We construct generalized solutions for the Keller-Segel system with a degradation source coupled to Navier Stokes equations in three dimensions, in case that the power of degradation is smaller than quadratic. Furthermore, if the logistic type source is purely damping with no growing effect, we prove that solutions converge to zero in some norms and provide upper bounds of convergence rates in time.
Citation: Kyungkeun Kang, Dongkwang Kim. Existence of generalized solutions for Keller-Segel-Navier-Stokes equations with degradation in dimension three[J]. Mathematics in Engineering, 2022, 4(5): 1-25. doi: 10.3934/mine.2022041
We construct generalized solutions for the Keller-Segel system with a degradation source coupled to Navier Stokes equations in three dimensions, in case that the power of degradation is smaller than quadratic. Furthermore, if the logistic type source is purely damping with no growing effect, we prove that solutions converge to zero in some norms and provide upper bounds of convergence rates in time.
[1] | M. Chae, K. Kang, J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, DCDS, 33 (2013), 2271–2297. doi: 10.3934/dcds.2013.33.2271 |
[2] | M. Chae, K. Kang, J. Lee, Global existence and temporal decay in keller-segel models coupled to fluid equations, Commun. Part. Diff. Eq., 39 (2014), 1205–1235. doi: 10.1080/03605302.2013.852224 |
[3] | P. Cherrier, A. Milani, Linear and quasi-linear evolution equations in Hilbert spaces, Providence, RI: American Mathematical Society, 2012. |
[4] | J. C. Coll, B. F. Bowden, G. V. Meehan, G. M. Konig, A. R. Carroll, D. M. Tapiolas, et al., Chemical aspects of mass spawning in corals. I. sperm-attractant molecules in the eggs of the scleractinian coral montipora digitata, Marine Biology, 118, (1994), 177–182. |
[5] | R. Denk, M. Hieber, J. Prüss, Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193–224. doi: 10.1007/s00209-007-0120-9 |
[6] | E. Espejo, T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real, 21 (2015), 110–126. doi: 10.1016/j.nonrwa.2014.07.001 |
[7] | S. Ishida, Global existence and boundedness for chemotaxis-navier-stokes systems with position-dependent sensitivity in 2d bounded domains, DCDS, 35 (2015), 3463–3482. doi: 10.3934/dcds.2015.35.3463 |
[8] | K. Kang, K. Kim, C. Yoon, Existence of weak and regular solutions for keller-segel system with degradation coupled to fluid equations, J. Math. Anal. Appl., 485 (2020), 123750. doi: 10.1016/j.jmaa.2019.123750 |
[9] | E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. |
[10] | A. Kiselev, L. Ryzhik, Biomixing by chemotaxis and enhancement of biological reactions, Commun. Part. Diff. Eq., 37 (2012), 298–318. doi: 10.1080/03605302.2011.589879 |
[11] | J. Lankeit, Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Mod. Meth. Appl. S, 26 (2016), 2071–2109. doi: 10.1142/S021820251640008X |
[12] | N. Mittal, E. O. Budrene, M. P. Brenner, A. Van Oudenaarden, Motility of escherichia coli cells in clusters formed by chemotactic aggregation, PNAS, 100 (2003), 13259–13263. doi: 10.1073/pnas.2233626100 |
[13] | L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 20 (1966), 733–737. |
[14] | J. Prüss, R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl., 256 (2001), 405–430. doi: 10.1006/jmaa.2000.7247 |
[15] | Y. Tao, M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555–2573. doi: 10.1007/s00033-015-0541-y |
[16] | Y. Tao, M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional keller-segel-navier-stokes system, Z. Angew. Math. Phys., 67 (2016), 138. doi: 10.1007/s00033-016-0732-1 |
[17] | R. Temam, Navier-Stokes equations. Theory and numerical analysis, Amsterdam-New York-Oxford: North-Holland Publishing Co., 1977. |
[18] | I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS, 102 (2005), 2277–2282. doi: 10.1073/pnas.0406724102 |
[19] | G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197–212. doi: 10.1016/j.jmaa.2016.02.069 |
[20] | G. Viglialoro, Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal. Real, 34 (2017), 520–535. doi: 10.1016/j.nonrwa.2016.10.001 |
[21] | W. Wang, A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source, J. Math. Anal. Appl., 477 (2019), 488–522. doi: 10.1016/j.jmaa.2019.04.043 |
[22] | M. Winkler, A three-dimensional keller-segel-navier-stokes system with logistic source: global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339–1401. doi: 10.1016/j.jfa.2018.12.009 |
[23] | M. Winkler, Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708–729. doi: 10.1016/j.jmaa.2008.07.071 |
[24] | M. Winkler, Stabilization in a two-dimensional chemotaxis-navier-stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455–487. doi: 10.1007/s00205-013-0678-9 |