Research article

Bitensorial formulation of the singularity method for Stokes flows

  • Received: 08 June 2022 Revised: 14 July 2022 Accepted: 15 July 2022 Published: 04 August 2022
  • This paper develops the bitensorial formulation of the system of singularities associated with unbounded and bounded Stokes flows. The motivation for this extension is that Stokesian singularities and hydrodynamic fundamental solutions are multi-point functions, and bitensor calculus provides either the proper geometrical setting, in order to avoid inconsistencies and misunderstandings on the role of the different tensorial indices, or a way for compactly deriving hydrodynamic properties. A first relevant result is to provide a clear definition of the singularities (both bounded and unbounded) in Stokes flow, specifying the associated differential equations and boundary conditions. Using this formalism for bounded flows, we show the existence of an integro-differential operator providing the whole system of hydrodynamic singularities by acting on the unbounded Green function (Stokeslet) at its pole and we derive its explicit representation in terms of moments. In the case of an immersed body in a unbounded fluid, we show that, the operator furnishing the disturbance field of a purely $ n $-th order ambient flow, is a generalized $ n $-th order Faxén operator, i.e., it yields the $ n $-th moment on the body if applied to a generic ambient flow, and that a generic disturbance field can be expressed by a summation of the generalized $ n $-th order Faxén operators. Furthermore, we find that the operator providing the disturbance of an ambient flow coincides with the reflection operator for the Stokes solutions in the same flow geometry. We apply this result to the paradigmatic case of fundamental singularities for the Stokes flow bounded by a plane. In this way, we obtain in an alternative and easy way the image system for the Sourcelet and the Rotlet (already derived in the literature) and for the Source Doublet and the Strainlet (presented here for the first time).

    Citation: Giuseppe Procopio, Massimiliano Giona. Bitensorial formulation of the singularity method for Stokes flows[J]. Mathematics in Engineering, 2023, 5(2): 1-34. doi: 10.3934/mine.2023046

    Related Papers:

  • This paper develops the bitensorial formulation of the system of singularities associated with unbounded and bounded Stokes flows. The motivation for this extension is that Stokesian singularities and hydrodynamic fundamental solutions are multi-point functions, and bitensor calculus provides either the proper geometrical setting, in order to avoid inconsistencies and misunderstandings on the role of the different tensorial indices, or a way for compactly deriving hydrodynamic properties. A first relevant result is to provide a clear definition of the singularities (both bounded and unbounded) in Stokes flow, specifying the associated differential equations and boundary conditions. Using this formalism for bounded flows, we show the existence of an integro-differential operator providing the whole system of hydrodynamic singularities by acting on the unbounded Green function (Stokeslet) at its pole and we derive its explicit representation in terms of moments. In the case of an immersed body in a unbounded fluid, we show that, the operator furnishing the disturbance field of a purely $ n $-th order ambient flow, is a generalized $ n $-th order Faxén operator, i.e., it yields the $ n $-th moment on the body if applied to a generic ambient flow, and that a generic disturbance field can be expressed by a summation of the generalized $ n $-th order Faxén operators. Furthermore, we find that the operator providing the disturbance of an ambient flow coincides with the reflection operator for the Stokes solutions in the same flow geometry. We apply this result to the paradigmatic case of fundamental singularities for the Stokes flow bounded by a plane. In this way, we obtain in an alternative and easy way the image system for the Sourcelet and the Rotlet (already derived in the literature) and for the Source Doublet and the Strainlet (presented here for the first time).



    加载中


    [1] H. A. Lorentz, Abhandlungen über theoretische Physik, Leipzig: B. G. Teubner, 1907.
    [2] C. W. Oseen, Uber die Stokes'sche Formel und Uber eine verwandte Aufgabe in der Hydrodynamik, Arkiv Mat., Astron. och Fysik, 6 (1910), 1–20.
    [3] S. Kim, S. J. Karrila, Microhydrodynamics: principles and selected applications, Mineola: Dover Publications Inc., 2005.
    [4] C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9780511624124
    [5] L. G. Leal, Advanced transport phenomena: fluid mechanics and convective transport processes, Cambridge: Cambridge University Press, 2007.
    [6] R. G. Cox, H. Brenner, Effect of finite boundaries on the Stokes resistance of an arbitrary particle Part 3. Translation and rotation, J. Fluid Mech., 28 (1967), 391–441. https://doi.org/10.1017/S0022112067002150 doi: 10.1017/S0022112067002150
    [7] A. T. Chwang, T. Y. T. Wu, Hydromechanics of low-Reynolds-number flow. Part 1. Rotation of axisymmetric prolate bodies, J. Fluid Mech., 63 (1974), 607–622. https://doi.org/10.1017/S0022112074001819 doi: 10.1017/S0022112074001819
    [8] A. T. Chwang, T. Y. T. Wu, Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows, J. Fluid Mech., 67 (1975), 787–815. https://doi.org/10.1017/S0022112075000614 doi: 10.1017/S0022112075000614
    [9] S. Kim, A note on Faxén laws for nonspherical particles, Int. J. Multiphase Flow, 11 (1985), 713–719. https://doi.org/10.1016/0301-9322(85)90088-6 doi: 10.1016/0301-9322(85)90088-6
    [10] J. F. Brady, G. Bossis, Stokesian dynamics, Ann. Rev. Fluid Mech., 20 (1988), 111–157. https://doi.org/10.1146/annurev.fl.20.010188.000551 doi: 10.1146/annurev.fl.20.010188.000551
    [11] V. D. Kupradze, M. A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, USSR Comput. Math. Math. Phys., 4 (1964), 82–126. https://doi.org/10.1016/0041-5553(64)90006-0 doi: 10.1016/0041-5553(64)90006-0
    [12] G. J. Hancock, The self-propulsion of microscopic organisms through liquids, Proc. R. Soc. Lond. A, 217 (1953), 96–121. https://doi.org/10.1098/rspa.1953.0048 doi: 10.1098/rspa.1953.0048
    [13] H. K. Kuiken, H. A. Lorentz: Sketches of his work on slow viscous flow and some other areas in fluid mechanics and the background against which it arose, In: The Centenary of a paper on slow viscous flow by the physicist H. A. Lorentz, Dordrecht: Springer, 1996, 1–18. https://doi.org/10.1007/978-94-009-0225-1_1
    [14] M. Giona, G. Procopio, R. Mauri, Hydrodynamic Green functions: paradoxes in unsteady Stokes conditions and infinite propagation velocity in incompressible viscous models, Meccanica, 57 (2022), 1055–1069. https://doi.org/10.1007/s11012-022-01502-y doi: 10.1007/s11012-022-01502-y
    [15] J. M. Burgers, On the motion of small particles of elongated form suspended in a viscous liquid, Kon. Ned. Akad. Wet. Verhand. (Eerste Sectie), 16 (1938), 113–184.
    [16] S. Kim, Singularity solutions for ellipsoids in low-Reynolds-number flows: with applications to the calculation of hydrodynamic interactions in suspensions of ellipsoids, Int. J. Multiphase Flow, 12 (1986), 469–491. https://doi.org/10.1016/0301-9322(86)90019-4 doi: 10.1016/0301-9322(86)90019-4
    [17] R. E. Johnson, T. Y. Wu, Hydromechanics of low-Reynolds-number flow. Part 5. Motion of a slender torus, J. Fluid Mech., 95 (1979), 263–277. https://doi.org/10.1017/S0022112079001464 doi: 10.1017/S0022112079001464
    [18] E. Barta, N. Liron, Slender body interactions for low Reynolds numbers—part Ⅰ: body-wall interactions, SIAM J. Appl. Math., 48 (1988), 992–1008. https://doi.org/10.1137/0148058 doi: 10.1137/0148058
    [19] E. Barta, N. Liron, Slender body interactions for low Reynolds numbers—part Ⅱ: body-body interactions, SIAM J. Appl. Math., 48 (1988), 1262–1280. https://doi.org/10.1137/0148077 doi: 10.1137/0148077
    [20] G. K. Batchelor, Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech., 44 (1970), 419–440. https://doi.org/10.1017/S002211207000191X doi: 10.1017/S002211207000191X
    [21] J. Blake, A model for the micro-structure in ciliated organisms, J. Fluid Mech., 55 (1972), 1–23. https://doi.org/10.1017/S0022112072001612 doi: 10.1017/S0022112072001612
    [22] G. K. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech., 41 (1970), 545–570. https://doi.org/10.1017/S0022112070000745 doi: 10.1017/S0022112070000745
    [23] J. Happel, H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media, Dordrecht: Springer, 1983. https://doi.org/10.1007/978-94-009-8352-6
    [24] M. M. G. Ricci, T. Levi-Civita, Méthodes de calcul différentiel absolu et leurs applications, Math. Ann., 54 (1900), 125–201. https://doi.org/10.1007/BF01454201 doi: 10.1007/BF01454201
    [25] H. S. Ruse, An absolute partial differential calculus, The Quarterly Journal of Mathematics, os-2 (1931), 190–202. https://doi.org/10.1093/qmath/os-2.1.190 doi: 10.1093/qmath/os-2.1.190
    [26] J. L. Synge, Relativity: the general theory, Amsterdam: North-Holland Publishing Company, 1960.
    [27] B. S. DeWitt, R. W. Brehme, Radiation damping in a gravitational field, Ann. Phys., 9 (1960), 220–259. https://doi.org/10.1016/0003-4916(60)90030-0 doi: 10.1016/0003-4916(60)90030-0
    [28] E. Poisson, A. Pound, I. Vega, The motion of point particles in curved spacetime, Living Rev. Relativ., 14 (2011), 7. https://doi.org/10.12942/lrr-2011-7 doi: 10.12942/lrr-2011-7
    [29] I. M. Gel'fand, G. E. Shilov, Generalized functions, Volume 1: Properties and operations, New York: Academic Press Inc., 1964.
    [30] R. P. Kanwal, Generalized functions: theory and applications, 3 Eds., Boston, MA: Birkhäuser, 2004. https://doi.org/10.1007/978-0-8176-8174-6
    [31] K. Ichiki, Improvement of the Stokesian dynamics method for systems with a finite number of particles, J. Fluid Mech., 452 (2002), 231–262. https://doi.org/10.1017/S0022112001006735 doi: 10.1017/S0022112001006735
    [32] H. S. Shapiro, The Schwarz function and its generalization to higher dimensions, Boston: John Wiley & Sons, 1992.
    [33] D. Khavinson, E. Lundberg, Linear holomorphic partial differential equations and classical potential theory, American Mathematical Society, 2018.
    [34] H. Hasimoto, Lorentz's theorem on the Stokes equation, J. Eng. Math., 30 (1996), 215–224. https://doi.org/10.1007/BF00118831 doi: 10.1007/BF00118831
    [35] S. H. Lee, R. S. Chadwick, L. G. Leal, Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz, J. Fluid Mech., 93 (1979), 705–726. https://doi.org/10.1017/S0022112079001981 doi: 10.1017/S0022112079001981
    [36] J. R. Blake, A note on the image system for a stokeslet in a no-slip boundary, Math. Proc. Cambridge, 70 (1971), 303–310. https://doi.org/10.1017/S0305004100049902 doi: 10.1017/S0305004100049902
    [37] J. R. Blake, A. T. Chwang, Fundamental singularities of viscous flow, J. Eng. Math., 8 (1974), 23–29. https://doi.org/10.1007/BF02353701 doi: 10.1007/BF02353701
    [38] B. Finzi, M. Pastori, Calcolo tensoriale e applicazioni, Bologna: Zanichelli, 1979.
    [39] J. L. Synge, A. Schild, Tensor calculus, Dover Publications Inc., 2018.
    [40] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mansfield Centre: Martino Publishing, 2014.
    [41] D. H. Sattinger, O. L. Weaver, Lie groups and algebras with applications to physics, geometry, and mechanics, New York, NY: Springer, 2013. https://doi.org/10.1007/978-1-4757-1910-9
    [42] H. S. Ruse, Taylor's theorem in the tensor calculus, Proc. London Math. Soc., s2-32 (1931), 87–92. https://doi.org/10.1112/plms/s2-32.1.87 doi: 10.1112/plms/s2-32.1.87
    [43] S. Kim, S.-Y. Lu, The functional similarity between Faxén relations and singularity solutions for fluid-fluid, fluid-solid and solid-solid dispersions, Int. J. Multiphase Flow, 13 (1987), 837–844. https://doi.org/10.1016/0301-9322(87)90070-X doi: 10.1016/0301-9322(87)90070-X
    [44] H. Brenner, The Stokes resistance of an arbitrary particle—Ⅳ arbitrary fields of flow, Chem. Eng. Sci., 19 (1964), 703–727. https://doi.org/10.1016/0009-2509(64)85084-3 doi: 10.1016/0009-2509(64)85084-3
    [45] C. W. Oseen, Neuere methoden und ergebnisse in der hydrodynamik, Leipzig: Akademische Verlagsgesellschaft mb H., 1927.
    [46] C. Maul, S. Kim, Image systems for a Stokeslet inside a rigid spherical container, Phys. Fluids, 6 (1994), 2221–2223. https://doi.org/10.1063/1.868223 doi: 10.1063/1.868223
    [47] P. Ebenfelt, D. Khavinson, On point to point reflection of harmonic functions across real-analytic hypersurfaces in $\mathbb{R}^n$, J. Anal. Math., 68 (1996), 145–182. https://doi.org/10.1007/BF02790208 doi: 10.1007/BF02790208
    [48] P. Garabedian, Partial differential equations with more than two independent variables in the complex domain, Journal of Mathematics and Mechanics, 9 (1960), 241–271.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1417) PDF downloads(88) Cited by(2)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog