Citation: Lanjun Liu, Han Wu, Junwu Wang, Tingyou Yang. Research on the evaluation of the resilience of subway station projects to waterlogging disasters based on the projection pursuit model[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7302-7331. doi: 10.3934/mbe.2020374
[1] |
T. Lin, X. F. Liu, J. C. Song, G. Q. Zhang, Y. Q. Jia, Z. Z. Tu, et al., Urban waterlogging risk assessment based on internet open data: A case study in China, Habitat Int., 71 (2018), 88-96. doi: 10.1016/j.habitatint.2017.11.013
![]() |
[2] | H. Y. Yu, C. Liang, P. Li, K. J. Niu, F. X. Du, J. H. Shao, et al., Evaluation of Waterlogging Risk in an Urban Subway Station, Adv. Civ. Eng., 2019 (2019), 1-12. |
[3] |
Z. E. Yin, J. Yin, S. Y. Xu, J. H. Wen, Community-based scenario modelling and disaster risk assessment of urban rainstorm waterlogging, J. Geogr. Sci., 21 (2011), 274-284. doi: 10.1007/s11442-011-0844-7
![]() |
[4] | S. L. Cutter, K. D. Ash, C. T. Emrich, Urban-Rural Differences in Disaster Resilience, Ann. Am. Assoc. Geogr., 106 (2016), 1236-1252. |
[5] |
W. L. Lai, H. R. Wang, C. Wang, J. Zhang, Y. Zhao, Waterlogging risk assessment based on self-organizing map (SOM) artificial neural networks: a case study of an urban storm in Beijing, J Mt. Sci., 14 (2017), 898-905. doi: 10.1007/s11629-016-4035-y
![]() |
[6] | H. Wu, J. W. Wang, Assessment of Waterlogging Risk in the Deep Foundation Pit Projects Based on Projection Pursuit Model, Adv. Civ. Eng., 2020 (2020). |
[7] |
B. L. Turner, R. E. Kasperson, P. A. Matson, J. J. McCarthy, R. W. Corell, L. Christensen, et al., A framework for vulnerability analysis in sustainability science, Proc. Natl. Acad. Sci. U. S. A., 100 (2003), 8074-8079. doi: 10.1073/pnas.1231335100
![]() |
[8] |
S.Hunt, M. Eburn, How Can Business Share Responsibility for Disaster Resilience, Aust. J. Public Adm., 77 (2018), 482-491. doi: 10.1111/1467-8500.12320
![]() |
[9] |
W. N. Adger, T. P. Hughes, C. Folke C, S. R. Carpenter, J. Rockstrom, Social-Ecological Resilience to Coastal Disasters, Science, 309 (2005), 1036-1039. doi: 10.1126/science.1112122
![]() |
[10] |
A. Bozza, D. Asprone, F. Fabbrocino F, Urban Resilience: A Civil Engineering Perspective, Sustainability, 9 (2017), 103. doi: 10.3390/su9010103
![]() |
[11] |
R. Leichenko, Climate change and urban resilience, Curr. Opin. Environ. Sustain., 3 (2011), 164-168. doi: 10.1016/j.cosust.2010.12.014
![]() |
[12] |
S. Qasim, M. Qasim, R. P. Shrestha, A. N. Khan, K. Tune, M. Ashraf, Community resilience to flood hazards in Khyber Pukhthunkhwa province of Pakistan, Int. J. Disaster Risk Reduct., 18 (2016), 100-106. doi: 10.1016/j.ijdrr.2016.03.009
![]() |
[13] |
Y. M. Liu, C. Lu, X. M. Yang, Z. H. Wang, B. Liu, Fine-Scale Coastal Storm Surge Disaster Vulnerability and Risk Assessment Model: A Case Study of Laizhou Bay, China, Remote Sens., 12 (2020), 1301. doi: 10.3390/rs12081301
![]() |
[14] |
G. F. Li, X. Y. Xiang, Y. Y. Tong, H. M. Wang, Impact assessment of urbanization on flood risk in the Yangtze River Delta, Stoch. Environ. Res. Risk Assess., 27 (2013), 1683-1693. doi: 10.1007/s00477-013-0706-1
![]() |
[15] |
S. Ayesha, M. K. Hanif, R. Talib, Overview and comparative study of dimensionality reduction techniques for high dimensional data, Inf. Fusion, 59 (2020), 44-58. doi: 10.1016/j.inffus.2020.01.005
![]() |
[16] |
G. Z. Zhi, Z. L. Liao, W. C. Tian, J. Wu, Urban flood risk assessment and analysis with a 3D visualization method coupling the PP-PSO algorithm and building data, J. Environ. Manage., 268 (2020), 110521. doi: 10.1016/j.jenvman.2020.110521
![]() |
[17] |
N. Suwal, X. F. Huang, A. Kuriqi, Y. Q. Chen, K. P. Pandey, K. P. Bhattarai, Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes, Renew. Energy, 158 (2020), 453-464. doi: 10.1016/j.renene.2020.05.161
![]() |
[18] |
A. Berro, S. L. Marie-Sainte, A. Ruiz-Gazen, Genetic algorithms and particle swarm optimization for exploratory projection pursuit, Ann. Math. Artif. Intell., 60 (2010), 153-178. doi: 10.1007/s10472-010-9211-0
![]() |
[19] | H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Trans. Power Syst., 15 (2000), 1232-1239. |
[20] |
S. Chalermchaiarbha, W. Ongsakul, Elitist Multi-objective Particle Swarm Optimization with Fuzzy Multi-attribute Decision Making for Power Dispatch, Electr. Power Compon. Syst., 40 (2012), 1562-1585. doi: 10.1080/15325008.2012.707288
![]() |
[21] |
W. Elloumi, N. Baklouti, A. Abraham, A. M. Alimi, The multi-objective hybridization of particle swarm optimization and fuzzy ant colony optimization, J. Intell. Fuzzy Syst., 27 (2014), 515-525. doi: 10.3233/IFS-131020
![]() |
[22] | J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior, 2004 Congress on Evolutionary Computation, 2004. Available from: https://ieeexplore.ieee.org/document/1330875. |
[23] |
K. Meng, H. G. Wang, Z. Y. Dong, K. P. Wong, Quantum-Inspired Particle Swarm Optimization for Valve-Point Economic Load Dispatch, IEEE Trans. Power Syst., 25 (2010), 215-222. doi: 10.1109/TPWRS.2009.2030359
![]() |
[24] |
Q. Q. Zhang, S. F. Liu, D. Q. Gong, H. K. Zhang, Q. Tu, An Improved Multi-Objective Quantum-Behaved Particle Swarm Optimization for Railway Freight Transportation Routing Design, IEEE Access., 7 (2019), 157353-157362. doi: 10.1109/ACCESS.2019.2948197
![]() |
[25] |
J. J. Zeng, G. R. Huang, Set pair analysis for karst waterlogging risk assessment based on AHP and entropy weight, Hydrol. Res., 49 (2018), 1143-1155. doi: 10.2166/nh.2017.265
![]() |
[26] |
A. Y. Lo, B. X. Xu, B. F. Chan, R. X. Su, Household economic resilience to catastrophic rainstorms and flooding in a Chinese megacity, Geogr. Res., 54 (2016), 406-419. doi: 10.1111/1745-5871.12179
![]() |
[27] |
H. M. Lyu, Y. S. Xu, W. C. Cheng, A. Arulrajah, Flooding Hazards across Southern China and Prospective Sustainability Measures, Sustainability, 10 (2018), 1682. doi: 10.3390/su10051682
![]() |
[28] |
P. Cui, D. Z. Li, Measuring the Disaster Resilience of an Urban Community Using ANP-FCE Method from the Perspective of Capitals, Soc. Sci. Q., 100 (2019), 2059-2077. doi: 10.1111/ssqu.12699
![]() |
[29] |
S. J. Wang, X. L. Zhang, Z. F. Yang, J. Ding, Z. Y. Shen, Projection pursuit cluster model based on genetic algorithm and its application in Karstic water pollution evaluation, Int. J. Environ. Pollut., 28 (2006), 253-260. doi: 10.1504/IJEP.2006.011210
![]() |
[30] |
J. W. Gong, C. M. Jiang, X. J. Tang, Z. G. Zheng, L. X. Yang, Optimization of mixture proportions in ternary low-heat Portland cement-based cementitious systems with mortar blends based on projection pursuit regression, Constr. Build. Mater., 238 (2020), 117666. doi: 10.1016/j.conbuildmat.2019.117666
![]() |
[31] |
Z. G. Lan, M. Huang, Safety assessment for seawall based on constrained maximum entropy projection pursuit model. Nat. Hazards, 91 (2018), 1165-1178. doi: 10.1007/s11069-018-3172-8
![]() |
[32] | D. Yumin, Z. Li, Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm, Math. Probl. Eng., 2014 (2014), 592682. |
[33] |
W. Fang, J. Sun, Y. R. Ding, X. J. Wu, W. B. Xu, A Review of Quantum-behaved Particle Swarm Optimization, IETE Tech. Rev., 27 (2010), 336-348. doi: 10.4103/0256-4602.64601
![]() |
[34] |
Y. G. Fu, M. Y. Ding, C. P. Zhou, Phase Angle-Encoded and Quantum-Behaved Particle Swarm Optimization Applied to Three-Dimensional Route Planning for UAV, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 42 (2012), 511-526. doi: 10.1109/TSMCA.2011.2159586
![]() |
[35] |
K. Yang, W. M. Feng, G. Liu, J. F. Zhao, P. Y. Su, Quantum-behaved particle swarm optimization for far-distance rapid cooperative rendezvous between two spacecraft, Adv. Space Res., 62 (2018), 2998-3011. doi: 10.1016/j.asr.2018.08.006
![]() |
[36] |
H. Talbi, A. Draa, A new real-coded quantum-inspired evolutionary algorithm for continuous optimization, Appl. Soft. Comput., 61 (2017), 765-791. doi: 10.1016/j.asoc.2017.07.046
![]() |
[37] |
H. Khodadadi, S. Vatankhah, T. Sadeghi, Indexes of caring for elderly in earthquakes according to the Iranian experience: a qualitative study, Dis. Med. Public Health Prep., 12 (2018), 493-501. doi: 10.1017/dmp.2017.113
![]() |
[38] |
M. S. Chang, Y. L. Tseng, J. W. Chen, A scenario planning approach for the flood emergency logistics preparation problem under uncertainty, Transp. Res. Part E Logist. Transp. Rev., 43 (2007), 737-754. doi: 10.1016/j.tre.2006.10.013
![]() |
[39] |
W. Yi, L. Ozdamar, A dynamic logistics coordination model for evacuation and support in disaster response activities, Eur. J. Oper. Res., 179 (2007), 1177-1193. doi: 10.1016/j.ejor.2005.03.077
![]() |
[40] |
D. Liu, J. P. Feng, H. Li, Q. Fu, M. Li, M. A. Faiz, et al., Spatiotemporal variation analysis of regional flood disaster resilience capability using an improved projection pursuit model based on the wind-driven optimization algorithm, J. Clean Prod., 241 (2019), 118406. doi: 10.1016/j.jclepro.2019.118406
![]() |
[41] | S. F. Ardabili, B. Najafi, S. Shamshirband, B. M. Bidgoli, R. C. Deo, K. W. Chau, Computational intelligence approach for modeling hydrogen production: a review, Eng. Appl. Comp. Fluid Mech., 12 (2018), 438-458. |
[42] |
R. Taormina, K. W. Chau, ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS, Eng. Appl. Artif. Intell., 45 (2015), 429-440. doi: 10.1016/j.engappai.2015.07.019
![]() |
[43] | J. Sun, X. J. Wu, V. Palade, W. Fang, C. H. Lai, W. B. Xu, Convergence analysis and improvements of quantum-behaved particle swarm optimization, Inf. Sci., 192 (2012), 81-103. |
[44] |
M. S. Alajmi, A. M. Almeshal, Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method, Materials, 13 (2020), 2986. doi: 10.3390/ma13132986
![]() |
[45] |
G. G. Wang, A. H. Gandomi, A. H. Alavi, S. Deb, A hybrid method based on krill herd and quantum-behaved particle swarm optimization, Neural Comput. Appl., 27 (2016), 989-1006. doi: 10.1007/s00521-015-1914-z
![]() |
[46] | X. H. Yang, Z. F. Yang, Z. Y. Shen, et al, Interpolation model for flood disaster assessment based on projection pursuit, Disaster Sci., 04 (2004), 3-8. |
[47] |
C. L. Wu, K. W. Chau, Prediction of rainfall time series using modular soft computing methods, Eng. Appl. Artif. Intell., 26 (2013), 997-1007. doi: 10.1016/j.engappai.2012.05.023
![]() |
[48] |
V. R. Renjith, G. Madhu, V. L. J. Nayagam, A. B. Bhasi, Two-dimensional fuzzy fault tree analysis for chlorine release from a chlor-alkali industry using expert elicitation, J. Hazard. Mater., 183 (2010), 103-110. doi: 10.1016/j.jhazmat.2010.06.116
![]() |
[49] |
M. H. P. Passos, H. A. Silva, A. C. R. Pitangui, V. M. A. Oliveira, A. S. Lima, R. C. Araujo, Reliability and validity of the Brazilian version of the Pittsburgh Sleep Quality Index in adolescents, J. Pediatr., 93 (2017), 200-206. doi: 10.1016/j.jped.2016.06.006
![]() |
[50] |
C. T. Cheng, W. J. Niu, Z. K. Feng, J. J. Shen, K. W. Chau, Daily reservoir runoff forecasting method using artificial neural network based on quantum-behaved particle swarm optimization, Water, 7 (2015), 4232-4246. doi: 10.3390/w7084232
![]() |
[51] |
J. Derrac, S. Garcia, S. Hui, P. N. Suganthan, F. Herrera, Analyzing convergence performance of evolutionary algorithms: A statistical approach, Inf. Sci., 289 (2014), 41-58. doi: 10.1016/j.ins.2014.06.009
![]() |
[52] |
B. Ji, Y. Ye, Y. Xiao, A combination weighting algorithm using relative entropy for document clustering, Int. J. Pattern Recognit. Artif. Intell., 28 (2014), 1453002. doi: 10.1142/S0218001414530024
![]() |
[53] |
A. Banan, A. Nasiri, A. Taheri-Garavand, Deep learning-based appearance features extraction for automated carp species identification, Aquac. Eng., 89 (2020), 102053. doi: 10.1016/j.aquaeng.2020.102053
![]() |
[54] |
A. Czarn, C. MacNish, K. Vijayan, B. Turlach, R. Gupta, Statistical exploratory analysis of genetic algorithms, IEEE Trans. Evol. Comput., 8 (2004), 405-421. doi: 10.1109/TEVC.2004.831262
![]() |
[55] | J. Carrasco, S. Garcia, M. M. Rueda, S. Das, F. Herrera, Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review, Swarm Evol. Comput., 54 (2020), 10066. |
[56] |
C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multi-objective optimization, Evol. Comput., 15 (2007), 1-28. doi: 10.1162/evco.2007.15.1.1
![]() |
[57] |
V. J, Chin, Z. Salam, Coyote optimization algorithm for the parameter extraction of photovoltaic cells, Sol. Energy, 194 (2019), 656-670. doi: 10.1016/j.solener.2019.10.093
![]() |
[58] | M. Wang, N. C. Chang, J. B. Liu et al., A multi-index comprehensive evolution method of state estimation, Auto Elec. Power Syst., 39 (2015), 94-98. |
[59] |
B. A. Hassan and T. A. Rashid, Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms, Data Brief, 28 (2020), 105046. doi: 10.1016/j.dib.2019.105046
![]() |