[1]
|
Y. Zheng, J. Liu, R. Ahmad, A cost-driven process planning method for hybrid additive-subtractive remanufacturing, J. Manuf. Syst., 55 (2020), 248-263. doi: 10.1016/j.jmsy.2020.03.006
|
[2]
|
G. D. Hatcher, W. L. Ijomah, J. F. C. Windmill, Design for remanufacture: a literature review and future research needs, J. Cleaner Prod., 19 (2011), 2004-2014. doi: 10.1016/j.jclepro.2011.06.019
|
[3]
|
J. Liu, Y. Zheng, Y. Ma, A. Qureshi, R. Ahmad, A Topology Optimization Method for Hybrid Subtractive-Additive Remanufacturing, Int. J. Precis. Eng. Manuf., 7 (2020), 939-953. doi: 10.1007/s40684-019-00075-8
|
[4]
|
A. M. King, S. C. Burgess, W. Ijomah, C. A. McMahon, Reducing waste: repair, recondition, remanufacture or recycle?, J. Sustain. Dev., 14 (2006), 257-267.
|
[5]
|
X. Zhang, W. Li, W. Cui, F. Liou, Modeling of worn surface geometry for engine blade repair using Laser-aided Direct Metal Deposition process, Manuf. Lett., 15 (2018), 1-4. doi: 10.1016/j.mfglet.2017.11.001
|
[6]
|
Z. Liu, Q. Jiang, T. Li, S. Dong, S. Yan, H. Zhang, et al., Environmental benefits of remanufacturing: A case study of cylinder heads remanufactured through laser cladding, J. Cleaner Prod., 133 (2016), 1027-1033.
|
[7]
|
L. Chen, T. Y. Lau, K. Tang, Manufacturability analysis and process planning for additive and subtractive hybrid manufacturing of Quasi-rotational parts with columnar features, Comput. Aided Des., 118 (2020), 102759.
|
[8]
|
P. Stavropoulos, P. Foteinopoulos, A. Papacharalampopoulos, H. Bikas, Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution, Int. J. Lightweight Mater. Manuf., 1 (2018), 157-168.
|
[9]
|
J. M. Flynn, A. Shokrani, S. T. Newman, V. Dhokia, Hybrid additive and subtractive machine tools - Research and industrial developments, Int. J. Mach. Tools Manuf., 101 (2016), 79-101. doi: 10.1016/j.ijmachtools.2015.11.007
|
[10]
|
M. Cortina, J. I. Arrizubieta, J. E. Ruiz, E. Ukar, A. Lamikiz, Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations, Materials, 11 (2018), 2583.
|
[11]
|
A. Joshi, S. Anand, Geometric Complexity Based Process Selection for Hybrid Manufacturing, Procedia Manuf., 10 (2017), 578-589. doi: 10.1016/j.promfg.2017.07.056
|
[12]
|
L. Chen, K. Xu, K. Tang, Optimized sequence planning for multi-axis hybrid machining of complex geometries, Comput. Graph., 70 (2018), 176-187. doi: 10.1016/j.cag.2017.07.018
|
[13]
|
C. Liu, Y. Li, S. Jiang, Z. Li, K. Xu, A sequence planning method for five-axis hybrid manufacturing of complex structural parts, J. Eng. Manuf., 234 (2020), 421-430. doi: 10.1177/0954405419883052
|
[14]
|
Z. Zhu, V. G. Dhokia, A. Nassehi, S. T. Newman, A review of hybrid manufacturing processes - state of the art and future perspectives, Int. J. Comput. Integr. Manuf., 26 (2013), 596-615. doi: 10.1080/0951192X.2012.749530
|
[15]
|
Z. Zhu, V. Dhokia, S. T. Newman, A. Nassehi, Application of a hybrid process for high precision manufacture of difficult to machine prismatic parts, Int. J. Adv. Manuf. Technol., 74 (2014), 1115-1132. doi: 10.1007/s00170-014-6053-7
|
[16]
|
S. T. Newman, Z. Zhu, V. Dhokia, A. Shokrani, Process planning for additive and subtractive manufacturing technologies, CIRP Ann., 64 (2015), 467-470. doi: 10.1016/j.cirp.2015.04.109
|
[17]
|
M. Behandish, S. Nelaturi, J. de Kleer, Automated process planning for hybrid manufacturing, Comput. Aided Des., 102 (2018), 115-127.
|
[18]
|
H. ElMaraghy, M. Moussa, Optimal platform design and process plan for managing variety using hybrid manufacturing, CIRP Ann., 68 (2019), 443-446. doi: 10.1016/j.cirp.2019.03.025
|
[19]
|
K. L. Basinger, C. B. Keough, C. E. Webster, R. A. Wysk, T. M. Martin, O. L. Harrysson, Development of a modular computer-aided process planning (CAPP) system for additive-subtractive hybrid manufacturing of pockets, holes, and flat surfaces, Int. J. Adv. Manuf. Technol., 96 (2018), 2407-2420.
|
[20]
|
R. Cottam, M. Brandt, Laser Cladding of Ti-6Al-4V Powder on Ti-6Al-4V Substrate: Effect of Laser Cladding Parameters on Microstructure, Phys. Procedia, 12 (2011), 323-329.
|
[21]
|
Y. Zheng, J. Liu, Z. Liu, T. Wang, R. Ahmad, A primitive-based 3D reconstruction method for remanufacturing, Int. J. Adv. Manuf. Technol., 103 (2019), 3667-3681. doi: 10.1007/s00170-019-03824-w
|
[22]
|
Y. Zheng, A. J. Qureshi, R. Ahmad, Algorithm for remanufacturing of damaged parts with hybrid 3D printing and machining process, Manuf. Lett., 15 (2018), 38-41. doi: 10.1016/j.mfglet.2018.02.010
|
[23]
|
X. Zhang, W. Li, K. M. Adkison, F. Liou, Damage reconstruction from tri-dexel data for laser-aided repairing of metallic components, Int. J. Adv. Manuf. Technol., 96 (2018), 3377-3390. doi: 10.1007/s00170-018-1830-3
|
[24]
|
M. Goyal, S. Murugappan, C. Piya, W. Benjamin, Y. Fang, M. Liu, et al., Towards locally and globally shape-aware reverse 3D modeling, Comput. Aided Des., 44 (2012), 537-553.
|
[25]
|
J. M. Wilson, C. Piya, Y. C. Shin, F. Zhao, K. Ramani, Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis, J. Cleaner Prod., 80 (2014), 170-178. doi: 10.1016/j.jclepro.2014.05.084
|
[26]
|
Q. Liu, Y. Wang, H. Zheng, K. Tang, H. Li, S. Gong, TC17 titanium alloy laser melting deposition repair process and properties, Opt. Laser Technol., 82 (2016), 1-9.
|
[27]
|
X. Zhang, W. Li, X. Chen, W. Cui, F. Liou, Evaluation of component repair using direct metal deposition from scanned data, Int. J. Adv. Manuf. Technol., 95 (2018), 3335-3348. doi: 10.1007/s00170-017-1455-y
|
[28]
|
Z. Zhao, J. Chen, Q. Zhang, H. Tan, X. Lin, W. Huang, Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy, Trans. Nonferr. Metals Soc., 27 (2017), 2613-2621. doi: 10.1016/S1003-6326(17)60289-9
|
[29]
|
D. Baca, R. Ahmad, The impact on the mechanical properties of multi-material polymers fabricated with a single mixing nozzle and multi-nozzle systems via fused deposition modeling, Int. J. Adv. Manuf. Technol., 106 (2020), 4509-4520. doi: 10.1007/s00170-020-04937-3
|
[30]
|
D. M. B. Lopez, R. Ahmad, Tensile Mechanical Behaviour of Multi-Polymer Sandwich Structures via Fused Deposition Modelling, Polymers, 12 (2020), 651.
|
[31]
|
J. Y. Hascoë t, S. Touzé, M. Rauch, Automated identification of defect geometry for metallic part repair by an additive manufacturing process, Weld. World, 62 (2018), 229-241. doi: 10.1007/s40194-017-0523-0
|
[32]
|
R. Ahmad, S. Tichadou, J. Y. Hascoet, A knowledge-based intelligent decision system for production planning, Int. J. Adv. Manuf. Technol., 89 (2017), 1717-1729. doi: 10.1007/s00170-016-9214-z
|
[33]
|
Z. Zhu, V. Dhokia, S. T. Newman, A novel decision-making logic for hybrid manufacture of prismatic components based on existing parts, J. Intell. Manuf., 28 (2017), 131-148. doi: 10.1007/s10845-014-0966-8
|
[34]
|
V. T. Le, H. Paris, G. Mandil, Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context, J. Manuf. Syst., 44 (2017), 243-254. doi: 10.1016/j.jmsy.2017.06.003
|
[35]
|
V. T. Le, H. Paris, G. Mandil, Environmental impact assessment of an innovative strategy based on an additive and subtractive manufacturing combination, J. Cleaner Prod., 164 (2017), 508-523. doi: 10.1016/j.jclepro.2017.06.204
|
[36]
|
J. Liu, Q. Chen, Y. Zheng, R. Ahmad, J. Tang, Y. Ma, Level set-based heterogeneous object modeling and optimization, Comput. Aided Des., 110 (2019), 50-68. doi: 10.1016/j.cad.2019.01.002
|
[37]
|
B. Babic, N. Nesic, Z. Miljkovic, A review of automated feature recognition with rule-based pattern recognition, Comput. Ind., 59 (2008), 321-337. doi: 10.1016/j.compind.2007.09.001
|
[38]
|
A. K. Verma, S. Rajotia, A review of machining feature recognition methodologies, Int. J. Comput. Integr. Manuf., 23 (2010), 353-368. doi: 10.1080/09511921003642121
|
[39]
|
J. Liu, A. C. To, Computer-Aided Design-Based Topology Optimization System With Dynamic Feature Shape and Modeling History Evolution, J. Mech. Des., 142 (2020), 071704.
|
[40]
|
S. Cai, W. Zhang, J. Zhu, T. Gao, Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function, Comput. Methods Appl. Mech. Eng., 278 (2014), 361-387. doi: 10.1016/j.cma.2014.06.007
|
[41]
|
R. Schnabel, R. Wahl, R. Klein, Efficient RANSAC for point-cloud shape detection, Comput. Graph. Forum, 26 (2007), 214-226. doi: 10.1111/j.1467-8659.2007.01016.x
|
[42]
|
T. Hitchcox, Y. F. Zhao, Random walks for unorganized point cloud segmentation with application to aerospace repair, Procedia Manuf., 26 (2018), 1483-1491. doi: 10.1016/j.promfg.2018.07.093
|
[43]
|
L. Li, C. Li, Y. Tang, Y. Du, An integrated approach of reverse engineering aided remanufacturing process for worn components, Robot. Comput. Integr. Manuf., 48 (2017), 39-50. doi: 10.1016/j.rcim.2017.02.004
|
[44]
|
Z. Zhang, P. Jaiswal, R. Rai, FeatureNet: Machining feature recognition based on 3D Convolution Neural Network, Comput. Aided Des., 101 (2018), 12-22. doi: 10.1016/j.cad.2018.03.006
|
[45]
|
P. Shi, Q. Qi, Y. Qin, P. Scott, X. Jiang, A novel learning-based feature recognition method using multiple sectional view representation, J. Intell. Manuf., 31 (2020), 1291-1309. doi: 10.1007/s10845-020-01533-w
|
[46]
|
J. Y. Jung, Manufacturing cost estimation for machined parts based on manufacturing features, J. Intell. Manuf., 13 (2002), 227-238. doi: 10.1023/A:1016092808320
|
[47]
|
M. Barclift, S. Joshi, T. Simpson, C. Dickman, Cost Modeling and Depreciation for Reused Powder Feedstocks in Powder Bed Fusion Additive Manufacturing, Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference. (2016), 2007-2028.
|
[48]
|
Z. Bouaziz, J. Ben Younes, A. Zghal, Cost estimation system of dies manufacturing based on the complex machining features, Int. J. Adv. Manuf. Technol., 28 (2006), 262-271. doi: 10.1007/s00170-004-2179-3
|
[49]
|
S. Takemura, R. Koike, Y. Kakinuma, Y. Sato, Y. Oda, Design of powder nozzle for high resource efficiency in directed energy deposition based on computational fluid dynamics simulation, Int. J. Adv. Manuf. Technol., 105 (2019), 4107-4121. doi: 10.1007/s00170-019-03552-1
|
[50]
|
R. Koike, S. Takemura, Y. Kakinuma, M. Kondo, Enhancement of powder supply efficiency in directed energy deposition based on gas-solid multiphase-flow simulation, Procedia CIRP, 78 (2018), 133-137. doi: 10.1016/j.procir.2018.09.061
|
[51]
|
G. Komineas, P. Foteinopoulos, A. Papacharalampopoulos, P. Stavropoulos, Build Time Estimation Models in Thermal Extrusion Additve Manufacturing Process, Procedia Manuf., 21 (2018), 647-654. doi: 10.1016/j.promfg.2018.02.167
|
[52]
|
D.-H. Lee, D. Kiritsis, P. Xirouchakis, Branch and fathoming algorithms for operation sequencing in process planning, Int. J. Prod. Res, 39 (2001), 1649-1669. doi: 10.1080/00207540010028100
|
[53]
|
H. Yu, J. Liu, Self-Support Topology Optimization With Horizontal Overhangs for Additive Manufacturing, J. Manuf. Sci. Eng., 142 (2020), 091003.
|