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Abstract: This paper develops the bitensorial formulation of the system of singularities associated
with unbounded and bounded Stokes flows. The motivation for this extension is that Stokesian
singularities and hydrodynamic fundamental solutions are multi-point functions, and bitensor calculus
provides either the proper geometrical setting, in order to avoid inconsistencies and misunderstandings
on the role of the different tensorial indices, or a way for compactly deriving hydrodynamic properties.
A first relevant result is to provide a clear definition of the singularities (both bounded and unbounded)
in Stokes flow, specifying the associated differential equations and boundary conditions. Using this
formalism for bounded flows, we show the existence of an integro-differential operator providing the
whole system of hydrodynamic singularities by acting on the unbounded Green function (Stokeslet)
at its pole and we derive its explicit representation in terms of moments. In the case of an immersed
body in a unbounded fluid, we show that, the operator furnishing the disturbance field of a purely n-th
order ambient flow, is a generalized n-th order Faxén operator, i.e., it yields the n-th moment on the
body if applied to a generic ambient flow, and that a generic disturbance field can be expressed by
a summation of the generalized n-th order Faxén operators. Furthermore, we find that the operator
providing the disturbance of an ambient flow coincides with the reflection operator for the Stokes
solutions in the same flow geometry. We apply this result to the paradigmatic case of fundamental
singularities for the Stokes flow bounded by a plane. In this way, we obtain in an alternative and easy
way the image system for the Sourcelet and the Rotlet (already derived in the literature) and for the
Source Doublet and the Strainlet (presented here for the first time).

Keywords: Stokes flows; Bitensor calculus; singularity method; Green functions; generalized
functions; hydrodynamics

1. Introduction

Since the pioneering works of Lorentz [1] and Oseen [2], the use of fundamental solutions
has become a common and widely applied approach (referred to as the method of hydrodynamic
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singularities) for solving incompressible Stokes flows [3–5]. Important theoretical results in low-
Reynolds number hydrodynamics have been obtained in this way, for instance, in quantifying the
resistance of an arbitrarily shaped particle in a confined fluid [6], in constructing exact solutions
for simple flows [7, 8], in expressing the Generalized Faxén theorem [9] for generic immersed
bodies. Furthermore, hydrodynamic singularities represent also one of the principal tools in numerical
methods, such as Stokesian dynamics [10] or the Method of Fundamental Solutions [11].

Depending on the presence of a solid boundary at finite distance from the pole of the singularity, a
distinction can be made between unbounded and bounded singularities [4]. In dealing with bounded
singularities we consider, throughout this article, exclusively no-slip conditions at the boundaries.

In the unbounded case, all the hydrodynamic singularities can be constructed starting from the
Green function for the Stokes flow, representing the lowest-order singularity, referred to as the
Stokeslet [12], the Oseen tensor [3] or the Lorentzlet [13], see also [14] for a gradient-gauge
approach, by applying to it a differential operator at the pole or at the source point. The relative
simplicity in constructing hydrodynamic fields as a linear superposition of a collection of unbounded
singularities has made the use of singular solutions extremely popular in the analytical description of
velocity fields originated by the motion of solid bodies with different geometries in a Stokes fluid,
thus simplifying considerably their representation with respect to those obtained by means of other
approaches involving polar coordinates or multipole expansions [3]. Some well-known examples of
solutions of hydrodynamic problems expressed in the singular representation refer to the motion of
solid spheres [15], ellipsoids [7–9, 16], tori [17] or slender bodies [12, 18–20] in unbounded Stokes
fluids. Moreover, the singular representation of the solutions of the Stokes flow has been used for
characterizing the locomotion of microorganisms [12,21], and the rheological behavior of suspensions
and complex fluids [22, 23].

In the overwhelming majority of these works, the singularity functions are represented in a Cartesian
reference system, since either the flow domain is unbounded, or, in the bounded case, the singularities
lie on a flat manifold (mainly points and lines). In point of fact, a general theory of the Stokes
singularities, should take into account any possible system configuration, that can, in principle, be
constituted by curved boundaries (such as cylindrical channels, spheroidal capsules, wavy surfaces
etc.), and immersed curved objects (helical flagellae, biconcave disk shaped cells etc.), for which it is
convenient to associate singularities lying on curved manifolds due to their symmetries. Therefore, it
may happen that the appropriate coordinate system for specific hydrodynamic problems is curvilinear.
As well known, Navier-Stokes fields are invariant under coordinate transformations and, it easy to
show, that hydrodynamic singularities are invariant also at the pole.

Tensor calculus [24] is the natural geometric framework for addressing invariance with respect
to coordinate systems. In dealing with the singularity approach to Stokes flows, the singular fields
depend at least on two points (and in principle, are multi-point functions), the source (at the pole of
the singularity) and the field point (at the fluid element position). Consequently, a generalization of
tensor calculus is required, represented by the bitensorial formalism [25–27], specifically developed for
handling the Green functions in field theoretical developments within the theory of general relativity.
The bitensor calculus, developed originally by Ruse [25], and further extended by Synge [26] and De
Witt [27] for describing multi-point dependent fields in general relativity, is an extension of the tensor
calculus that allows us to distinguish between the components of two-point dependent tensors (such
as the Stokes singularities) and to make operations between them by means of the so called parallel
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propagator. A thorough analysis of bitensor calculus can be found in [28], while Appendix A succintly
reviews the main concepts used in this article.

One goal of the present article is to develop a bitensorial formalism that ensures and preserves in
a simple way invariant relations for the hydrodynamic singularity functions both at the source and
the field points. In a broader perspective, the aim of this work is not only to transfer the bitensor
formalism to the analysis of the hydrodynamic Green functions, which is a useful task in itself, as it
makes the Stokesian formalism clear and unambiguous, but also to derive out of this formalism new
hydrodynamic properties and operators. A significant example involves the generalization of the Faxén
operator associated with an immersed body. In the hydrodynamic literature [3, 4], the Faxén operator
associated with an immersed body is defined as the integro-differential operator that, once applied to
the ambient velocity field, provides the force acting on the body. Specifically, we derive the analytic
expression for the generalized n-th order Faxén operator that, starting from the fundamental Green
function (e.g., a Stokeslet), provides the disturbance field associated with an n-th order ambient flow
(see Section 5 for details).

The article is organized as follows. Section 2 introduce the tensor algebra within the framework of
the Stokes equations. In Section 3, we show how bitensor calculus eliminates the formal ambiguities
(related to the meaning of the tensorial indices, and to the action of linear operators on tensorial
singularities) occurring in the current formulation of Stokesian hydrodynamics [3, 4] and it allows us
to obtain a clear definition of singular solutions of Stokes flow (bounded and unbounded), specifying
the associated homogeneous equations and boundary conditions.

Since the Stokes singularities can be viewed as generalized functions (or distributions), the
generalized function theory [29] and its connections with the theory of moments [30] are applied
to bitensorial quantities of hydrodynamic interest in Section 4. Specifically, we show that the linear
operator providing the singularity system of a bounded flow is uniquely specified by the system of
moments associated with the forces acting on the obstacle. Although the present definition of moments
is altogether different from that proposed in [31], where, assuming no-slip boundary conditions, the
moments are defined by surface integrals of the stress tensor, the two approaches yield the same final
result as regard the expression of the disturbance field, showing that the no-slip boundary condition
assumption is unnecessary. This represents the only intersection point between the present theory and
the one developed by Ichiki [31] in the particular case of no-slip spheres in a Stokes flow. In Section 5,
we introduce the n-th order Faxén operator, and we derive an n-th order Faxén theorem, by expressing
a generic disturbance field as a series expansion involving the n-th order Faxén operators.

In Section 6, the operator yielding the disturbance field associated with a Stokeslet is considered
showing that it is directly related to the reflection operator [32, 33] of the geometry considered. This
result is applied in Section 7 to the singularities near a plane wall. The characterization of the
singularities bounded by a no-slip planar wall has been analyzed in the literature either as a reflection
problem [1,34,35] or using a system of image singularities [36,37]. These two approaches are reviewed
in [3]. We show in Section 7 that the present formalism highlights the equivalence between these two
approches. In fact, the same differential operator furnishes directly either the Lorentz’s mirror form
of the solution, if applied at the field point, or the Blakes’ singularity solution form, if applied at
the source point of the Stokeslet. Moreover, since the position of the pole enters as a variable in the
reflection operator, this formalism overcomes the original shortcomings in obtaining the higher order
bounded singularities by differentiating the Green’s function at the pole, due to the fact that, in the
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Blake’s solutions, the distance of the pole from the plane enters as a parameter. In this way, we obtain
unknown (Source Dipole and Stresslet) and known (Rotlet and Sourcelet) bounded singularities, the
latter ones already derived in [37] by means of a more elaborate Fourier-Hankel transform.

2. The Stokes flow equations

If a Newtonian fluid, possessing viscosity µ, is subjected to a volume force field f(x), the
controvariant components of the stress field σσσ(x), the velocity v(x) and the scalar pressure field p(x)
are solution, for vanishing Reynolds number, and under steady conditions, of the Stokes equations [38]−∇bσ

ab(x) = µ∆xva(x) − ∇a p(x) = − f a(x)
∇ava(x) = 0 x ∈ V f

(2.1)

a = 1, 2, 3 where V f is the fluid domain. Throughout this article, the Einstein summation convention
is adopted. The operators ∇a and ∇a in Eq (2.1) represent the covariant and controvariant derivatives,
respectively, related by the transformation ∇a = gab∇

b, where gab = gab(x) is the metric tensor [39] and
∆x = gab∇a∇b is the Laplacian operator at the point x. For a rank-2 tensor T a

b in mixed representation,
its covariant derivative reads

∇cT a
b = T a

b;c =
∂T a

b

∂xc + Γa
mcT

m
b − Γn

bcT
a
n (2.2)

where T a
b;c is an alternative and more compact notation for the covariant derivative of T a

b, and Γa
mc are

the Christoffel symbols

Γa
mc =

1
2

gal
(
∂glm

∂xc +
∂glc

∂xm −
∂gmc

∂xl

)
(2.3)

Henceforth, we will use both the notations ∇cT a
b and T a

b;c for the covariant derivatives.
The component of the associated stress tensor for a Newtonian incompressible fluid are therefore

expressed by [38]
σab = pgab − µ(∇bva + ∇avb) = pgab − µ(va;b + vb;a) (2.4)

As well known, the controvariant components of the generic tensorial field f(x) = ( f a(x)) change from
the coordinate system {xa} to a new system {x̃a} via a linear transformation defined by the matrix

(
∂x̃b

∂xa

)
f̃ b(x) = f a(x)

∂x̃b

∂xa (2.5)

whereas the inverse matrix at the point x yields the transformation of the covariant components

f̃b(x) = fa(x)
∂x̃a

∂xb (2.6)

3. Bitensorial fundamental solutions of the Stokes flow

In this section we extend the tensorial notation to the case of the fundamental solutions of the
Stokes flow, with the aim of obtaining a clear definition of its singular solutions From the theory of
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distributions, we can write the fields entering Eq (2.1) equipped with homogeneous Dirichlet boundary
condition at ∂V f as volume potentials [40], with a kernel Ga

α(x, ξξξ) for the velocity field

va(x) =

∫
Ga

α(x, ξξξ)
f α(ξξξ)
8πµ

√
g(ξξξ)d3ξ (3.1)

and a kernel Pα(x, ξξξ) for the pressure field

p(x) =

∫
Pα(x, ξξξ)

f α(ξξξ)
8π

√
g(ξξξ)d3ξ (3.2)

where f α(ξξξ) are the controvariant components of the force field at a source point ξξξ, g(ξξξ) = det(gab(ξξξ))
and d3ξ = dξ1dξ2dξ3. Observe that the coordinate representation of the source point ξξξ could in
principle be different from that of the field point x. This fact is notationally highlighted throughout
the article, by using greek letters instead of latin ones for any index α = 1, 2, 3 referred to the entries
of tensorial entities evaluated at the source point. Therefore, the transformations for the controvariant
and covariant components of f(ξξξ) at the source point read

f β
′

(ξξξ′) = f α(ξξξ)
∂ξβ

′

∂ξα
, fβ′(ξξξ) = fα(ξξξ)

∂ξα

∂ξβ′
(3.3)

where ξβ
′

are the components of ξξξ′. This notation, with primed indices to indicate the transformed
coordinated, will be used throughout the article.

The kernels Ga
α(x, ξξξ) and Pα(x, ξξξ) are two-point dependent distributions, with tensorial character

both at x and ξξξ, thus corresponding to bitensorial quantities [25–28]. This is a common feature
of any fundamental solutions (or Green functions) in mathematical physics. Further details on the
theory of bitensors are succintly reviewed in Appendix A. Specifically, the kernel entries Ga

α(x, ξξξ)
are the components of a bitensor with vectorial character both at the source and the field point, and
consequently their transformation in new coordinate systems both at the source and the field points
takes the form

Gb′
β′(x

′, ξξξ′) = Ga
α(x, ξξξ)

∂xb′

∂xa

∂ξα

∂ξβ′
(3.4)

whereas the transformation rule for the pressure bitensor, with scalar character at the field point x and
vectorial at the source point ξξξ, is given by

Pβ′(x, ξξξ′) = Pα(x, ξξξ)
∂ξα

∂ξβ′
(3.5)

Finally, using the invariance properties of the Dirac delta function [28] and the parallel transport of
tensorial quantities, it is possible to express the force field entering Eq (2.1) as

f a(x) =

∫
ga
α(x, ξξξ) f α(ξξξ)δ(x, ξξξ)

√
g(ξξξ)d3ξ; δ(x, ξξξ) =

δ(x − ξξξ)√
g(ξξξ)

(3.6)

where ga
α(x, ξξξ) is the parallel propagator bitensor, which propagates in a parallel way a vector along

the unique geodesics connecting x to ξξξ. In a distributional meaning, it follows that ga
α(x, ξξξ)δ(x, ξξξ) =

δa
αδ(x, ξξξ) being x and ξξξ coincident.
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By substituting Eqs (3.1), (3.2) and (3.6) in Eq (2.1), we obtain the bitensorial Green function
equations of the Stokes flow, yielding the velocity and pressure at the field point x due to an impulsive
force acting at the source point ξξξ

−∇bΣ
ab
α (x, ξξξ) = ∆xGa

α(x, ξξξ) − ∇aPα(x, ξξξ) = −8πδa
αδ(x, ξξξ)

∇aGa
α(x, ξξξ) = 0

Ga
α(x, ξξξ)|x∈∂V f = 0

(3.7)

From Eq (2.4), the stress field Σab
α (x, ξξξ) associated with the Green function is defined by

Σab
α (x, ξξξ) = Pα(x, ξξξ)gab(x) − (Ga;b

α (x, ξξξ) + Gb;a
α (x, ξξξ)) (3.8)

In the case the source point is kept fixed, bitensors become simple tensors depending only on the field
point. Therefore, by choosing the force field f(ξξξ) = f0δ(ξξξ − ξξξ0), from Eqs (3.1) and (3.2), we obtain the
velocity/pressure fields due to an impulsive force with intensity f0 placed at a singular point ξξξ0

va(x) =
f α0

8πµ
Ga

α(x, ξξξ0) (3.9)

p(x) =
f α0
8π

Pα(x, ξξξ0) (3.10)

for which the stress tensor σab(x) takes the form

σab(x) =
f α0
8π

Σab
α(x, ξξξ0) (3.11)

The reciprocity relation [3, 4] for the Green function in bitensorial notation becomes

Ga
α(x, ξξξ) = G a

α (ξξξ, x) (3.12)

By exchanging x ↔ ξξξ, and thus a ↔ α, and enforcing the reciprocity relation (3.12), it follows that
Ga

α(x, ξξξ) is also the solution of the system
−∇βΣa

αβ(ξξξ, x) = ∆ξGa
α(x, ξξξ) − ∇αPa(ξξξ, x) = −8πδa

αδ(x, ξξξ)
∇αGa

α(x, ξξξ) = 0
Ga

α(x, ξξξ)|ξξξ∈∂V f = 0

(3.13)

where ∆ξ = gαβ(ξξξ)∇α∇β is the Laplacian at point ξξξ. In this case, the associated stress field becomes

Σa
αβ(ξξξ, x) = Pa(ξξξ, x)gαβ(ξξξ) − (Ga

α;β(x, ξξξ) + Ga
β;α(x, ξξξ)) (3.14)

Since the Green function vanishes at ξξξ ∈ ∂V f for any x, Pα(x, ξξξ) must be constant for ξξξ ∈ ∂V f due
to Eq (3.7), and therefore can be set equal to zero. Furthermore, the pressure scalar-vector Pα(x, ξξξ) is a
potential scalar field at x possessing the following properties

∆xPα(x, ξξξ) = 8π∇αδ(x, ξξξ)
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∇αPα(x, ξξξ) = 8πδ(x, ξξξ) (3.15)
Pα(x, ξξξ)|ξξξ∈∂V f = 0

The first relation stems from Eq (3.7), by taking the divergence with respect to x, while the second
relation follows by taking the divergence with respect to ξξξ, enforcing the second relation in Eq (3.13).
In a similar way, Pa(ξξξ, x) fulfills the relations

∆ξPa(ξξξ, x) = 8π∇aδ(x, ξξξ)
∇aPa(ξξξ, x) = 8πδ(x, ξξξ) (3.16)

Pa(ξξξ, x)|x∈∂V f = 0

Observe that Eq (3.15) for Pα(x, ξξξ), and likewise Eq (3.16) for Pa(ξξξ, x) do not constitute a boundary
value problem for the pressure variable, as the boundary condition is assigned for a variable (ξξξ in
Eq (3.15)) different from that involved in the differential equation (x in Eq (3.15)), thus representing a
collection of properties fulfilled by the pressure field.

To obtain the higher order singularities, the Green function should be differentiated at the pole ξξξ
maintaining homogeneous Dirichlet conditions at the field point. The first derivative at the pole yields
the Stokesian dipole, the second derivative the Stokesian quadrupole and so on.

The Stokesian dipole Ga
α;β(x, ξξξ) can also be expressed as superposition of two other singular

solutions of the Stokes equations: a symmetric and an antisymmetric tensor field at the source points

Ga
α;β(x, ξξξ) = Ea

αβ(x, ξξξ) + εγαβΩ
aγ(x, ξξξ) (3.17)

where

Ea
αβ(x, ξξξ) =

1
2

(Ga
α;β(x, ξξξ) + Ga

β;α(x, ξξξ)) (3.18)

is the field due to a singular strain of the fluid at the source point, and

Ωaγ(x, ξξξ) =
εγεη

2
Ga

ε;η(x, ξξξ) (3.19)

where εαβγ is the Levi-Civita symbol (in the italian mathematical literature also called the Ricci
tensor [38]), is the field due to a singular rotation of the fluid at the source point.

The symmetric strain component is the solution of the Stokes system of equations
∆xEa

αβ(x, ξξξ) −
1
2 ∇

a
(
Pα;β(x, ξξξ) + Pβ;α(x, ξξξ)

)
= −4π(δa

α∇β + δa
β∇α)δ(x, ξξξ)

∇aEa
αβ(x, ξξξ) = 0

Ea
αβ(x, ξξξ)|x∈∂V f = 0

(3.20)

which can be also computed directly from Eqs (3.13), (3.14) by exchanging source and field points in
the pressure and stress fields related to the solution of the Green function

Ea
α;β(x, ξξξ) =

gαβ(ξξξ)
2

Pa(ξξξ, x) −
1
2

Σa
αβ(ξξξ, x) (3.21)
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The antisymmetric part of the Stokes dipole corresponds to the solution of the Stokes system
∆xΩ

aγ(x, ξξξ) − 1
2ε

γεη∇aPε;η(x, ξξξ) = −4πδa
εε

γεη∇ηδ(x, ξξξ)
∇aΩ

aγ(x, ξξξ) = 0
Ωaγ(x, ξξξ)

∣∣∣
x∈∂V f

= 0
(3.22)

A further differentiation at the pole defines the Stokes quadrupole. Specifically, by applying the
Laplacian operator ∆ξ/2 to the Green function, we obtain the so called Source Dipole

∆xDa
α(x, ξξξ) − 1

2∇
a∆ξPα(x, ξξξ) = −4πδa

α∆ξδ(x, ξξξ)
∇aDa

α(x, ξξξ) = 0
Da

α(x, ξξξ)
∣∣∣
x∈∂V f

= 0
(3.23)

Also the solution of this system can be obtained by exchanging source and field points in the gradient
of the pressure field associated with the Green function. In point of fact, from the first relation in
Eq (3.13), we have

Da
α(x, ξξξ) = −

∆ξGa
α(x, ξξξ)
2

= −
∇αPa(ξξξ, x)

2
+ 4πδa

αδ(x, ξξξ) (3.24)

3.1. Unbounded singularities

In this paragraph, unbounded singularities are briefly analyzed. Due to translational invariance, the
singularities in R3, depend solely on the vector x − ξξξ. Henceforth, the unbounded singular functions
will be indicated by sans-serif capital letters. The Green function Sa

α(x − ξξξ), usually referred to as the
Stokeslet, is the solution of the Stokes problem

−∇bΣab
α (x − ξξξ) = ∆xSa

α(x − ξξξ) − ∇aPα(x − ξξξ) = −8πδa
αδ(x, ξξξ)

∇aSa
α(x − ξξξ) = 0

Sa
α(x − ξξξ)

∣∣∣
|x−ξξξ|→∞ = 0

(3.25)

Since the Laplacian is invariant under translation (and, more generally, under Euclidean
transformations [41]), we have for a generic function f (x−ξξξ), ∆x−ξ f (x−ξξξ) = ∆x f (x−ξξξ) = ∆ξ f (x−ξξξ).
Therefore, it is possible to express the pressure in Eq (3.15) as the solution of the harmonic problem∆ξPα(x − ξξξ) = 8π∇αδ(x, ξξξ)

Pα(x − ξξξ)
∣∣∣
|x−ξξξ|→∞ = 0

(3.26)

thus

Pα(x − ξξξ) = 2∇α
1

|x − ξξξ|
=

2(x − ξξξ)α
r3 (3.27)

while that the associated velocity and stress-tensor fields are given by [4, 14]

Sa
α(x − ξξξ) = (δa

α∆ξ − ∇α∇
a)|x − ξξξ| =

δa
α

|x − ξξξ|
+

(x − ξξξ)a(x − ξξξ)α
|x − ξξξ|3

(3.28)

Mathematics in Engineering Volume 5, Issue 2, 1–34.



9

Σab
α (x − ξξξ) =

6(x − ξξξ)a(x − ξξξ)b(x − ξξξ)α
r5 (3.29)

As Pα;β(x − ξξξ) = Pβ;α(x − ξξξ), the symmetric part of the Stokes dipole corresponds to the solution of the
problem 

∆xEa
αβ(x − ξξξ) − ∇

aPα;β(x − ξξξ) = −4π(δa
α∇β + δa

β∇α)δ(x, ξξξ)
∇aEa

αβ(x − ξξξ) = 0
Ea

αβ(x − ξξξ)
∣∣∣
|x−ξξξ|→∞ = 0

(3.30)

and due to Eq (3.21) it takes the expression

Ea
αβ(x − ξξξ) =

gαβ(ξξξ)
2

Pa(ξξξ − x) −
1
2
Σa
αβ(ξξξ − x) (3.31)

This field can be viewed as the superposition of two terms: the contribution Ma(x− ξξξ) = −Pa(ξξξ − x)/2,
which is the solution of a Stokes problem everywhere but at the pole

∆xMa(x − ξξξ) = −4π∇aδ(x, ξξξ)
∇aMa(x − ξξξ) = −4πδ(x, ξξξ)
Ma(x − ξξξ)

∣∣∣
|x−ξξξ|→∞ = 0

(3.32)

Strictly speaking, the field Ma(x − ξξξ), usually called the Sourcelet [4, 37], is not a Stokesian singular
solution, since its divergence does not vanish at the pole and, thus, it does not satisfy the overall mass
balance over the fluid. It can be physically interpreted as the velocity field stemming from a pointwise
fluid source (or sink, if the sign is reversed) at the pole. Its bounded counterpart can be defined solely
for external problems, so that it could match the regularity condition and the overall mass balance
at infinity. However, it cannot be generally neither obtained from the Green function (as the Green
function is divergence-free), nor it is related to the Green function pressure field, as in the unbounded
case.

Similarly, also the second term is not a singular Stokesian solution. In fact, the field Ta
αβ(x − ξξξ) =

Σa
αβ(ξξξ − x)/2, called the Stresslet, is the solution of the problem

∆xTa
αβ(x − ξξξ) − ∇

aPα;β(x − ξξξ) = −4π(gαβ(ξξξ)∇a + δa
α∇β + δa

β∇α)δ(x, ξξξ)
∇aTa

αβ(x − ξξξ) = −4πgαβ(ξξξ)δ(x, ξξξ)
Ta
αβ(x − ξξξ)

∣∣∣
|x−ξξξ|→∞ = 0

(3.33)

possessing non vanishing divergence. Therefore, the symmetric Strainlet Eq (3.31) can be expressed
as

Ea
αβ(x − ξξξ) = −gαβ(ξξξ)Ma(x − ξξξ) + Ta

αβ(x − ξξξ) (3.34)

Next consider the antisymmetric term defined by Eq (3.19). In unbounded flows Ωaγ(x − ξξξ) is
referred to as the Rotlet. Since εγεηPε;η(x − ξξξ) = 0, the Rotlet is a constant pressure solution of the
Stokes system 

∆xΩaγ(x − ξξξ) = −4πδa
εε

γεη∇ηδ(x, ξξξ)
∇aΩaγ(x − ξξξ) = 0
Ωaγ(x − ξξξ)

∣∣∣
|x−ξξξ|→∞ = 0

(3.35)
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the analytic expression of which is

Ωaγ(x − ξξξ) = −δa
εε

γεη∇η
1

|x − ξξξ|
(3.36)

Another low order irrotational singularity of the Stokes problem is the solution of Eq (3.23) in
unbounded domain, namely 

∆xDa
α(x − ξξξ) = −4π(δa

α∆ξ − ∇
a∇α)δ(x, ξξξ)

∇aDa
α(x − ξξξ) = 0

Da
α(x − ξξξ)

∣∣∣
|x−ξξξ|→∞ = 0

(3.37)

This solution, referred to as the Source Doublet, can be obtained from Eq (3.25) and from the definition
of Ma(x − ξξξ)

Da
α(x − ξξξ) = −

∆ξSa
α(x − ξξξ)
2

= ∇αMa(x − ξξξ) + 4πδa
αδ(x, ξξξ) (3.38)

4. Singular representation of bounded flows

In the previous section we have discussed how all the singularities of bounded flows can be obtained
by differentiating the Stokeslet at its pole. In this Section, we develop a method to obtain the singular
representation of a Stokes flow in a given domain V f containing solid boundaries by means of a linear
operator applied to the Stokeslet in the external domain Vext ≡ R

3/V f , and yielding the disturbance field
in V f . More precisely, consider a given solution u(x) of the Stokes equation in V f , attaining arbitrary
values at the boundaries ∂V f (at which, the Stokes problem dictates no-slip boundary conditions). The
velocity field u(x) is referred to as the ambient flow. In order to match the no-slip boundary condition,
a disturbance flow w(x) should be added so that v(x) = w(x) + u(x) is the Stokes solution within V f

satisfying the no-slip conditions on ∂V f . Thus, the disturbance flow is a solution of the equations
µ∆xwa(x) − ∇aq(x) = 0 x ∈ V f

∇awa(x) = 0
wa(x) = −ua(x) x ∈ ∂V f

(4.1)

where q(x) is the associated pressure field. It is convenient to extend this problem over the whole
physical space R3 in order to obtain its singular representation. To this purpose, we can formulate the
problem defined by Eq (4.1) in the form of the non-homogeneous unbounded Stokes equations in R3

as µ∆xwa(x) − ∇aq(x) = − f a(x) x ∈ R3

∇awa(x) = 0
(4.2)

with the condition that f a(x) are distributions defined on a compact support in Vext, and satisfying the
integral equation ∫

Vext

Sa
α(x, ξξξ)

f α(ξξξ)
8πµ

√
g(ξξξ)d3ξ = −ua(x) x ∈ ∂V f (4.3)
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Let us introduce the n-th order tensorial moments of the function f(x), extending the scalar moment
theory [30], as

Mα
αααn

(ξξξ) =

∫
Vext

gαa(ξξξ, x)g a1
α1

(ξξξ, x)...g an
αn

(ξξξ, x) f a(x)(x − ξξξ)a1 ...(x − ξξξ)an

√
g(x)d3x , ξξξ ∈ Vext (4.4)

or, using the scalar-product notation on the external domain

Mα
αααn

(ξξξ) =
〈
gαa(ξξξ, x) f a(x), g an

αααn
(ξξξ, x)(x − ξξξ)an

〉
(4.5)

where 〈·, ·〉 indicates the scalar product in Vext ≡ R
3/V f , an = (a1, . . . , an) is a multi-index, g an

αααn (ξξξ, x) =

g a1
α1 (ξξξ, x)...g an

αn (ξξξ, x) and (x − ξξξ)an = (x − ξξξ)a1 ...(x − ξξξ)an . It is shown in Appendix B that the moments
Ma

an
(ξξξ) can be reduced to the Ichiki’s surface integrals [31] in the case that the no-slip boundary

conditions are assumed, thus

Mα
αααn

(ξξξ) = −

∫
∂V f

gαa(ξξξ, x)g an
αααn

(ξξξ, x)(x − ξξξ)anσ
ab(x) nb(x) dS (x) (4.6)

whereσσσ(x) is the stress tensor related to the total velocity field v(x), and nb(x) the covariant components
of the outwardly oriented normal unit vector at points x of ∂V f as shown in Figure 1. Therefore, given
a reference point ξξξ, all the moments on the volume Vext are uniquely determined by the stress field at
the surface, since Eq (4.6) does not depend on the chosen function f(x).

Figure 1. Schematic representation of the geometry of the problem.

Consider the tensorial Taylor expansion [42] of the components of the vectorial test function φφφ(x)
around a given point ξξξ ∈ Vext

φa(x) =

∞∑
n=0

(−1)n ga
α(x, ξξξ)∇αααnφ

α(ξξξ)
n!

(ξξξ − x)αααn (4.7)

where ∇αααn = ∇α1 · · · ∇αn . Owing to the bitensorial notation, there is no ambiguity in the definition of
∇αααn as greek indices refer to the source point.
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Applying the test function to the momentum balance equation entering Eq (4.2) we have

〈 f a, φa〉 =

∞∑
n=0

〈
f a, (−1)n g α

a (x, ξξξ)∇αααnφα(ξξξ)
n!

(ξξξ − x)αααn

〉
=

∞∑
n=0

∇αααnφα(ξξξ)
n!

Mα
αααn

(ξξξ) (4.8)

where we have made use of the relations g α
a (x, ξξξ) = gαa(ξξξ, x) and (x − ξξξ)αααn = (−1)n(ξξξ − x)αααn = (x −

ξξξ)ang αααn
an (ξξξ, x) see Appendix A.

Since the derivatives of the test functions can be formulated in scalar-product notation as

∇α
ααnφα(ξξξ) = (−1)n 〈

∇α
ααnga

α(x, ξξξ)δ(x, ξξξ), φa(x)
〉

(4.9)

substituting Eq (4.9) into Eq (4.8), the function f(x) can be finally expressed as

f a(x) =

∞∑
n=0

(−1)n Mα
αααn

(ξξξ)
n!

∇α
ααnga

α(x, ξξξ)δ(x, ξξξ) (4.10)

Although the moments depend on the reference points ξξξ, the summation in Eq (4.10) does not depend
on ξξξ. Therefore, Eq (4.10) can be generalized by considering ξξξ as a point of an arbitrary k-dimensional
(k ≤ 3) set of points Ω, averaging Eq (4.10) over Ω,

f a(x) =
1

meas(Ω)

∫
Ω

dΩ(ξξξ)
∞∑

n=0

(−1)n Mα
αααn

(ξξξ)
n!

∇α
ααnga

α(x, ξξξ)δ(x, ξξξ) (4.11)

where dΩ(ξξξ) is the measure element and

meas(Ω) =

∫
Ω

dΩ(ξξξ)

is the Lebesgue measure of Ω. Depending on the symmetries of the flow geometry, the set Ω can
be chosen in some particular cases as to reduce the infinite summation entering Eq (4.11) to a finite
number of terms.

From the structure of Eq (4.10) we can introduce a differential operator

D∗α =

∞∑
n=0

(−1)n Mα
αααn

(ξξξ)
n!

∇α
ααn (4.12)

that in Eq (4.10) acts on the Dirac delta function. In a similar way, if Eq (4.10) is generalized by
Eq (4.11), the operatorD∗α attains an integro-differential representation

D∗α =
1

meas(Ω)

∫
Ω

dΩ(ξξξ)
∞∑

n=0

(−1)n Mα
αααn

(ξξξ)
n!

∇α
ααn (4.13)

so that f a = D∗αga
α(x, ξξξ)δ(x, ξξξ). Its adjointD, 〈D∗a f , g〉 = 〈 f ,Dg〉, is expressed by

Dα =
1

meas(Ω)

∫
Ω

dΩ(ξξξ)
∞∑

n=0

Mα
αααn

(ξξξ)
n!

∇α
ααn (4.14)
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Therefore, the problem defined by Eq (4.2) can be reformulated asµ∆xwa(x) − ∇aq(x) = −D∗αga
α(x, ξξξ)δ(x, ξξξ) x ∈ R3, ξξξ ∈ Vext

∇awa(x) = 0
(4.15)

and the singular representation of the velocity field w(x) follows from Eqs (3.1) and (3.2), namely

wa(x) =

〈
D∗αδ(ξξξ′, ξξξ),

Sa
α(x − ξξξ′)
8πµ

〉
=
DαSa

α(x − ξξξ)
8πµ

(4.16)

and

p(x) =

〈
D∗αδ(ξξξ′, ξξξ),

P α(x − ξξξ′)
8π

〉
=
DαP α(x − ξξξ)

8π
(4.17)

where the scalar products in Eqs (4.16), (4.17) correspond to an integration over ξξξ′. Thus the operator
D defined by the (4.14) provides the singular expansion, of the flow at the source point ξξξ.

The existence of an integro-differential operator yielding the disturbance field once applied to the
Stokeslet is hypothesized in Stokesian hydrodynamics for solid bodies [9, 43] and, more generally,
in developing the singularity method [4]. The procedure outlined above, based on the generalized
function theory, provides an explicit expression for this operator in the form of a series expansion the
coefficients of which are the moments. The main advantages of this explicit representation are: (i) for
a specific flow problem the terms in the series expansion of the operator can be obtained numerically
with arbitrary precision, (ii) it is possible to manipulate its formal structure in order to obtain new
relations as will be shown in the next Sections.

5. Representation of the n-th order Faxén operators

In this section we focus on the Stokes flow around an object with no-slip boundary condition, thus
considering the external volume Vext ≡ VB, where VB is the domain occupied by the object, bounded
by the closed surface ∂VB. In this case V f = R3/VB. For this class of hydrodynamic problems, the
Faxén operator, and its generalizations, play an important role. In fact, as shown by Kim [9], the linear
operator that, applied at the pole of the Stokeslet gives the velocity field due to a particle translating into
the fluid, coincides with the operator that, applied to an ambient flow, returns the force onto the particle
immersed in the flow. This operator takes its name from Faxén (see [23]), who derived its expression
for the first time providing the force on a sphere from the values of the field and its Laplacian at the
center of a spherical object. A corresponding theorem holds also for rotations and strains of the body.

Faxén operators for objects with geometry different from the sphere can be expressed in infinite
series involving the derivatives of any order of the field evaluated at points within the domain
corresponding to the object [44]. Exploiting the symmetry of particular objects, such as spheroids [7,8],
ellipsoids [3], tori [17], etc., it is possible to express the same operator by means of a finite system of
derivatives of the field evaluated on a manifold Ω ⊂ VB, such as the focal axis, the focal ellipse, the
symmetry circle, etc..

Making use of the concepts and the formalism developed in Sections 3 and 4, and considering the
Stokes flow around an object, below we derive the properties and the analytical representation of a
generalization of the Faxén operator, referred to as the n-th order Faxén operator. To this aim, let us
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consider the disturbance field w(n)(x;ξξξ′) of a purely n-th order unbounded ambient flow centered at the
point ξξξ′,

ua
(n)(x;ξξξ′) = Aa

an
(x − ξξξ′)an , Aa

an
∇a

[
(x − ξξξ′)an

]
= 0 (5.1)

with pressure

p(n)(x;ξξξ′) = µAa
an

p̂an
a (x;ξξξ′), p̂an

a (x;ξξξ′) = n (x − ξξξ′)an−2(x − ξξξ′)aganan−1(x) (5.2)

and stress field

πbc
(n)(x;ξξξ′) = µAa

an
π̂bcan

a (x;ξξξ′),
(5.3)

π̂bcan
a (x;ξξξ′) = n

(
(x − ξξξ′)an−2(x − ξξξ′)aganan−1(x)gbc(x) −

(
δb

agcan(x) + δc
agban(x)

)
(x − ξξξ′)an−1

)
i.e., the solution (w(n)(x), τττ(n)(x)) of the following Stokes problem

µ∆xw(n)(x;ξξξ′) − ∇q(n)(x;ξξξ′) = −∇ · τττ(n)(x;ξξξ′) = 0
∇ · w(n)(x;ξξξ′) = 0
wa

(n)(x;ξξξ′) = −Aa
an

(x − ξξξ′)an x ∈ ∂V f

(5.4)

where the subscript “(n)” is not a tensorial index, but simply indicates that an n-order ambient flow is
considered. As in Section 4, let us introduce the m-th order moments, associated with the stress tensor
σσσ(n)(x;ξξξ′) = τττ(n)(x;ξξξ′) + πππ(n)(x;ξξξ′)

(n)Mα
αααm

(ξξξ;ξξξ′) = −

∫
∂V f

gαa(ξξξ, x)g am
αααm

(ξξξ, x)(x − ξξξ)amσ
ab
(n)(x;ξξξ′) nb(x) dS (x) (5.5)

From the definition and the linearity of the problem, the moments in Eq (5.5) can be rewritten as,

(n)Mα
αααm

(ξξξ;ξξξ′) = 8πµ A βββn
β mα β

αααm βββn
(ξξξ;ξξξ′) (5.6)

where the latter equation can be viewed as the definition of the geometric moments mα β

αααm βββn
(ξξξ;ξξξ′). In

fact, enforcing linearity, i.e., σac(x;ξξξ′) = A bn
b σ̂acb

bn
(x;ξξξ′), one obtains for the geometric moments the

following expression

mα β

αααm βββn
(ξξξ;ξξξ′) = −

1
8π

∫
∂V f

gαa(ξξξ, x)gβb(ξξξ, x)g am
αααm

(ξξξ, x)g bn
βββn

(ξξξ, x)(x − ξξξ)amσ̂
acb
bn

(x;ξξξ′) nc(x) dS (x) (5.7)

Geometric moments possess the following symmetry

mα β

αααm βββn
(ξξξ;ξξξ′) = mβ α

βββn αααm
(ξξξ′;ξξξ) (5.8)

that can be proved by applying the Lorentz reciprocal theorem∫
∂V f

w(m)(x, ξξξ) ·σσσ(n)(x, ξξξ′) · n(x)dS =

∫
∂V f

w(n)(x, ξξξ) ·σσσ(m)(x, ξξξ′) · n(x)dS (5.9)
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Componentwise Eq (5.9) reads

A am
a A bn

b

∫
∂V f

(x − ξξξ)amσ̂
acb
bn

(x;ξξξ′) nb(x) dS (x) = A bn
b A am

a

∫
∂V f

(x − ξξξ′)bnσ̂
bca
am

(x;ξξξ) nc(x) dS (x) (5.10)

from which Eq (5.8) follows.
Let us define the following integro-differential operator

F
αβ

βββn
=

1
meas(Ω)

∫
Ω

dΩ(ξξξ)
∞∑

m=0

mα β

αααm βββn
(ξξξ;ξξξ′)

m!
∇α
ααm (5.11)

the adjoint of which is given by

F
∗αβ

βββn
=

1
meas(Ω)

∫
Ω

dΩ(ξξξ)
∞∑

m=0

(−1)m
mα β

αααm βββn
(ξξξ;ξξξ′)

m!
∇α
ααm (5.12)

and introduce also its contracted form

F α
(n) = 8πµA βββn

β F
αβ

βββn
(5.13)

From the analysis developed in Section 4, the Stokes problem (5.2) can be extended in R3 in the
singular form as µ∆xwa

(n)(x;ξξξ′) − ∇qa
(n)(x;ξξξ′) = −F ∗α(n) ga

α(x, ξξξ)δ(x, ξξξ)
∇ · w(n)(x;ξξξ′) = 0

(5.14)

and from Eqs. (4.13)–(4.16), the velocity field solution of Eq (5.14) is given by

wa
(n)(x;ξξξ′) =

F α
(n)S

a
α(x − ξξξ)

8πµ
(5.15)

Since it is possible to express the ambient velocity field u(n)(ξξξ), ξξξ ∈ VB, within the domain of the body
in the surface integral form [4, 40]

uα(ξξξ) = −

∫
∂VB

Sα
a(ξξξ − x)
8πµ

σab(x) nb(x)dS (x) (5.16)

by applying the operator F (n)
α to the above ambient flow we obtain

F (n)
α uα(ξξξ) = −A an

a

∫
∂V f

(x − ξξξ)anσ
ab(x) nb(x) dS (x) (5.17)

which, due to Eq (4.6), implies
Mα

αααn
(ξξξ) = 8πµF βα

αααnuβ(ξξξ) (5.18)

Therefore, the integro-differential operator defined by Eq (5.11) returns either the n-th order
disturbance flow, once applied to the Stokeslet according to Eq (5.15), or the n-th order moment (4.6)
once applied to the ambient flow according to Eq (5.18). In virtue of these properties, we can refer to
F

βα
αααn as the generalized n-th order Faxén operator.
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We can now express the disturbance velocity field entering Eq (4.16), in the presence of generic
Dirichlet boundary condition on the surface of the body, as

wa(x) =
1

meas(Ω)

∫
Ω

dΩ(ξξξ)
∞∑

n=0

F
βα
αααnuβ(ξξξ)
n!

∇α
ααnSa

α(x − ξξξ) (5.19)

Expliciting the Faxén operator, and making use of the symmetries of the geometric moments entering
Eq (5.8), we obtain

wa(x) =
1

meas(Ω)2

∫
Ω

dΩ(ξξξ)
∫

Ω

dΩ(ξξξ′)
∞∑

n=0

∞∑
m=0

mβ α

βββm αααn
(ξξξ′;ξξξ)∇βββmuβ(ξξξ′)

m!n!
∇α
ααnSa

α(x − ξξξ)

=
1

meas(Ω)2

∫
Ω

dΩ(ξξξ)
∫

Ω

dΩ(ξξξ′)
∞∑

n=0

∞∑
m=0

mα β

αααn βββm
(ξξξ;ξξξ′)∇βββmuβ(ξξξ′)

m!n!
∇α
ααnSa

α(x − ξξξ) (5.20)

and since

F
αβ

βββm
=

1
meas(Ω)

∫
Ω

dΩ(ξξξ)
∞∑

n=0

mα β

αααn βββm
(ξξξ;ξξξ′)∇αααn

n!
(5.21)

the disturbance velocity field can be expressed as a series expansion involving the generalized Faxén
operators

wa(x) =
1

meas(Ω)

∫
Ω

dΩ(ξξξ′)
∞∑

m=0

∇βββmuβ(ξξξ′)
m!

F
αβ

βββm
Sa

α(x − ξξξ) (5.22)

Equation (5.22) can be rewritten in a more compact form as

wa(x) =
1

8πµ

∞∑
m=0

F α
(m)S

a
α(x − ξξξ) (5.23)

where F α
(m) = 8πµA βββm

β F
αβ

βββm
, as in the definition Eq (5.13), and the expansion coefficients A βββm

β are given
by

A βββm
β =

1
meas(Ω)

∫
Ω

∇βββmuβ(ξξξ)
m!

dΩ(ξξξ) (5.24)

Equation (5.23) provides a compact and elegant way to decompose the disturbance field due to a body
immersed in an ambient flow in elementary motions associated with the different n-order velocity fields
defined at the boundary of the object.

6. Reflection operator

In hydrodynamics problems involving bounded flows and confined geometries, the Green function
Ga

α′(x, ζζζ), solution of the equations
−∇bΣ

ab
α′ (x, ζζζ) = ∆xGa

α′(x, ζζζ) − ∇aPα′(x, ζζζ) = −8πga
α′(x, ζζζ)δ(x, ζζζ)

∇aGa
α′(x, ζζζ) = 0; x, ζζζ ∈ V f

Ga
α′(x, ζζζ) = 0; x ∈ ∂V f

(6.1)
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(referred for short to as the bounded Green function) plays a central role as it provides the volume
potential in the fluid domain V f , starting from which any flow with no-slip boundary conditions at ∂V f ,
can be constructed.

Bounded Green function are available in the literature for a handful of simple geometries, as
reviewed in [4]. In special cases, such as for the Green function of a fluid bounded by a plane [36]
or outside a sphere [45, 46] (see also [3]), a representation of the bounded Green function in terms of
unbounded singularities placed outside the fluid domain is available. This representation is referred to
as the image system [3], which is particularly handy for analytical and numerical calculations whenever
the set of singularities is either finite or localized on simple manifolds. The latter property characterizes
flows with suitable and simple symmetries while, for generic bounded flows, an image system of
singularities is not available.

Based on the theory developed in Section 4, this Section addresses the properties of the operator
providing the image system for a generic bounded Green function. To this aim, let us to consider as
the ambient field the unbounded flow due to a Stokeslet centered at the point ζζζ ∈ V f and let us use the
primed indices, say α′, β′, ..., for referring to this point

ua(x) =
f α
′

0

8πµ
Sa

α′(x − ζζζ) (6.2)

As a consequence, the boundary condition for the disturbance field is given by

wa(x) = −ua(x) = −
f α
′

0

8πµ
Sa

α′(x − ζζζ) , x ∈ ∂V f (6.3)

Owing to linearity, let us define the field Wa
α′(x, ζζζ), depending on ζζζ, but regular at this point, such that

wa(x) =
f α
′

0

8πµ
Wa

α′(x, ζζζ) (6.4)

The theory developed in Section 4 can be applied, and enforcing Eq (4.16) the field Wa
α′ is given by

Wa
α′(x, ζζζ) = Dα

α′S
a
α(x − ξξξ) (6.5)

where

Dα
α′ =

1
meas(Ω)

∫
Ω

dΩ(ξξξ)
∞∑

n=0

Mα
α′αααn

(ξξξ, ζζζ)

n!
∇α
ααn , Mα

α′αααn
(ξξξ, ζζζ) = −

∫
∂V f

(x − ξξξ)αααn gαa(ξξξ, x)
Σab
α′ (x, ζζζ)

8π
nb(x)dS (x) (6.6)

Therefore, the Green function solution of Eq (6.1) can be expressed as the sum of two contributions:
a singular part, due to the Stokeslet centered in the point ζζζ, and a regular part due to the integro-
differential operatorDα

α′ acting on the poles of the Stokeslet outside the domain of the fluid

Ga
α′(x, ζζζ) = Sa

α′(x − ζζζ) +Dα
α′S

a
α(x − ξξξ) (6.7)

Owing to the properties of the Green functions, the same result can be obtained by applying the operator
Dα

α′ at the field point. In point of fact, making use of the reciprocal identities for the Green functions,
Ga

α′(x, ζζζ) = G a
α′(ζζζ, x) and Sa

α′(x, ζζζ) = S a
α′(ζζζ, x), it follows that

Ga
α′(x, ζζζ) = G a

α′(ζζζ, x) = S a
α′(ζζζ − x) +D a

α S α
α′ (ζζζ − ξξξ) = Sa

α′(x − ζζζ) +D a
α Sα

α′(ξξξ − ζζζ) (6.8)
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where, due to the reciprocity, the point ξξξ (corresponding in Eq (6.5) to a source point) has been
transformed into a field point outside the domain. By changing the dummy variable (ξξξ → y) ∈ VB

and the index α, β, ... → a′, b′, ... in order to keep the convention that field points are associated with
latin lettering, the Green function can be expressed as

Ga
α′(x, ζζζ) = Sa

α′(x − ζζζ) +D a
a′S

a′
α′(y − ζζζ) (6.9)

where now

D a
a′ =

1
meas(Ω)

∫
Ω

dΩ(y)
∞∑

n=0

Maa′n
a′ (y, x)

n!
∇a′n , Maa′n

a′ (y, x) = −

∫
∂V f

g a′′
a′ (y, z)(z − y)a′n

Σab′′
a′′ (z, x)

8π
nb′′ (z)dS (z) (6.10)

Although Eqs (6.7) and (6.10) are equivalent, their physical meaning in slightly different. In Eq (6.7),
the Green function is expressed as a combination of singular solutions of the unbounded Stokes
equation, with poles in Ω, weighted by the moments that, in turn, depend on the pole ζζζ entering the
original problem Eq (6.1). Conversely, in Eq (6.10) the field variable enters in the expression of the
operatorD a

a′ through the moments, and the regular part, solution of the Stokes equations as a whole, is
a combination of terms each of which individually is not a solution of the Stokes equation.

The operators Dα
α′ defined by Eq (6.6), depend on the pole ζζζ via the moments, and consequently,

for each ζζζ, a new system of moments is defined, determining a different operatorDα
α′ . For this reason,

it is convenient to introduce a new operator, independent of the position of the pole, and such that, its
action on the Stokeslet outside the domain of the fluid furnishes the Green function. To this purpose, let
us assume that the geometry of the problem is such that there exists a bijective correspondence between
points inside ζζζ and outside ξξξ the domain of the fluid, defined by a smooth and invertible function r,

ξξξ = r−1(ζζζ), ζζζ = r(ξξξ) (6.11)

As addressed in Appendix A, and following the Ruse approach to bitensor calculus [25], Eq (6.11)
enables us to view ξξξ and ζζζ as conjugate points in two different metric spaces, such that tensorial
quantities defined at a point in one of the two spaces can be transported to the conjugate point of the
other space via the parallel propagator

gαβ(ξξξ) = g α′

α (ξξξ, ζζζ)g β′

β (ξξξ, ζζζ)gα′β′(ζζζ) (6.12)

where the parallel propagator is given by

gαα′(ξξξ, ζζζ) =
∂ξα

∂ζα′
(6.13)

It follows from Eq (6.12) and from the above bitensorial interpretation of the bijective correspondence
Eq (6.11) between point in the flow domain and image points outside it, that the stress tensor Σab

α′ (x, ζζζ)
can be parallel transported from the point ζζζ to the point ξξξ

Σab
α (x, r(ξξξ)) = g α′

α (ζζζ, ξξξ)Σab
α′ (x, ζζζ) (6.14)

Substituting Eq (6.14) into Eq (6.6) one obtains

Mα
α′αααn

(ξξξ, ζζζ) = g β
α′(ξξξ, ζζζ)Mα

βαααn
(ξξξ, r(ξξξ)) (6.15)
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where

Mα
βαααn

(ξξξ, r(ξξξ)) = −

∫
∂V f

(x − ξξξ)αααng
α
a(ξξξ, x)

Σab
β (x, r(ξξξ))

8π
nb(x)dS (x) (6.16)

Enforcing Eq (6.15), it is possible to express the operator Dα
α′ in terms of a reflection operator

independent of the pole ζζζ, and such that the functional dependence on ζζζ is encompassed in the parallel
propagator. For highlighting this delicate issue, let us consider the simplest case where Ω reduces to a
point r(ζζζ). In this case, it follows from Eq (6.15) that the operatorDα

α′ attains the form

Dα
α′ = g β

α′(ζζζ, ξξξ)R
α
β , Rαβ =

∞∑
n=0

Mα
βαααn

(ξξξ, r(ξξξ))

n!
∇α
ααn (6.17)

The operator Rαβ furnishes the regular part of the Green function starting from the Stokeslet,
independently on the source point ζζζ and, for the reasons discussed below, it can be referred to as
the reflection operator of the bounded flow problem.

By Eqs (6.7) and (6.9), the operator Rαβ can be applied on equal footing either at the source or at the
field point. In the first case, the Green function reads

Ga
α′(x, ζζζ) = Sa

α′(x − ζζζ) + g β
α′(ζζζ, ξξξ)R

α
βSa

α(x − ξξξ) (6.18)

In the second case, i.e., by applying the operator at the field point, an alternative representation of the
Green function follows

Ga
α′(x, ζζζ) = Sa

α′(x − ζζζ) + ga
b′(x, y)Rb′

a′S
a′
α′(y − ζζζ) (6.19)

where y = r−1(x) and x = r(y). The latter expression permits to interpret the regular part of the Green
function as a “reflected field” of the ambient flow, that in the present case is given by a Stokeslet
centered at the point ζζζ. In fact, the operator R b

a′ furnishes a continuation of the Stokes solution with
homogeneous Dirichlet boundary conditions in the external domain, usually referred as a reflection
principle [32, 33]. To show this, consider the integral form of a generic solution vanishing at the
boundary ∂V f [40]

va(x) = −

∫
∂V f

σα′β′(ζζζ)nβ′(ζζζ)
8πµ

Sa
α′(x − ζζζ)dS (ζζζ) x ∈ V f (6.20)

and its continuation in R3/V f ,

va′(y) =

∫
∂V f

σαβ(ξξξ)nβ(ξξξ)
8πµ

Sa′
α(y − ξξξ)dS (ξξξ) y ∈ R3/V f (6.21)

Since, by the definition of the disturbed field

g β
α′(ζζζ, ξξξ)R

α
βSa

α(x − ξξξ) = −Sa
α′(x − ζζζ), x ∈ ∂V f (6.22)

by using the reciprocal identity Sa
α′(x − ζζζ) = S a

α′(ζζζ − x) and exchanging latin and greek letters, it easy
to verify that

ga
b′(x, y)Rb′

a′S
a′
α′(y − ζζζ) = −Sa

α′(x − ζζζ), ζζζ ∈ ∂V f (6.23)

Mathematics in Engineering Volume 5, Issue 2, 1–34.



20

Therefore, by applying the operator Rb′
a′ at the field in (6.21) we obtain at the r.h.s of Eq (6.21) the field

defined by Eq (6.20) and the reflection formula can be derived

va(x) = ga
b′(x, y)Rb′

a′v
a′(r(x)) (6.24)

The reflection formula in Eq (6.24) requires in principle the estimate of infinite terms as the operator
Rb′

a′ admits in general a series expansion in terms of the countable system of moments. It is known from
harmonic function theory, that if the reflection operator (e.g., associated with an electrostatic problem)
possesses a finite number of non-vanishing terms, then the boundary is either a plane or a sphere [47]
and the relation equivalent to Eq (6.24) is referred as a point-to-point reflection principle. In the case
of the solutions of the Stokes problem, that involves biharmonic functions, it is known that a point-
to-point reflection principle does not hold even for spherical boundaries, and a weaker point-to-set
principle [34, 47, 48] should be considered, where a bijective relation occurs between a point x in the
fluid domain and a set parameterized by its conjugate point y = r(x) in the complementary domain.

Equation (6.17) and the analysis developed in the previous Section indicate the close relation
(duality) between the image system of singularities of a bounded flow problem and the formulation
of a reflection principle, as the two problems are governed by essentially the same operators Dα

α′

and Rαβ , parallel transported between a source point and its conjugate image. The duality between
image system and reflection principle has been practically neglected in Stokesian hydrodynamics.
Several works have investigated the image system of singularities near a plane [36, 37] or near
spherical boundaries [46], and, almost independently, parallel works on reflected fields near a
planar [35] and spherical boundaries [34] has been published. In our opinion, the main difficulty in
recognizing a common formal structure underlying image systems and reflection principle in Stokesian
hydrodynamics stems from the tensorial nature of the operators involved, and by the need of a parallel
transport between conjugate points. The introduction of the bitensorial formalism for hydrodynamic
Green functions has made possible to highlight this issue.

The duality between the image system of singularities and the existence of a reflection principle
make it possible to transfer and apply methods and techniques developed for solving one of these two
problems to the other one. The next Section provides an application of this principle in connection
with the problem of singularities bounded by planar boundaries.

7. Singular fields bounded by a single plane

Below, the results found in Section 6 are applied to the problem of the singularities of a flow
bounded by a rigid plane. In this case, the function r transforming points x ∈ V f into conjugate
points y ∈ R3/V f is given by the mirror operator J = I − 2 n ⊗ n, I being the identity matrix, and n the
unit normal to the plane, so that y = J · x and x = J · y, since J2 = I.

Consider a Cartesian coordinate system (X1, X2, X3) with the origin on the plane and such that
the flow domain corresponds to X3 > 0. Let x ∈ V f with coordinates (x1,x2,x3), and its mirror point
y ∈ R3/V f with coordinates ya′ = Ja′axa.

The parallel propagator (see Appendix A) between these conjugate points is given by

gaa′(x, y) =
∂ya′

∂xa = Jaa′ (7.1)
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The reflection operator acting at the point y, corresponding to Eq (6.24) is the so called Lorentz mirror
operator [1, 34]

Ra′b′ = −Ja′b′ − 2(y · n)∇a′δ3b′ + (y · n)2∆xδa′b′ (7.2)

The Green function of the Stokes flow centered at the source point ζζζ ∈ V f can be obtained either
by applying the reflection operator at the field point, according to Eq (6.19), or at the source point,
according to Eq (6.18). In the first case we have

Gaα′(x, ζζζ) = Saα′(x − ζζζ) + Jab′[−Jb′a′ − 2y3∇b′δ3a′ + y2
3∆xδb′a′]Sa′α′(y − ζζζ) =

Saα′(x − ζζζ) − Saα′(J · x − ζζζ) + 2x3Jab′[∇b′S3α′(J · x − ζζζ) +
x3

2
∆xSb′α′(J · x − ζζζ)] (7.3)

while the application at the source point provides

Gaα′(x, ζζζ) = Saα′(x − ζζζ) + Jα′β[−Jβα − 2(ξξξ · n)∇βδ3α + (ξξξ · n)2∆ξδβα]Saα(x − ξξξ) =

Saα′(x − ζζζ) − Saα′(x − ξξξ) − 2(ξξξ · n)Jα′β[∇βSa3(x − ξξξ) −
(ξξξ · n)

2
∆ξSaβ(x − ξξξ)] (7.4)

with the expression for the pressure

Pα′(x, ζζζ) = Pα′(x − ζζζ) − Pα′(x − ξξξ) − 2(ξξξ · n)Jα′β∇βP3(x − ξξξ) (7.5)

and for the stress tensor

Σabα′(x, ζζζ) = Σabα′(x − ζζζ) − Σabα′(x − ξξξ) − 2(ξξξ · n)Jα′α[∇αΣab3(x − ξξξ) −
(ξξξ · n)

2
∆ξΣabα(x − ξξξ)] (7.6)

Since the pole is fixed at ξξξ = J · ζζζ = (0, 0,−h), we obtain the singular form

Gaα′(x, ζζζ) = Saα′(x − ζζζ) − Saα′(x − ξξξ) + 2hJα′β[Sa3;β(x − ξξξ) − hDaβ(x − ξξξ)] (7.7)

and
Pα′(x, ζζζ) = Pα′(x − ζζζ) − Pα′(x − ξξξ) + 2hJα′β∇βP3(x − ξξξ) (7.8)

Σabα′(x, ζζζ) = Σabα′(x − ζζζ) − Σabα′(x − ξξξ) + 2hJα′α

[
∇αΣab3(x − ξξξ) +

h
2

∆ξΣabα(x − ξξξ)
]

(7.9)

The singular representation of the Green function Eq (7.7), here obtained simply by applying the
Lorentz reflection operator at the source point, coincides with the result obtained by Blake using a
much more elaborate approach involving the Fourier-Hankel transforms [36, 37].

Blake and Chwang in [36, 37] have obtained the singular reflection systems related to bounded
Stokeslet, Sourcelet and Rotlet by applying the Fourier-Hankel transforms to separate and distict
problems specified by the boundary conditions adopted. In point of fact, the operator formalism
developed in Section 6 permits to obtain any higher-order singularity in a unitary way, by simply
differentiating the Green’s function at the pole, Eqs (7.4)–(7.6).

To begin with, consider the bounded Source Dipole Daα′(x, ζζζ) defined by (3.24), applying the
Laplacian operator −∆ζ/2 to the expression (7.4). Being the Laplacian operator invariant with respect
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to any Euclidean transformation, and thus under the reflection transformation ζζζ = J·ξξξ, we have ∆ξ = ∆ζ ,
and therefore

Daα′(x, ζζζ) = Daα′(x − ζζζ) − Daα′(x − ξξξ) + Jα′β∆ξ[(ξξξ · n)∇βSa3(x − ξξξ)] + Jα′β∆ξ[(ξξξ · n)2Daβ(x − ξξξ)] (7.10)

where, enforcing the identity,

∆ξSa3;β(x − ξξξ) = ∇β∆ξSa3(x − ξξξ) = −2Da3;β(x − ξξξ) (7.11)

the third term at the r.h.s of Eq (7.10) reads

Jα′β∆ξ[(ξξξ · n)∇βSa3(x − ξξξ)] = Jα′β∇γ(δγ3Sa3;β(x − ξξξ) + ξ3Sa3;βγ(x − ξξξ)) = Jα′β(2Sa3;β3(x − ξξξ) − 2ξ3Da3;β(x − ξξξ)) (7.12)

The fourth term in Eq (7.10) can be simplified as

Jα′β∆ξ[(ξξξ · n)2Daβ(x − ξξξ)] = Jα′β∇γ(2δ3γξ3Daβ(x − ξξξ) + ξ2
3Daβ;γ(x − ξξξ)) = Jα′β(2Daβ(x − ξξξ) + 4ξ3Daβ;3(x − ξξξ)) (7.13)

so that the singular representation of the Source Dipole reads

Daα′(x, ζζζ) = Daα′(x − ζζζ) − Daα′(x − ξξξ) + 2Jα′β
(
Daβ(x − ξξξ) + Sa3;β3(x − ξξξ) + ξ3Da3;β(x − ξξξ)

)
(7.14)

and since ξ3 = −h, Eq (7.14) becomes

Daα′(x, ζζζ) = Daα′(x − ζζζ) − Daα′(x − ξξξ) + 2Jα′β
(
Daβ(x − ξξξ) + Sa3;β3(x − ξξξ) − hDa3;β(x − ξξξ)

)
(7.15)

The associated pressure field can obtained by applying the same operator −∆ζ/2 = −∆ξ/2 to the
pressure Green function Eq (7.5). Since the unbounded pressure field is a potential vector field with
respect to the source point coordinates, the only non vanishing contribution is given by the third term
at the r.h.s of Eq (7.5), and therefore

−
∆ζPα′(x, ζζζ)

2
= 4π(∇α′δ(x − ζζζ) − δα′α∇αδ(x − ξξξ)) − Jα′β∆ξ

(
ξ3∇βP3(x − ξξξ)

)
=

4π(∇α′δ(x − ζζζ) − δα′α∇αδ(x − ξξξ)) − 2Jα′βδ3γ∇β∇γP3(x − ξξξ) (7.16)

Figure 2 provides the schematic representation of the unbounded singularities at the image pole
necessary to cancel the velocity field at the plane due to the unbounded Source Doubled at the pole
in the fluid domain. Panel (a) refers to Da1 = Da2, panel (b) to Da3. The vector plot of the bounded
Source Dipole defined by Eq (7.15) is depicted in Figure 3.

In the far field, |x| >> h, we have

Daα′(x, ζζζ) = 2Jα′α
(
Daα(x) + S3α;3a(x)

)
+ o(1/|x|3), |x| � |ζζζ | (7.17)

Mathematics in Engineering Volume 5, Issue 2, 1–34.



23

Figure 2. Schematic representation of the system of singularities associated with the
Source Dipole Daα′(x, ξξξ) confined by a planar wall, represented by the thick horizontal lines.
Singularities are centered in two points, the pole above the plane ζζζ and its imagine below the
plane ξξξ = J · ζζζ. Panel (a) refers to the image system of a Source Dipole parallel to the plane
(thus, with α′ = 1, 2), whereas panel (b) to a Source Dipole perpendicular to the plane (thus,
α′ = 3). The symbols have the following meaning: • represents an unbounded Sourcelet, ×
an unbounded sink (a Sourcelet with reversed sign), the arrow→ a concentrated force. The
arrow’s direction corresponds to the direction of the force.
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Figure 3. Vector plot of the components (D1α′(x, ζζζ),D3α′(x, ζζζ)) of the Source Dipole with
pole in ζζζ = (0, 0, 0.25), evaluated on the plane x2 = 0.1. The color map refers to the intensity
|(D1α′(x, ζζζ),D3α′(x, ζζζ))|.

To obtain the Stokes Doublet Eq (3.16), we can apply the covariant derivative at the pole of the
Green function. The bounded solution of the Rotlet (3.22) giving the antisymmetric part of the Stokes
doublet can be found, according to Eq (3.19), by applying the curl at the pole of the Green function to
obtain

Ωaγ′(x, ζζζ) = Ωaγ′(x − ζζζ) − Ωaγ′(x − ξξξ) + 2εβ′γ′3
(
Ea3β′(x − ξξξ) + ξ3Daβ′(x − ξξξ)

)
(7.18)
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and the associated pressure reads

εγ′ε′η′∇η′Pε′(x, ζζζ)
2

= εγ′ε′η′∇η′ξ3Jε′β∇βP3(x − ξξξ) = εγ′ε′3δε′β∇3∇βP3(x − ξξξ) (7.19)

In the far field we have the asymptotic scaling

Ωaα′(x, ζζζ) = 2εβ′α′3Ta3β′(x)(1 − δα3) + o(1/|x|2), |x| � |ζζζ | (7.20)

The vector plot of the Rotlet is depicted in Figure 4.
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Figure 4. Vector plot of the components (Ω1α′(x, ζζζ),Ω3α′(x, ζζζ)) of the Rotlet with pole in
ζζζ = (0, 0, 0.25) evaluated on the plane x2 = 0.1. The color map refers to the intensity
|(Ω1α′(x, ζζζ),Ω3α′(x, ζζζ))|.

To obtain the bounded Strainlet Eq (3.20), i.e., the symmetric part of the Stokes Doublet, we could
evaluate (∇β′Gaα′ + ∇α′Gaβ′)/2. Alternatively, it is more convenient to use Eq (3.21), substituting in it
Eq (7.5) for the pressure, and Eq (7.6) for the stress tensor of the bounded Green function

Eaα′β′(x, ζζζ) =
δα′β′

2
Pa(ζζζ, x) −

1
2

Σα′β′a(ζζζ, x) (7.21)

where
Pa(ζζζ, x) = Pa(ζζζ − x) − Pa(ζζζ − y) − 2(y · n)Jaa′∇a′P3(ζζζ − y) (7.22)

and

Σα′β′a(ζζζ, x) = Σα′β′a(ζζζ − x) − Σα′β′a(ζζζ − y) − 2(y · n)Jaa′[∇a′Σα′β′3(ζζζ − y) −
(y · n)

2
∆yΣα′β′a′(ζζζ − y)]

(7.23)

Since ∆ξ = ∆ζ = ∆x = ∆y, in this particular case, where the boundary of the fluid is a plane, it is
possible to define the bounded Source Ma(x, ζζζ) = −Pa(ζζζ, x)/2 and the bounded Stresslet Taα′β′(x, ζζζ) =

−Σα′β′a(ζζζ, x)/2, that are the bounded counterparts of the Sourcelet defined in Eq (3.32) and the Stresslet
in Eq (3.33). Therefore, the Strainlet can be expressed as

Eaα′β′(x, ζζζ) = −δα′β′Ma(x, ζζζ) + Taα′β′(x, ζζζ) (7.24)

By making the following transformation

y · n = y3 = (y − ξξξ)3 + ξ3 (7.25)
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we obtain for Ma(x, ζζζ) and Taα′β′(x, ζζζ) the following expressions

Ma(x, ζζζ) = Ma(x − ζζζ) −Ma(x − ξξξ) + 2
(
Ta33(x − ξξξ) + ξ3Da3(x − ξξξ)

)
(7.26)

Taα′β′(x, ζζζ) = Taα′β′(x − ζζζ) + 2δα′β′Ta33(x − ξξξ) − Jα′αJβ′βTaαβ(x − ξξξ)+

+ 2Jα′αJβ′βξ3

(
− ξ3Daα;β(x − ξξξ) − Sa3;αβ(x − ξξξ) − δ3βDaα(x − ξξξ) − δ3αDaβ(x − ξξξ) + δαβD3a(x − ξξξ)

)
(7.27)

which possess the following far-field asymptotics

Ma(x, ζζζ) = 2Ta33(x) + o(1/|x|2), |x| � |ζζζ | (7.28)

Taα′β′(x, ζζζ) = 2Taαβ(x)(1 − δαβ − δα1δβ2 − δα2δβ1) + 2Ta33(x)δαβ + o(1/|x|2), |x| � |ζζζ | (7.29)

Gathering Eqs (7.26) and (7.27) and substituting them into Eq (7.24), the analytic expression for the
bounded Strainlet follows

Eaα′β′(x, ζζζ) = Eaα′β′(x − ζζζ) − Jα′αJβ′βEaαβ(x − ξξξ)+

+ 2Jα′αJβ′βξ3

(
− ξ3Daα;β(x − ξξξ) − Sa3;αβ(x − ξξξ) − δ3βDaα(x − ξξξ) − δ3αDaβ(x − ξξξ)

)
(7.30)

and putting ξ3 = −h, one obtains

Eaα′β′(x, ζζζ) = Eaα′β′(x − ζζζ) − Jα′αJβ′βEaαβ(x − ξξξ)+

− 2hJα′αJβ′β
(
hDaα;β(x − ξξξ) − Sa3;αβ(x − ξξξ) − δ3βDaα(x − ξξξ) − δ3αDaβ(x − ξξξ)

)
(7.31)

The vector plot of the bounded Strainlet is depicted in Figure 5.
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Figure 5. Vector plot of the components (E1α′β′(x, ζζζ),E3α′β′(x, ζζζ)) of the Strainlet with pole
in ζζζ = (0, 0, 0.25) evaluated on the plane x2 = 0.1. The color map refers to the intensity
|(E1α′β′(x, ζζζ),E3α′β′(x, ζζζ))|.
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8. Conclusions

In this article we have applied the bitensor calculus to the singularity method in Stokes flow. The
nature of the bitensorial formalism, that distinguishes between source and field points of singular fields,
allows us to manipulate mathematically singularities without ambiguity, resulting useful even if the
fluid domain is regarded as a flat space.

We have provided a clear definition of the singularities in Stokes flow, specifying the associated non-
homogeneous equations and boundary conditions, obtaining the most common unbounded singularities
as a particular case of the more general bounded counterparts. Although this topic can be found in any
monograph on Stokesian hydrodynamics [3, 4], the detailed description of some of the most common
Stokesian singularities has never been, to the best of our knowledge, addressed in the hydrodynamic
literature.

Moreover, an explicit formulation of the singular method, providing a way for expressing bounded
flows in terms of unbounded singularities, has been derived. To this aim, we have defined the moments
as volume integrals in the domain of the obstacle, and we have used a tensorial moment theory to obtain
the integro-differential operator yielding the disturbance flow once applied at the pole of the Stokeslet
in term of a countable set of moments. As shown in Appendix B, this definition is coincident whit the
surface moments defined by Ichiki [31] for no-slip spheres immersed in a Stokes flow. To evaluate the
moments of a specific flow problem, we developed a method based on geometrical moments related
to the obstacle immersed in purely n-th order ambient flow. This method is useful either in numerical
applications or in theoretical analysis. We have shown that starting from the geometrical moments it is
possible to define a n-th order Faxén operator, i.e., an operator satisfying a generalized Faxén theorem.
In addition, we found that a generic disturbance flow can be developed in a series of Faxén operators
applied at the Stokeslet’s pole, thus expressing a generic field as a series of simpler disturbance flows
associated with purely n-th order ambient flows.

Enforcing the reciprocal symmetry of the Green function, we have shown that it is possible to
apply the operator both to the source and and to the field point of the Stokeslet, in order to obtain the
disturbance contribution to the flow field. The main consequence of the latter result is that, whenever
it is possible to define a reflection operator, this operator coincides with the operator derived from
moment theory furnishing the image system of singularity. This result, applied to the Green function
bounded by a plane provides an alternative way for expressing the hydrodynamic singularities which
is simpler than the method used by Blake [36] involving Fourier-Hankel transforms, and it has been
used to derive other singularities, such as the Source Dipole and the Strainlet.

The practical application of the theory to specific bounded Stokes problem will be addressed in
forthcoming works.
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Appendix

A. Bitensor calculus

The development of bitensor calculus has followed two parallel pathways: an algebraic [25] and
purely geometric approach [26, 27]. As the algebraic approach is particularly relevant in the present
hydrodynamic theory of bounded Green functions, and moreover it is scarsely mentioned in the
literature, this brief review on bitensor calculus is mainly focused on this formulation, addressing
its connection with the geometric theory at the end of this Appendix.

In [25], Ruse defines bitensors as follows: Let x = (x1, ..., xn) and ξξξ = (ξ1, ..., ξm) be two set of
independent variables and let f a′(x), a′ = 1, . . . , n be n functions dependent on x and φα

′

(ξξξ), α′ =

1, . . . ,m, m functions dependent on ξξξ, such that we can define the new variables

xb′ = f b′(x) , b′ = 1, . . . , n , ξβ
′

= φβ
′

(ξξξ) , β′ = 1, . . . ,m
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Let T aα(x, ξξξ) denote the array of n × m functions depending on both xa and ξα
T 11(x, ξξξ) ... T 1m(x, ξξξ)

... ... ...

T n1(x, ξξξ) ... T nm(x, ξξξ)

 (A.1)

Moreover, let T a′α(x′, ξξξ) be a set of functions depending on the variables x′ and ξξξ, T aα′(x, ξξξ′) a set of
functions depending on the variables x and ξξξ′, T a′α′(x′, ξξξ′) a set of functions depending on the variables
x′ and ξξξ′. If these functions are related by the equations

T aα(x′, ξξξ) = T bα(x, ξξξ)
∂xa′

∂xb (A.2)

T aα′(x, ξξξ′) = T aβ(x, ξξξ)
∂ξα

′

∂ξβ
(A.3)

T a′α′(x′, ξξξ′) = T bβ(x, ξξξ)
∂xa′

∂xb

∂ξα
′

∂ξβ
(A.4)

then they are the components of the bivector T expressed in the systems of coordinates (x, ξξξ), (x′, ξξξ),
(x, ξξξ′), (x′, ξξξ′), respectively. More generally a set of nr+s × mp+q functions are the components of a
bitensor T, if they are related by the equations

T a′1...a
′
rα1...αq

b′1...b
′
sβ1...βp

(x′, ξξξ) = T c1...crα1...αq

d1...dsβ1...βp
(x, ξξξ)

∂xa′1

∂xc1
...
∂xa′r

∂xcr

∂xd1

∂xb′1
...
∂xds

∂xb′s
(A.5)

T
a1...arα

′
1...α

′
q

b1...bsβ
′
1...β

′
p
(x, ξξξ′) = T a1...arγ1...γq

b1...bsδ1...δp
(x, ξξξ)

∂ξα
′
1

∂ξγ1
...
∂ξα

′
q

∂ξγ
′
q

∂ξδ1

∂ξβ
′
1
...
∂ξδp

∂ξβ
′
p

(A.6)

T
a′1...a

′
rα
′
1...α

′
q

b′1...b
′
sβ
′
1...β

′
p
(x′, ξξξ′) = T c1...crγ1...γq

d1...dsδ1...δp
(x, ξξξ)

∂xa′1

∂xc1
...
∂xa′r

∂xcr

∂xd1

∂xb′1
...
∂xds

∂xb′s

∂ξα
′
1

∂ξγ1
...
∂ξα

′
q

∂ξγq

∂ξδ1

∂ξβ
′
1
...
∂ξδp

∂ξβ
′
p

(A.7)

If ξξξ is kept fixed, then T a1...T am are the components (a = 1, . . . , n) of m ordinary vectors at x, whereas
if x is kept fixed T 1α...T nα are the components (α = 1, . . . ,m) of n vectors at ξξξ. The bitensor T aα is,
then, named vector-vector bitensor and, more generally, the bitensor T a1...arα1...αq

b1...bsβ1...βp
is named (r + s)tensor-

(p + q)tensor.
Next consider two symmetric scalar-(2)tensor gab(x, ξξξ) and γαβ(x, ξξξ), and suppose that x and ξξξ are

two systems of coordinates of two distinct Riemannian spaces defined respectively by the two metric
forms

ds2 = gab(x, ξξξ) dxadxb (A.8)
dσ2 = γαβ(x, ξξξ) dξαdξβ (A.9)

Equations (A.8)–(A.9) define a multiple-infinite set of Riemannian spaces. In fact, fixed the set of
variables ξξξ, Eq (A.8) determines a Riemannian space, while fixing x, a Riemannian space is determined
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by Eq (A.9). In the case that n = m, it is possible to define a vector-vector bitensor ka
α(x, ξξξ), belonging

to both spaces, so that
gab(x, ξξξ) = k α

a (x, ξξξ) k β
b (x, ξξξ) γαβ(x, ξξξ) (A.10)

which represents a system of n(n + 1)/2 equations for the n2 unknown components of ka
α (due to the

symmetry of gab and γαβ).
Note that, keeping either x or ξξξ fixed, the n ordinary vectors k1

α...k
n
α and ka

1...k
a
n are orthogonal to

each other
kc
βk

β
b = δc

b (A.11)

and similarly
kb
γk

β
b = δβγ (A.12)

A particular case occurs when gab(x, ξξξ) = gab(x) does not depend on ξξξ and moreover γα,β(x, ξξξ) =

gαβ(ξξξ). In this case, the two metric spaces defined by Eqs (A.8)–(A.9) represent the same metric space
at two different points, and Eq (A.10) becomes

gab(x) = k α
a (x, ξξξ) k β

b (x, ξξξ) gαβ(ξξξ) (A.13)

In Euclidean spaces, it is always possible to express the component of the metric tensors gab(x),
gαβ(ξξξ) in the same Cartesian coordinate system X(i) = (X(1), X(2), X(3)), (i) = 1, 2, 3 being the indices for
the Cartesian components. Thus, from Eq (A.13) one has

I(i j)
∂X(i)

∂xa

∂X( j)

∂xb = k α
a (x, ξξξ)k β

b (x, ξξξ)
∂X(i)

∂ξα
∂X( j)

∂ξβ
I(i j) (A.14)

where I(i j) = diag(1, 1, 1) from which it follows that

k α
a (x, ξξξ) =

∂X(i)

∂xa

∂ξα

∂X(i) (A.15)

that reduces to k α
a (x, ξξξ) = δa

α if we choose the same coordinate system at both points.
If the coordinates of the two points are related by a bijective transformation

ξα = f α(x); xa = gα(ξξξ) (A.16)

we can consider ξα and xa as two set of coordinates of the same point and, by classical tensor calculus,
we have

gab(x) =
∂ξα

∂xa

∂ξβ

∂xb gαβ(ξξξ) (A.17)

Comparing Eq (A.17) with Eq (A.13), we find

ka
α(xa, ξα) =

∂ξα

∂xa (A.18)

therefore, an ordinary transformation in the classical tensor calculus, can be viewed as a transformation
between two metric spaces

ds2 = gab(ga(ξξξ)) dxa dxb (A.19)
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dσ2 = gαβ( f α(x)) dξα dξβ (A.20)

If the two points belong to a generic Riemannian space, it is not always possible to express the
components in the same Cartesian coordinate system. However, we can define, at one point, say x,
a triad of vector ea

(i)(x), forming locally an orthonormal basis, so that [38, 39]

gab(x)ea
(i)(x)eb

( j)(x) = I(i j); ea
(i)(x)e(i)

b (x) = δa
b (A.21)

Parallel transporting the vectors ea
(i)(x) from the point x to the point ξξξ, i.e., integrating the differential

equation
Dea

(i)(z)

Du
=
∂ea

(i)(z)

∂zk

dzk

du
+ Γa

bke
a
(i)(z)

dzk

du
= 0 (A.22)

along the geodetics connecting the point x to ξξξ, z(u) being a generic point on the geodetics identified
by the parameter u and such that z(0) = x, we obtain the triad of vectors at the point ξξξ, that is still
orthonormal. Thus,

gαβ(ξξξ) eα(i)(ξξξ) eβ( j)(ξξξ) = I(i j) , eα(i)(ξξξ) e(i)
β (ξξξ) = δαβ (A.23)

Using Eq (A.21) and (A.23), it is possible to express both the metric tensors gab(x) and gαβ(ξξξ) in a
common orthonormal basis. Equation (A.14) thus, becomes

I(i j) e(i)
a (x) e( j)

b (x) = k α
a (x, ξξξ) k β

b (x, ξξξ)e(i)
α (ξξξ) e( j)

β (ξξξ) I(i j) (A.24)

obtaining the more general expression for the parallel propagator

k α
a (x, ξξξ) = e(i)

a (x)eα(i)(ξξξ) = kαa(ξξξ, x) (A.25)

In the case the two points x and ξξξ become coincident, we have

lim
ξξξ→x

k(x, ξξξ) = lim
ξξξ→x

[k α
a (x, ξξξ)] = lim

ξξξ→x
[e(i)

a (x) eα(i)(ξξξ)] = [δαa ] = I (A.26)

where [·] indicate the whole tensorial entity. Consequently,

lim
ξξξ→x

kaα(xa, ξα) = lim
ξξξ→x

gab(x) kb
α(x, ξξξ) = gab(x) , lim

x→ξξξ
kaα(x, ξξξ) = gαβ(ξξξ) (A.27)

Therefore, it is customary to use the same symbol for indicating either the parallel propagator or the
metric tensor

g α
a (x, ξξξ) = k α

a (x, ξξξ)

To make an example, consider a unit vector pa(x) at x,

gab(x)pa(x)pb(x) = 1 (A.28)

Using the definition of the parallel propagator Eq (A.13)

gαβ(ξξξ) k α
a (x, ξξξ) pa(x) k β

b (x, ξξξ) pb(x) = gαβ(ξξξ) pα(ξξξ) pβ(ξξξ) = 1 (A.29)

we have
pα(ξξξ) = pa(x) k α

a (x, ξξξ) (A.30)
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that represents the unit vector parallel-transported from the point x to the point ξξξ. In fact, since

pα(ξξξ) = pa(x)e α
(i)(ξξξ)e

(i)
a (x) (A.31)

we have in the triad basis

p(i)(ξξξ) = pα(ξα) e(i)
α(ξξξ) = pa(x) e(i)

a (x) = p(i)(x) (A.32)

and thus the components of the vector pα(ξξξ) in the common triad basis coincide with those of pa(x).
From this result, and from the property

va(x) pa(x) = va(x) g α
a (x, ξξξ) pα(ξξξ) = vα(ξξξ) pα(ξξξ) (A.33)

it follows that any vector va(x) can be the parallel transported from x to ξξξ‘ via the relation

vα(ξξξ) = va(x) g α
a (x, ξξξ) (A.34)

To conclude, an important bitensor is the so called Synge’s world function [26], that is a measure
of the geodetic distance between the points x and ξξξ, defined as

W(x, ξξξ) =
1
2

∫ x

ξξξ

ds2 (A.35)

In Euclidean spaces, it can be explicited as as

W(x, ξξξ) =
1
2

I(i j)(x(i) − ξ(i))(x( j) − ξ( j)) (A.36)

x(i) and ξ(i) being the Cartesian coordinates of the two points. Its derivative at x is

Wa(x, ξξξ) = (x(i) − ξ(i)) I(i j)
∂X( j)

∂xa = (x − ξξξ)a (A.37)

while the corresponding derivative at ξξξ reads

Wα(x, ξξξ) = (ξ(i) − x(i)) I(i j)
∂X( j)

∂ξα
= (ξξξ − x)α = −δa

α(x − ξξξ)a (A.38)

Let (x − ξξξ)α = g a
α (ξξξ, x)(x − ξξξ)a and (ξξξ − x)a = g α

a (x, ξξξ)(ξξξ − x)α. From Eq (A.38) we have

(x−ξξξ)α1 ...(x−ξξξ)αn = (−1)n(ξξξ−x)α1 ...(ξξξ−x)αn; (ξξξ−x)a1 ...(ξξξ−x)an = (−1)n(x−ξξξ)a1 ...(x−ξξξ)an (A.39)

that is a useful relation in moment analysis.

B. Moment surface integrals

In this Appendix we show that, owing to the property of the Stokes flow, the moments defined in
Section 4 can be reduced to surface integrals of the stress tensor, in the case no-slip boundary conditions
are assumed.
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To this purpose, consider the following Stokes problems: I) a flow with no-slip conditions at the
boundaries of the fluid, v(x) = w(x) + u(x), where u(x) is the ambient and w(x) the disturbance flow.
Thus, v(x) is solution of the system

−∇ ·σσσ(x) = µ∆xv(x) − ∇p(x) = −f(x)
∇ · v(x) = 0 x ∈ R3

v(x) = 0; x ∈ ∂V f

v(x) = u∞(x); x→ ∞

(B.1)

II) a purely n-th order velocity field u(n)(x) defined as in Section 5

u(n)
a (x) = A an

a (x − ξξξ)an = A αααn
α g α

a (ξξξ, x)g an
αααn

(ξξξ, x)(x − ξξξ)an ,

(B.2)
Aa

an
∇a

[
(x − ξξξ′)an

]
= 0 , x ∈ R3, ξξξ ∈ Vext

where A an
a are the components of a constant (n+1)-rank matrix, and the associated pressure p(n)(x) and

stress tensor πππ(n)(x) are given by the Eqs (5.2) and (5.3).
Appling to the fields v(x) an u(n)(x) the Lorentz reciprocal theorem [4]

u(n)
a (x)∇bσ

ab(x) − va(x)∇bπ
ab
(n)(x) = ∇b(u(n)

a (x)σab(x) − va(x)πab
(n)(x)) (B.3)

Since these fields are defined in the whole space R3, we can integrate Eq (B.3) over the domain of the
obstacle Vext∫

Vext

[
v(n)

a (x)∇bσ
ab(x) − va(x)∇bσ

ab
(n)(x)

] √
g(x)d3x =

∫
Vext

[
∇b(v(n)

a (x)σab(x) − va(x)σab
(n)(x))

] √
g(x)d3x

(B.4)
Since ∇bσ

ab
(n)(x) = 0, using Eqs (B.1), (B.2) and the definition of moments Mα

αααn
(ξξξ) in (4.4), the term at

l.h.s in Eq (B.4) provides∫
Vext

f a(x)v(n)
a (x)

√
g(x)d3x = A an

a

∫
Vext

f a(x)(x − ξξξ)an

√
g(x)d3x = A αααn

α Mα
αααn

(ξξξ) (B.5)

whereas, using Gauss divergence theorem the r.h.s, further considering that v(x) = 0 and u(n)
a (x) =

A an
a (x − ξξξ)an on the boundaries ∂Vext, one obtains∫

Vext

[
∇b(v(n)

a (x)σab(x) − va(x)σab
(n)(x))

] √
g(x)d3x = A an

a

∫
∂Vext

(x − ξξξ)an σ
ab(x)nb(x)dS (x) (B.6)

Gathering Eqs (B.5) and (B.6), we have

Mα
αααn

(ξξξ) = −

∫
∂V f

gαa(ξξξ, x)g an
αααn

(ξξξ, x)(x − ξξξ)anσ
ab(x)nb(x)dS (B.7)

which provides the expression of the moments in terms of surface integrals of the stress tensor.
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