.924509
![]() |
[2] | Gül T, Jiang Y, Delmastro C, et al. (2024) The future of heat pumps in China, Beijing. Int Energy Agency, Tsinghua University Press, 15–30. Available from: https://www.iea.org/reports/the-future-of-heat-pumps-in-china. |
[3] |
Pelda J, Stelter F, Holler S (2020) Potential of integrating industrial waste heat and solar thermal energy into district heating networks in Germany. Energy 203: 117812. https://doi.org/10.1016/j.energy.2020.117812 doi: 10.1016/j.energy.2020.117812
![]() |
[4] |
Hong GB, Pan TC, Chan DYL, et al. (2020) Bottom-up analysis of industrial waste heat potential in Taiwan. Energy 198: 117393. https://doi.org/10.1016/j.energy.2020.117393 doi: 10.1016/j.energy.2020.117393
![]() |
[5] |
Dahash A, Ochs F, Janetti MB, et al. (2019) Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems. Appl Energy 239: 296–315. https://doi.org/10.1016/j.apenergy.2019.01.189 doi: 10.1016/j.apenergy.2019.01.189
![]() |
[6] |
Alkhalidi A, Al Khatba H, Khawaja MK (2021) Utilization of buildings' foundations for a seasonal thermal energy storage medium to meet space and water heat demands. Int J Photoenergy 2021: 6668079. https://doi.org/10.1155/2021/6668079 doi: 10.1155/2021/6668079
![]() |
[7] |
Woolley E, Luo Y, Simeone A (2018) Industrial waste heat recovery: A systematic approach. Sustainable Energy Technol Assess 29: 50–59. https://doi.org/10.1016/j.seta.2018.07.001 doi: 10.1016/j.seta.2018.07.001
![]() |
[8] |
Slimani H, Baba YF, Ousaleh HA, et al. (2023) Horizontal thermal energy storage system for Moroccan steel and iron industry waste heat recovery: Numerical and economic study. J Clean Prod 393: 136176. https://doi.org/10.1016/j.jclepro.2023.136176 doi: 10.1016/j.jclepro.2023.136176
![]() |
[9] |
Ajeeb W, Costa Neto R, Baptista P (2024) Life cycle assessment of green hydrogen production through electrolysis: A literature review. Sustainable Energy Technol Assess 69: 103923. https://doi.org/10.1016/j.seta.2024.103923 doi: 10.1016/j.seta.2024.103923
![]() |
[10] |
Yan J, Mo Y, Zhao CY, et al. (2024) Preparation and parameter optimization of thermochemical heat storage materials with high cyclic stability. Sol Energy Mater Sol Cells 268: 112749. https://doi.org/10.1016/j.solmat.2024.112749 doi: 10.1016/j.solmat.2024.112749
![]() |
[11] |
Thomas JM, Edwards PP, Dobson PJ, et al. (2020) Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. J Energy Chem 51: 405–415. https://doi.org/10.1016/j.jechem.2020.03.087 doi: 10.1016/j.jechem.2020.03.087
![]() |
[12] |
Ajeeb W, Baptista P, Neto RC (2024) Life cycle analysis of hydrogen production by different alkaline electrolyser technologies sourced with renewable energy. Energy Conv Manage 316: 118840. https://doi.org/10.1016/j.enconman.2024.118840 doi: 10.1016/j.enconman.2024.118840
![]() |
[13] |
Razi F, Dincer I (2020) A critical evaluation of potential routes of solar hydrogen production for sustainable development. J Clean Prod 264: 21582. https://doi.org/10.1016/j.jclepro.2020.121582 doi: 10.1016/j.jclepro.2020.121582
![]() |
[14] |
Al-Janabi A, Al-Azri N (2020) Effect of recovering the industrial waste heat in Oman on energy and environment. Energy Rep 6: 526–531.https://doi.org/10.1016/j.egyr.2020.11.203 doi: 10.1016/j.egyr.2020.11.203
![]() |
[15] |
Wang X, Wu Y, Fu L (2023) Evaluation of combined heat and power plants with electricity regulation. Appl Therm Eng 227: 120364. https://doi.org/10.1016/j.applthermaleng.2023.120364 doi: 10.1016/j.applthermaleng.2023.120364
![]() |
[16] |
Liu B, Li J, Zhang S, et al. (2020) Economic dispatch of combined heat and power energy systems using electric boiler to accommodate wind power. IEEE Access 8: 41288–41297. https://doi.org/10.1109/ACCESS.2020.2968583 doi: 10.1109/ACCESS.2020.2968583
![]() |
[17] |
Xu ZY, Mao HC, Liu DS, et al. (2018) Waste heat recovery of power plant with large scale serial absorption heat pumps. Energy 165: 1097–1105 https://doi.org/10.1016/j.energy.2018.10.052 doi: 10.1016/j.energy.2018.10.052
![]() |
[18] |
Zhang YJ, Ge ZH, Yang YX, et al. (2023) Carbon reduction and flexibility enhancement of the CHP-based cascade heating system with integrated electric heat pump. Energy Conv Manage 280: 116801. https://doi.org/10.1016/j.enconman.2023.116801 doi: 10.1016/j.enconman.2023.116801
![]() |
[19] |
Wang X, Wu Y, Fu L (2023) Configuration method for combined heat and power plants with flexible electricity regulation. Energy Build 287: 112966. https://doi.org/10.1016/j.enbuild.2023.112966 doi: 10.1016/j.enbuild.2023.112966
![]() |
[20] |
Abdelfattah AI, Shaaban MF, Osman AH, et al. (2023) Optimal management of seasonal pumped hydro storage system for peak shaving. Sustainability 15: 51111973. https://doi.org/10.3390/su151511973 doi: 10.3390/su151511973
![]() |
[21] |
Larrinaga P, Campos-Celador A, Legarreta J, et al. (2021) Evaluation of the theoretical, technical and economic potential of industrial waste heat recovery in the Basque Country. J Clean Prod 312: 127494. https://doi.org/10.1016/j.jclepro.2021.127494 doi: 10.1016/j.jclepro.2021.127494
![]() |
[22] |
Kumar S, Thakur J, Gardumi F (2022) Techno-economic modelling and optimisation of excess heat and cold recovery for industries: A review. Renewable Sustainable Energy Rev 168: 112811. https://doi.org/10.1016/j.rser.2022.112811 doi: 10.1016/j.rser.2022.112811
![]() |
[23] |
Lygnerud K, Werner S (2018) Risk assessment of industrial excess heat recovery in district heating systems. Energy 151: 430–441. https://doi.org/10.1016/j.energy.2018.03.047 doi: 10.1016/j.energy.2018.03.047
![]() |
[24] |
Liu L, Zhu N, Zhao J (2016) Thermal equilibrium research of solar seasonal storage system coupling with ground-source heat pump. Energy 99: 83–90. https://doi.org/10.1016/j.energy.2016.01.053 doi: 10.1016/j.energy.2016.01.053
![]() |
[25] |
Guerra OJ, Zhang JZ, Eichman J, et al. (2020) The value of seasonal energy storage technologies for the integration of wind and solar power. Energy Environ Sci 13: 1909–1922. https://doi.org/10.1039/D0EE00771D doi: 10.1039/D0EE00771D
![]() |
[26] |
Marenco-Porto CA, Fierro JJ, Nieto-Londono C, et al. (2023) Potential savings in the cement industry using waste heat recovery technologies. Energy 279: 127810. https://doi.org/10.1016/j.energy.2023.127810 doi: 10.1016/j.energy.2023.127810
![]() |
[27] |
Mitri FB, Ponce G, Anderson KR (2023) Compost waste heat to power organic rankine cycle design and analysis. J Energy Resour Technol 145: 4062288. https://doi.org/10.1115/1.4062288 doi: 10.1115/1.4062288
![]() |
[28] |
Zhang HS, Liu YF, Liu XG, et al. (2020) Energy and exergy analysis of a new cogeneration system based on an organic Rankine cycle and absorption heat pump in the coal-fired power plant. Energy Conv Manage 223: 113293. https://doi.org/10.1016/j.enconman.2020.113293 doi: 10.1016/j.enconman.2020.113293
![]() |
[29] |
Ma Y, Gao E, Zhang X, et al. (2024) Parametric analysis and design optimization of a fully open absorption heat pump for heat and water recovery of flue gas. Appl Energy 375: 124144. https://doi.org/10.1016/j.apenergy.2024.124144 doi: 10.1016/j.apenergy.2024.124144
![]() |
[30] |
Fu BR, Hsieh JC, Cheng SM, et al. (2024) Thermoeconomic analysis of a novel cogeneration system for cascade recovery of waste heat from exhaust flue gases. Appl Therm Eng 247: 123034. https://doi.org/10.1016/j.applthermaleng.2024.123034 doi: 10.1016/j.applthermaleng.2024.123034
![]() |
[31] |
Li F, Lin DM, Fu L, et al. (2019) Application of absorption heat pump and direct-contact total heat exchanger to advanced-recovery flue-gas waste heat for gas boiler. Sci Technol Built Environ 25: 149–155. https://doi.org/10.1080/23744731.2018.1506676 doi: 10.1080/23744731.2018.1506676
![]() |
[32] |
Yan LF, Wang W, Song BT, et al. (2023) Design of waste heat recovery system for a gas-fired thermal power plant in Beijing. HVAC 53: 127–132. https://doi.org/10.19991/j.hvac1971.2023.09.19 doi: 10.19991/j.hvac1971.2023.09.19
![]() |
[33] |
Kuang SY, Fang L, Xie Y, et al. (2023) Application analysis of core equipment for waste heat recovery of low temperature flue gas. HVAC 53: 121–126. https://doi.org/10.19991/j.hvac1971.2023.02.19 doi: 10.19991/j.hvac1971.2023.02.19
![]() |
[34] |
Wang R, Du X, Shi Y, et al. (2023) An ejector and flashbox-integrated approach to flue gas waste heat recovery: A novel systematic study. Energies 16: 16227607. https://doi.org/10.3390/en16227607 doi: 10.3390/en16227607
![]() |
[35] |
Liu YL (2023) Practical analysis of flue gas waste heat utilisation technology in boiler tail of thermal power plant. Mod Ind Econ Inform 13: 305–307. https://doi.org/10.16525/j.cnki.14-1362/n.2023.10.101 doi: 10.16525/j.cnki.14-1362/n.2023.10.101
![]() |
[36] |
Feng J, Cheng X, Yan Y, et al. (2023) Thermodynamic and thermo-economic analysis, performance comparison and parameter optimization of basic and regenerative organic Rankine cycles for waste heat recovery. Case Stud Therm Eng 52: 103816. https://doi.org/10.1016/j.csite.2023.103816 doi: 10.1016/j.csite.2023.103816
![]() |
[37] |
Li Y, Chen X, Jiang S, et al. (2023) Thermodynamics of cascaded waste heat utilization from flue gas and circulating cooling water. J Therm Sci 32: 2166–2178. https://doi.org/10.1007/s11630-023-1886-8 doi: 10.1007/s11630-023-1886-8
![]() |
[38] |
Liu C, Li H, Yu S, et al. (2023) Analysis of main engine various waste heat cascade recovery systems under different evaporation pressure. Int J Exergy 40: 263–281. https://doi.org/10.1504/IJEX.2023.129797 doi: 10.1504/IJEX.2023.129797
![]() |
[39] |
Mubashir W, Adnan M, Zaman M, et al. (2023) Thermo-economic evaluation of supercritical CO2 Brayton cycle integrated with absorption refrigeration system and organic Rankine cycle for waste heat recovery. Therm Sci Eng Prog 44: 102073. https://doi.org/10.1016/j.tsep.2023.102073 doi: 10.1016/j.tsep.2023.102073
![]() |
[40] |
Wu SY, Wu YL, Bai JY, et al. (2021) Research on recovering waste heat from exhaust steam in cogeneration system by heat pump. Clean Coal Technol 27: 323–327. https://doi.org/10.13226/j.issn.1006-6772.21032404 doi: 10.13226/j.issn.1006-6772.21032404
![]() |
[41] |
An MY, Zhao XR, Xu ZY, et al. (2021) A hybrid compression-absorption high temperature heat pump cycles for industrial waste heat recovery. J Shanghai Jiaotong Univ 55: 434–443. https://doi.org/10.16183/j.cnki.jsjtu.2020.023 doi: 10.16183/j.cnki.jsjtu.2020.023
![]() |
[42] |
Wu YT, Yin SY, Fu L, et al. (2018) "Cogeneration Synergy" to improve CHP flexibility. District Heating, 32–38. https://doi.org/10.16641/j.cnki.cn11-3241/tk.2018.01.006 doi: 10.16641/j.cnki.cn11-3241/tk.2018.01.006
![]() |
[43] |
Talib R, Khan Z, Khurram S, et al. (2023) Energy efficiency enhancement of a thermal power plant by novel heat integration of internal combustion engine, boiler, and organic Rankine cycle. Asia Pac J Chem Eng 13: 3013. https://doi.org/10.1002/apj.3013 doi: 10.1002/apj.3013
![]() |
[44] |
Zhang L, Zhao C, Sun E, et al. (2023) Energy, exergy and economic (3E) study on waste heat utilization of gas turbine by improved recompression cycle and partial cooling cycle. Energy Sources Part A 45: 4127–4145. https://doi.org/10.1080/15567036.2023.2202626 doi: 10.1080/15567036.2023.2202626
![]() |
[45] |
Kauko H, Rohde D, Knudsen BR, et al. (2020) Potential of thermal energy storage for a district heating system utilizing industrial waste heat. Energies 13: 13153923. https://doi.org/10.3390/en13153923 doi: 10.3390/en13153923
![]() |
[46] |
Elistratov SL, Mironova NV (2023) Absorption thermal transformers for heat recycling at thermal power plants. Thermophys Aeromech 30: 381–386. https://doi.org/10.1134/S0869864323020191 doi: 10.1134/S0869864323020191
![]() |
[47] |
Aberkane S, Semmari H, Filali A, et al. (2023) Thermo-economic assessment of upgrading a basic gas turbine power plant into CHP plant. Int J Exergy 40: 429–450. https://doi.org/10.1504/IJEX.2023.130368 doi: 10.1504/IJEX.2023.130368
![]() |
[48] |
Sinha AA, Choudhary T, Ansari MZ, et al. (2023) Waste heat recovery and exergy-based comparison of a conventional and a novel fuel cell integrated gas turbine hybrid configuration. Sustainable Energy Technol Assess 57: 103256. https://doi.org/10.1016/j.seta.2023.103256 doi: 10.1016/j.seta.2023.103256
![]() |
[49] |
Singh N, Chakrabarti T, Chakrabarti P, et al. (2023) Analysis of heuristic optimization technique solutions for combined heat-power economic load dispatch. Appl Sci Basel 13: 10380. https://doi.org/10.3390/app131810380 doi: 10.3390/app131810380
![]() |
[50] |
Pathak SK, Kumar R, Goel V, et al. (2022) Recent advancements in thermal performance of nano-fluids charged heat pipes used for thermal management applications: A comprehensive review. Appl Therm Eng 216: 119023. https://doi.org/10.1016/j.applthermaleng.2022.119023 doi: 10.1016/j.applthermaleng.2022.119023
![]() |
[51] |
Gupta M, Singh V, Kumar R, et al. (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renewable Sustainable Energy Rev 74: 638–670. https://doi.org/10.1016/j.rser.2017.02.073 doi: 10.1016/j.rser.2017.02.073
![]() |
[52] | Ajeeb W, Zhang JZ, Wu Z, et al. (2022) Numerical development of the thermal convection characteristics of nanofluids. in: Murshed SMS, editor. Fundam Transp Prop Nanofluids, R Soc Chem, 365–366. https://doi.org/10.1039/9781839166457-00335 |
[53] |
Ajeeb W, Murshed SMS (2023) Characterization of thermophysical and electrical properties of SiC and BN nanofluids. Energies 16: 3768. https://doi.org/10.3390/en16093768 doi: 10.3390/en16093768
![]() |
[54] |
Ajeeb W, Murshed SMS (2022) Comparisons of numerical and experimental investigations of the thermal performance of Al2O3 and TiO2 nanofluids in a compact plate heat exchanger. Nanomaterials (Basel) 12: 3634. https://doi.org/10.3390/nano12203634 doi: 10.3390/nano12203634
![]() |
[55] |
Ajeeb W, Murshed SMS (2023) Pool boiling heat transfer characteristics of new and recycled alumina nanofluids. Nanomaterials (Basel) 13: 1040. https://doi.org/10.3390/nano13061040 doi: 10.3390/nano13061040
![]() |
[56] | Ajeeb W, Murshed SMS (2023) Numerical study of convective heat transfer performance, entropy generation and energy efficiency of Al and Al2O3 nanofluids in minichannel. J Nanofluids 12: 18–28. Available from: https://www.ingentaconnect.com/contentone/asp/jon/2023/00000012/00000001/art00002. |
[57] |
Moriarty P (2021) Global nuclear energy: An uncertain future. AIMS Energy 9: 1027–1042. https://doi.org/10.3934/energy.2021047 doi: 10.3934/energy.2021047
![]() |
[58] | Tai CM (2022) Analysis of the water-heat combined supply system based on waste heat utilization of nuclear power units. https://doi.org/10.27273/d.cnki.gsajc.2022.000655 |
[59] |
Kostarev VS, Tashlykov OL, Klimova VA (2019) The increasing of the energy efficiency of nuclear power plants with fast neutron reactors by utilizing waste heat using heat pumps. IOP Conf Ser Mater Sci Eng 552: 012022. https://doi.org/10.1088/1757-899X/552/1/012022 doi: 10.1088/1757-899X/552/1/012022
![]() |
[60] |
Tai CM, Tian GS, Lei WJ (2022) A water-heat combined supply system based on waste heat from a coastal nuclear power plant in northern China. Appl Therm Eng 200: 117684. https://doi.org/10.1016/j.applthermaleng.2021.117684 doi: 10.1016/j.applthermaleng.2021.117684
![]() |
[61] | Li YH, Wang X, Li ZY, et al. (2022) Using waste heat from nuclear power plants to achieve zero-carbon heating. Energy China 44: 48–55. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7107732180&from=Qikan_Search_Index. |
[62] |
Zhang DL, You WH, Pan XL, et al. (2022) Reliability modeling and analysis of residual heat removal system in pressurized water reactor nuclear power plant. Nuc Phys Rev 39: 266–271. https://doi.org/10.11804/NuclPhysRev.39.2021084 doi: 10.11804/NuclPhysRev.39.2021084
![]() |
[63] |
Inayat A (2023) Current progress of process integration for waste heat recovery in steel and iron industries. Fuel 338: 127237. https://doi.org/10.1016/j.fuel.2022.127237 doi: 10.1016/j.fuel.2022.127237
![]() |
[64] | Lin JH (2021) Study on utilization of low-grade waste heat potential in steel plant for heating. https://doi.org/10.27139/d.cnki.ghbdu.2021.000031 |
[65] |
Wang R, Zhang W, Yang S, et al. (2023) A novel approach for utilizing waste heat resources in the steel industry. Front Energy Res 11: 1257344. https://doi.org/10.3389/fenrg.2023.1257344 doi: 10.3389/fenrg.2023.1257344
![]() |
[66] |
Besevli B, Kayabasi E, Akroot A, et al. (2024) Technoeconomic analysis of oxygen-supported combined systems for recovering waste heat in an iron-steel facility. Appl Sci Basel 14: 2563. https://doi.org/10.3390/app14062563 doi: 10.3390/app14062563
![]() |
[67] | Zhang MQ, He J, Ma RY, et al. (2020) Organic Rankine cycle power generation using low temperature waste heat in oil refineries and its benefit analysis. Pet Process Petrochem 51: 92–95. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7103372460&from=Qikan_Search_Index. |
[68] |
Mu LB, Wang SL, Lu JH, et al. (2023) Effect of flue gas condensing waste heat recovery and its pressure drop on energy saving and carbon reduction for refinery heating furnace. Energy 279: 128081. https://doi.org/10.1016/j.energy.2023.128081 doi: 10.1016/j.energy.2023.128081
![]() |
[69] |
Wang J, Kang LX, Liu YZ, et al. (2023) A multi-period design method for the steam and power systems coupling solar thermal energy and waste heat recovery in refineries. J Clean Prod 416: 137934. https://doi.org/10.1016/j.jclepro.2023.137934 doi: 10.1016/j.jclepro.2023.137934
![]() |
[70] |
Pallarés J, Herce C, Bartolomé C, et al. (2017) Investigation on co-firing of coal mine waste residues in pulverized coal combustion systems. Energy 140: 58–68. https://doi.org/10.1016/j.energy.2017.07.174 doi: 10.1016/j.energy.2017.07.174
![]() |
[71] | Bai YB (2022) Optimization and application of spray heat exchange system for waste heat utilization of mine return air. https://doi.org/10.27517/d.cnki.gzkju.2022.001662 |
[72] | Zhu J, Wei XF, Fang X, et al. (2023) Application of heating system based on utilization of various waste heat resources. Coal Eng 55: 45–48. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7111076411&from=Qikan_Search_Index. |
[73] |
Liu H, Zhang J, Rodriguez-Dono A, et al. (2023) Utilization of mine waste heat in phase change rechargeable battery. Appl Therm Eng 233: 121136. https://doi.org/10.1016/j.applthermaleng.2023.121136 doi: 10.1016/j.applthermaleng.2023.121136
![]() |
[74] |
Zhai Y, Zhao X, Xue G, et al. (2023) Study on heat transfer performance and parameter improvement of gravity-assisted heat pipe heat transfer unit for waste heat recovery from mine return air. Energies 16: 6148. https://doi.org/10.3390/en16176148 doi: 10.3390/en16176148
![]() |
[75] |
Zhang C, Luo H, Wang Z (2022) An economic analysis of waste heat recovery and utilization in data centers considering environmental benefits. Sustainable Prod Consum 31: 127–138. https://doi.org/10.1016/j.spc.2022.02.006 doi: 10.1016/j.spc.2022.02.006
![]() |
[76] |
Yuan X, Liang Y, Hu X, et al. (2023) Waste heat recoveries in data centers: A review. Renewable Sustainable Energy Rev 188: 113777. https://doi.org/10.1016/j.rser.2023.113777 doi: 10.1016/j.rser.2023.113777
![]() |
[77] |
Khosravi A, Laukkanen T, Vuorinen V, et al. (2021) Waste heat recovery from a data centre and 5G smart poles for low-temperature district heating network. Energy 218: 119468. https://doi.org/10.1016/j.energy.2020.119468 doi: 10.1016/j.energy.2020.119468
![]() |
[78] |
Wahlroos M, Pärssinen M, Rinne S, et al. (2018) Future views on waste heat utilization—Case of data centers in Northern Europe. Renewable Sustainable Energy Rev 82: 1749–1764. https://doi.org/10.1016/j.rser.2017.10.058 doi: 10.1016/j.rser.2017.10.058
![]() |
[79] |
Li H, Hou J, Hong T, et al. (2021) Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres. Energy 219: 119582. https://doi.org/10.1016/j.energy.2020.119582 doi: 10.1016/j.energy.2020.119582
![]() |
[80] |
Chen SY, Zhang Q, Zhou SK, et al. (2023) Simulation on performance of waste heat recovery system with lake water in data centers: A case study of Dongjiang lake data center park. Sci Technol Eng 23: 9502–9508. https://doi.org/10.12404/j.issn.1671-1815.2023.23.22.09502 doi: 10.12404/j.issn.1671-1815.2023.23.22.09502
![]() |
[81] | Gai XT (2023) Research on waste heat recovery and utilization of data center based on heat pump technology. https://doi.org/10.27140/d.cnki.ghbbu.2023.000598 |
[82] | Yang JT (2023) Energy-saving optimization control of data center refrigeration and waste heat recovery system. Available from: https://webvpn.sjzu.edu.cn/https/77726476706e69737468656265737421fbf952d2243e635930068cb8/kcms2/article/abstract?v=nKttgsEmyDdbVgcKxtrbVXsQZn6YBbwB497BG1PsBwSwIPBoNY2-_c3UQUWSCN4G6X3NNjcw4y0q5ZVidr-vo9tw9dah06W8T90P2C6GTsNL5A_r9Q_tLMCBaocvLxEkkfgJiZtQixi5I7-2GkKh-d55R6XJ83R1RODDDLK8D8tw1PpR6WWg71PBys1rnMAn2_uuJSXtL2c=&uniplatform=NZKPT&language=CHS. |
[83] | Guo XY (2023) Research on soil auxiliary cooling and waste heat recovery heating technology for cold land data center. Available from: https://d.wanfangdata.com.cn/thesis/D03370499. |
[84] |
Li H, Hou J, Ding Y, et al. (2021) Techno-economic analysis of implementing thermal storage for peak load shaving in a campus district heating system with waste heat from the data centre. E3S Web Conf 246: 9003. https://doi.org/10.1051/e3sconf/202124609003 doi: 10.1051/e3sconf/202124609003
![]() |
[85] |
Huang Y, Deng Z, Chen Y, et al. (2023) Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers. Appl Energy 335: 1210745. https://doi.org/10.1016/j.apenergy.2023.1210745 doi: 10.1016/j.apenergy.2023.1210745
![]() |
[86] | Zheng YC, Shan CL, Zhang JB (2024) Current research status and development prospects of long duration energy storage system. Southern Energy Constr 11: 93–101. Available from: https://www.energychina.press/cn/article/doi/10.16516/j.ceec.2024.2.09. |
[87] |
Ding LW, Chen D, Lv HK, et al. (2024) Performance through Ni-Al doping enhancement mechanism of calcium-based thermochemical energy storage cyclic. Proc CSEE, 1–8. https://doi.org/10.13334/j.0258-8013.pcsee.231909 doi: 10.13334/j.0258-8013.pcsee.231909
![]() |
[88] |
Solomon AA, Child M, Caldera U, et al. (2020) Exploiting wind-solar resource complementarity to reduce energy storage need. AIMS Energy 8: 749–770. https://doi.org/10.3934/energy.2020.5.749 doi: 10.3934/energy.2020.5.749
![]() |
[89] |
Renaldi R, Friedrich D (2019) Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK. Appl Energy 236: 388–400. https://doi.org/10.1016/j.apenergy.2019.01.019 doi: 10.1016/j.apenergy.2019.01.019
![]() |
[90] |
Prasadi DMR, Senthilkumar R, Lakshmanarao G, et al. (2019) A critical review on thermal energy storage materials and systems for solar applications. AIMS Energy 7: 507–526. https://doi.org/10.3934/energy.2019.4.507 doi: 10.3934/energy.2019.4.507
![]() |
[91] |
Gao L, Zhao J, An Q, et al. (2019) Thermal performance of medium-to-high-temperature aquifer thermal energy storage systems. Appl Therm Eng 146: 898–909. https://doi.org/10.1016/j.applthermaleng.2018.11.060 doi: 10.1016/j.applthermaleng.2018.11.060
![]() |
[92] |
Ganguly S, Mohan Kumar MS, Date A, et al. (2017) Numerical investigation of temperature distribution and thermal performance while charging-discharging thermal energy in aquifer. Appl Therm Eng 115: 756–773. https://doi.org/10.1016/j.applthermaleng.2017.01.041 doi: 10.1016/j.applthermaleng.2017.01.041
![]() |
[93] |
Li S, Wang GS, Zhou MM, et al. (2024) Thermal performance of an aquifer thermal energy storage system: Insights from novel multilateral wells. Energy 294: 131915. https://doi.org/10.1016/j.energy.2023.131915 doi: 10.1016/j.energy.2023.131915
![]() |
[94] |
Yapparova A, Matthäi S, Driesner T (2014) Realistic simulation of an aquifer thermal energy storage: Effects of injection temperature, well placement and groundwater flow. Energy 76: 1011–1018. https://doi.org/10.1016/j.energy.2014.09.018 doi: 10.1016/j.energy.2014.09.018
![]() |
[95] |
Oh J, Sumiyoshi D, Nishioka M, et al. (2021) Efficient operation method of aquifer thermal energy storage system using demand response. Energies 14: 3129. https://doi.org/10.3390/en14113129 doi: 10.3390/en14113129
![]() |
[96] |
Sifnaios I, Sneum DM, Jensen AR, et al. (2023) The impact of large-scale thermal energy storage in the energy system. Appl Energy 349: 121663. https://doi.org/10.1016/j.apenergy.2023.121663 doi: 10.1016/j.apenergy.2023.121663
![]() |
[97] |
Lund H, Østergaard PA, Chang M, et al. (2018) The status of 4th generation district heating: Research and results. Energy 164: 147–159. https://doi.org/10.1007/s12273-020-0671-9 doi: 10.1007/s12273-020-0671-9
![]() |
[98] |
Morchio S, Fossa M (2020) On the ground thermal conductivity estimation with coaxial borehole heat exchangers according to different undisturbed ground temperature profiles. Appl Therm Eng 173: 115198. https://doi.org/10.1016/j.applthermaleng.2020.115198 doi: 10.1016/j.applthermaleng.2020.115198
![]() |
[99] |
Yang WB, Xu R, Yang BB, et al. (2019) Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill. Energy 174: 216–235. https://doi.org/10.1016/j.energy.2019.02.172 doi: 10.1016/j.energy.2019.02.172
![]() |
[100] |
Guo F, Zhu XY, Zhang JY, et al. (2020) Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating. Appl Energy 264: 114763. https://doi.org/10.1016/j.apenergy.2020.114763 doi: 10.1016/j.apenergy.2020.114763
![]() |
[101] |
Xu L, Guo F, Hoes P-J, et al. (2021) Investigating energy performance of large-scale seasonal storage in the district heating system of chifeng city: Measurements and model-based analysis of operation strategies. Energy Build 247: 1113. https://doi.org/10.1016/j.enbuild.2021.111113 doi: 10.1016/j.enbuild.2021.111113
![]() |
[102] |
Zhang FF, Fang L, Zhu K, et al. (2022) Long-term dynamic heat transfer analysis for the borehole spacing planning of multiple deep borehole heat exchanger. Case Stud Therm Eng 38: 102373. https://doi.org/10.1016/j.csit.2022.102373 doi: 10.1016/j.csit.2022.102373
![]() |
[103] |
Sun ZC, He ZX, Yu MZ (2021) Research on heat transfer characteristics and borehole field layout of ground heat exchangers to alleviate thermal accumulation with groundwater advection. Thermal Sci 25: 2781–2794. https://doi.org/10.1007/s12273-020-0671-9 doi: 10.1007/s12273-020-0671-9
![]() |
[104] |
Shi ZG, Zhang CX, Cai C, et al. (2024) Comparative analysis of ground thermal conductivity and thermal resistance of borehole heat exchanger in different geological layered sequence. J Build Eng 84: 108541. https://doi.org/10.1016/j.jobe.2024.108541 doi: 10.1016/j.jobe.2024.108541
![]() |
[105] |
Guo Y, Huang G, Liu W (2023) A new semi-analytical solution addressing varying heat transfer rates for U-shaped vertical borehole heat exchangers in multilayered ground. Energy 274: 127373. https://doi.org/10.1016/j.energy.2023.127373 doi: 10.1016/j.energy.2023.127373
![]() |
[106] | Li XX (2021) Research on dynamic characteristic and control strategy of solar heating system with seasonal thermal energy storage. Available from: https://apps.wanfangdata.com.cn/thesis/article:D02425573. |
[107] |
Novo AV, Bayon JR, Castro-Fresno D, et al. (2010) Review of seasonal heat storage in large basins: Water tanks and gravel-water pits. Appl Energy 87: 390–397. https://doi.org/10.1016/j.apenergy.2009.06.033 doi: 10.1016/j.apenergy.2009.06.033
![]() |
[108] |
Chang C, Wu Z, Navarro H, et al. (2017) Comparative study of the transient natural convection in an underground water pit thermal storage. Appl Energy 208: 1162–1173. https://doi.org/10.1016/j.apenergy.2017.09.036 doi: 10.1016/j.apenergy.2017.09.036
![]() |
[109] |
Yang T, Liu W, Kramer GJ, et al. (2021) Seasonal thermal energy storage: A techno-economic literature review. Renewable Sustainable Energy Rev 139: 110732. https://doi.org/10.1016/j.rser.2021.110732 doi: 10.1016/j.rser.2021.110732
![]() |
[110] | Zhao SS (2023) Study on economic analysis method of a heating system with a water pit for solar seasonal thermal energy storage. Available from: https://webvpn.sjzu.edu.cn/https/77726476706e69737468656265737421fbf952d2243e635930068cb8/kcms2/article/abstract?v=nKttgsEmyDca_XVxgMPI3VhDmHGQ0xIWwZIRwRKUAkHXe1U6CZaPExDoBUU5DLlxFFXePx_YximTPigrrfU66pT7rJEVaFWVgYfw3eTQoThJgap__c2Z74QVOGSz66VFjfs9XEpr2UIm-rk1eqywONfgJT7fhFGjzEq2-ZkMyQbV9MCwidmmlDH9Zt_pVlqRE1VBq8hWaJo=&uniplatform=NZKPT&language=CHS. |
[111] |
Li X, Wang Z, Li J, et al. (2019) Comparison of control strategies for a solar heating system with underground pit seasonal storage in the non-heating season. J Energy Storage 26: 100963. https://doi.org/10.1016/j.est.2019.100963 doi: 10.1016/j.est.2019.100963
![]() |
[112] |
Tafuni A, Giannotta A, Mersch M, et al. (2023) Thermo-economic analysis of a low-cost greenhouse thermal solar plant with seasonal energy storage. Energy Conv Manage 288: 117123. https://doi.org/10.1016/j.enconman.2023.117123 doi: 10.1016/j.enconman.2023.117123
![]() |
[113] |
He M, Wang Z, Zhang J, et al. (2022) Study on heat transfer process of insulated floating cover of water pit for solar seasonal thermal storage. Energy Rep 8: 1396–1404. https://doi.org/10.1016/j.egyr.2022.09060 doi: 10.1016/j.egyr.2022.09060
![]() |
[114] |
Salvestroni M, Pierucci G, Pourreza A, et al. (2021) Design of a solar district heating system with seasonal storage in Italy. Appl Therm Eng 197: 117438. https://doi.org/10.1016/j.applthermaleng.2021.117438 doi: 10.1016/j.applthermaleng.2021.117438
![]() |
[115] |
Balsari P, Dinuccio E, Gioelli F (2013) A floating coverage system for digestate liquid fraction storage. Biores Technol 134: 285–289. https://doi.org/10.1016/j.biortech.2013.02.021 doi: 10.1016/j.biortech.2013.02.021
![]() |
[116] |
Bai Y, Wang Z, Fan J, et al. (2020) Numerical and experimental study of an underground water pit for seasonal heat storage. Renewable Energy 150: 487–508. https://doi.org/10.1016/j.renene.2019.12.080 doi: 10.1016/j.renene.2019.12.080
![]() |
[117] |
Bai Y, Yang M, Wang Z, et al. (2019) Thermal stratification in a cylindrical tank due to heat losses while in standby mode. Sol Energy 185: 222–234. https://doi.org/10.1016/j.solener.2018.12.063 doi: 10.1016/j.solener.2018.12.063
![]() |
[118] |
Bai Y, Yang M, Fan J, et al. (2020) Influence of geometry on the thermal performance of water pit seasonal heat storages for solar district heating. Build Simul 14: 579–599. https://doi.org/10.1007/s12273-020-0671-9 doi: 10.1007/s12273-020-0671-9
![]() |
[119] |
Li Q, Lin W, Huang X, et al. (2022) Thermocline dynamics in a thermally stratified water tank under different operation modes. Appl Therm Eng 212: 118560. https://doi.org/10.1016/j.applthermaleng.2022.118560 doi: 10.1016/j.applthermaleng.2022.118560
![]() |
[120] |
Chang Z, Li X, Falcoz Q, et al. (2022) Quasi-analytical study of dynamic performance of the thermocline heat storage system under time-varying inlet flow and temperature environment. Sol Energy 244: 264–278. https://doi.org/10.1016/j.jsolener.2022.08024 doi: 10.1016/j.jsolener.2022.08024
![]() |
[121] | Wang XH, He ZY, Xu C, et al. (2019) Dynamic simulations on simultaneous charging/discharging process of water thermocline storage tank. Proc CSEE 39: 5989–5998. Available from: https://epjournal.csee.org.cn/zgdjgcxb/article/doi/10.13334/j.0258-8013.pcsee.190027. |
[122] |
Falcoz Q, Vannerem S, Neveu P (2022) Experimental investigation of the impact of fluid distribution on thermocline storage performance. J Energy Storage 52: 104864. https://doi.org/10.1016/j.est.2022.104864 doi: 10.1016/j.est.2022.104864
![]() |
[123] |
Erasmus S, Maritz J (2023) A carbon reduction and waste heat utilization strategy for generators in scalable PV-Diesel generator campus microgrids. Energies 16: 6749. https://doi.org/10.3390/en16186749 doi: 10.3390/en16186749
![]() |
[124] | Feng GH, Zhu YH, Huang KL, et al. (2016) Heat storage and release performance simulation and multiple factors analysis in phase change energy storage tank. J Shenyang Jianzhu Univ Nat Sci 32: 675–683. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=669645697&from=Qikan_Search_Index. |
[125] |
Faraj K, Khaled M, Faraj J, et al. (2020) Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable Sustainable Energy Rev 119: 10957. https://doi.org/10.1016/j.rser.2019.10957 doi: 10.1016/j.rser.2019.10957
![]() |
[126] |
Luo J, Zou DQ, Wang YS, et al. (2022) Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chem Eng J 430: 132741. https://doi.org/10.1016/j.cej.2021.132741 doi: 10.1016/j.cej.2021.132741
![]() |
[127] | Yang G, Xiao X, Wang YF (2024) Research progress of compression heat pump coupled with heat storage of phase change materials. J Refrig, 1–15 Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7200116584&from=Qikan_Search_Index. |
[128] | Liu X, Wu JH, Xian T, et al. (2019) Preparation and properties of CaCl2·6H2O/expanded graphite composite phase change materials. J Zhejiang Univ Eng Sci 53: 1291–1297. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7002235920&from=Qikan_Search_Index. |
[129] |
Mselle BD, Zsembinszki G, Verez D, et al. (2022) Experimental assessment of the influence of the design on the performance of novel evaporators with latent energy storage ability. Appl Sci Basel 12: 1813. https://doi.org/10.3390/app12041813 doi: 10.3390/app12041813
![]() |
[130] |
Zhou GB, Zhang YP, Zhang QL, et al. (2007) Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. Appl Energy 84: 1068–1077. https://doi.org/10.1016/j.apenergy.2006.09.015 doi: 10.1016/j.apenergy.2006.09.015
![]() |
[131] |
Sharma A, Tyagi VV, Chen CR, et al. (2009) Review on thermal energy storage with phase change materials and applications. Renewable Sustainable Energy Rev 13: 318–345. https://doi.org/10.1016/j.rser.2007.10.005 doi: 10.1016/j.rser.2007.10.005
![]() |
[132] |
Zou DQ, Ma XF, Liu XS, et al. (2017) Experimental research of an air-source heat pump water heater using water-PCM for heat storage. Appl Energy 206: 784–792. https://doi.org/10.1016/j.apenergy.2017.08.209 doi: 10.1016/j.apenergy.2017.08.209
![]() |
[133] |
Bansal NK, Buddhi D (1992) An analytical study of a latent heat storage system in a cylinder. Energy Conv Manage 33: 235–242. https://doi.org/10.1016/0196-8904(92)90113-B doi: 10.1016/0196-8904(92)90113-B
![]() |
[134] |
Mettawee EBS, Assassa GMR (2006) Experimental study of a compact PCM solar collector. Energy 31: 2958–2968. https://doi.org/10.1016/j.energy.2005.11.019 doi: 10.1016/j.energy.2005.11.019
![]() |
[135] |
Li XL, Tong C, Lin DM, et al. (2016) Research on U-tube heat exchanger with shape-stabilized phase change backfill material. Proc Eng 146: 640–647. https://doi.org/10.1016/j.proeng.2016.06.420 doi: 10.1016/j.proeng.2016.06.420
![]() |
[136] |
Sadeghi G, Mehrali M, Shahi M, et al. (2022) Progress of experimental studies on compact integrated solar collector-storage retrofits adopting phase change materials. Sol Energy 237: 62–95. https://doi.org/10.1016/j.solener.2022.03.070 doi: 10.1016/j.solener.2022.03.070
![]() |
[137] |
Long Z, Jiankai D, Yiqiang J, et al. (2014) A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump. Appl Energy 133: 101–111. https://doi.org/10.1016/j.apenergy.2014.07.039 doi: 10.1016/j.apenergy.2014.07.039
![]() |
[138] |
Zheng CX, You SJ, Zhang H, et al. (2020) Defrosting performance improvement of air-source heat pump combined refrigerant direct-condensation radiant floor heating system with phase change material. Energies 13: 4594. https://doi.org/10.3390/en13184594 doi: 10.3390/en13184594
![]() |
[139] | Hu XD, Gao XN, Li DL, et al. (2013) Performance of paraffin/expanded graphite composite phase change materials. CIESC J 64: 3831–3837. Available from: https://hgxb.cip.com.cn/CN/10.3969/j.issn.0438-1157.2013.10.047. |
[140] |
Leong KY, Rahman MRA, Gurunathan BA (2019) Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. J Energy Storage 21: 18–31. https://doi.org/10.1016/j.est.2018.11.008 doi: 10.1016/j.est.2018.11.008
![]() |
[141] |
Jin X, Wu FP, Xu T, et al. (2021) Experimental investigation of the novel melting point modified Phase-Change material for heat pump latent heat thermal energy storage application. Energy 216: 119191. https://doi.org/10.1016/j.energy.2020.119191 doi: 10.1016/j.energy.2020.119191
![]() |
[142] |
Li MQ, Lin ZQ, Sun YJ, et al. (2020) Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems. Renewable Energy 157: 670–677. https://doi.org/10.1016/j.renene.2020.05061 doi: 10.1016/j.renene.2020.05061
![]() |
[143] |
Liu YH, Wang L, Zhang S, et al. (2024) Experimental study on heat storage and discharge characteristics of packed bed based on hydrated salt using cylindrical encapsulation units. Energy Storage Sci Technol, 1–10. https://doi.org/10.1019799/jcnki2095-4239.2024.0187 doi: 10.1019799/jcnki2095-4239.2024.0187
![]() |
[144] |
Li Y, Zhou S, Wang S, et al. (2023) Preparation and thermal properties of a novel ternary molten salt/expanded graphite thermal storage material. J Energy Storage 74: 109273. https://doi.org/10.1016/j.est.2023.109273 doi: 10.1016/j.est.2023.109273
![]() |
[145] |
Wu SF, Yan T, Kuai ZH, et al. (2020) Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Mater 25: 251–295. https://doi.org/10.1016/j.ensm.2019.10.010 doi: 10.1016/j.ensm.2019.10.010
![]() |
[146] |
Yuan KJ, Shi JM, Aftab W, et al. (2020) Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv Funct Mater 30: 1904228. https://doi.org/10.1002/adfm.201904228 doi: 10.1002/adfm.201904228
![]() |
[147] |
Lyu PZ, Liu XJ, Qu J, et al. (2020) Recent advances of thermal safety of lithium-ion battery for energy storage. Energy Storage Mater 31: 195–220. https://doi.org/10.1016/j.est.2020.06.042 doi: 10.1016/j.est.2020.06.042
![]() |
[148] |
Heyhat MM, Mousavi S, Siavashi M (2020) Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. J Energy Storage 28: 101235. https://doi.org/10.1016/j.est.2020.101235 doi: 10.1016/j.est.2020.101235
![]() |
[149] |
Jilte R, Afzal A, Panchal S (2021) A novel battery thermal management system using nano-enhanced phase change materials. Energy 219: 119564. https://doi.org/10.1016/j.energy.2020.119564 doi: 10.1016/j.energy.2020.119564
![]() |
[150] | Chang H, Tao YB (2024) Performance study of metal hydride hydrogen storage based on thermochemical heat storage. J Eng Thermophys 45: 500–505. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7111555829&from=Qikan_Search_Index. |
[151] | Xu J, Pan QW, Zhang W, et al. (2024) Experimental study on a hybrid adsorption refrigeration system powered by low grade heat from fuel cells. J Eng Thermophys 45: 1–6. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7111465508&from=Qikan_Search_Index. |
[152] |
Funayama S, Kato T, Tamano S, et al. (2024) Thermal energy storage with flexible discharge performance based on molten-salt thermocline and thermochemical energy storage. Appl Therm Eng 238: 121947. https://doi.org/10.1016/j.applthermaleng.2023.121947 doi: 10.1016/j.applthermaleng.2023.121947
![]() |
[153] |
Li L, Li WY, Ma JL (2023) Research on coordinated control strategy of power response rate of thermal power plant with high temperature molten salt heat storage. Int J Heat Technol 41: 55–62. https://doi.org/10.1018280/ijht410106 doi: 10.1018280/ijht410106
![]() |
[154] |
Lu JF, Ding J, Wang WL, et al. (2024) Anisotropic heat characteristics and analysis of molten salt thermocline storage system. J Energy Storage 84: 110773. https://doi.org/10.1016/j.est.2024.110773 doi: 10.1016/j.est.2024.110773
![]() |
[155] | Yan T, Wang WH, Wang RZ (2018) Present status and progress of research on chemical adsorption heat storage. Mater Rep 32: 4107–4115. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7000962317&from=Qikan_Search_Index. |
[156] |
Ganzer C, Pratama YW, Mac Dowell N (2022) The role and value of inter-seasonal grid-scale energy storage in net zero electricity systems. Int J Greenhouse Gas Control 120: 103740. https://doi.org/10.1016/j.ijggc.2022.103740 doi: 10.1016/j.ijggc.2022.103740
![]() |
[157] |
Ye AQ, Guan BW, Liu XH, et al. (2023) Using solar energy to achieve near-zero energy buildings in Tibetan Plateau. Renewable Energy 218: 119347. https://doi.org/10.1016/j.renene.2023.119347 doi: 10.1016/j.renene.2023.119347
![]() |
[158] | He M, Wang Z, Yuan G, et al. (2021) A technical introduction of water pit for long-term seasonal solar thermal energy storage. Renewable Energy 368: 68–70. Available from: https://qikan.cqvip.com/Qikan/Article/Detail?id=7106076587. |
[159] |
Wang M, Zhang XY, Li BJ, et al. (2022) Discussion on the application of solar district heating technologies in Tibet. Build Sci 38: 1–6. https://doi.org/10.13614/j.cnki.11-1962/tu.2022.10.01 doi: 10.13614/j.cnki.11-1962/tu.2022.10.01
![]() |
[160] |
Xu L, Guo F, Hoes P-J, et al. (2021) Investigating energy performance of large-scale seasonal storage in the district heating system of chifeng city: Measurements and model-based analysis of operation strategies. Energy Build 247: 111113. https://doi.org/10.1016/j.enbuild.2021.111113 doi: 10.1016/j.enbuild.2021.111113
![]() |
[161] |
Guo F, Yang X (2021) Long-term performance simulation and sensitivity analysis of a large-scale seasonal borehole thermal energy storage system for industrial waste heat and solar energy. Energy Build 236:10768. https://doi.org/10.1016/j.enbuild.2021.110768 doi: 10.1016/j.enbuild.2021.110768
![]() |
[162] |
Guo F, Yang X, Xu L, et al. (2017) A central solar-industrial waste heat heating system with large scale borehole thermal storage. Proc Eng 205: 1584–1591. https://doi.org/10.1016/j.proeng.2017.10.274 doi: 10.1016/j.proeng.2017.10.274
![]() |
[163] |
Sifnaios I, Jensen AR, Furbo S, et al. (2022) Performance comparison of two water pit thermal energy storage (PTES) systems using energy, exergy, and stratification indicators. J Energy Storage 52: 104947. https://doi.org/10.1016/j.est.2022.104947 doi: 10.1016/j.est.2022.104947
![]() |