Citation: Pengyan Liu, Hong-Xu Li. Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
[1] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700-721. doi: 10.1098/rspa.1927.0118 |
[2] | P. A. Naik, Global dynamics of a fractional-order SIR epidemic model with memory, Int. J. Biomath., 13 (2020), 1-24. |
[3] | P. A. Naik, J. Zu, M. Ghoreishi, Stability analysis and approximate solution of SIR epidemic model with Crowley-Martin type functional response and holling type-II treatment rate by using homotopy analysis method, J. Appl. Anal. Comput., 10 (2020), 1482-1515. |
[4] | P. A. Naik, J. Zu, K. M. Owolabi, Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos Solitons Fractals, 138 (2020), 109826. |
[5] | P. A. Naik, J. Zu, K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Phys. A, 545 (2020), 123816. |
[6] | J. Zu, M. Li, Y. Gu, S. Fu, Modelling the evolutionary dynamics of host resistance-related traits in a susceptible-infected community with density-dependent mortality, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 3049-3086. |
[7] | J. Zu, G. Zhuang, P. Liang, F. Cui, F. Wang, H. Zheng, et al., Estimating age-related incidence of HBsAg seroclearance in chronic hepatitis B virus infections of China by using a dynamic compartmental model, Sci. Rep., 7 (2017), 2912. |
[8] | J. Zu, M. Li, G. Zhuang, P. Liang, F. Cui, F. Wang, et al., Estimating the impact of test-and-treat strategies on hepatitis B virus infection in China by using an age-structured mathematical model, Medicine, 97 (2018), e0484. |
[9] | A. Chekroun, M. N. Frioui, T. Kuniya, T. M. Touaoula, Global stability of an age-structured epidemic model with general Lyapunov functional, Math. Biosci. Eng., 16 (2019), 1525-1553. doi: 10.3934/mbe.2019073 |
[10] | Z. Feng, W. Huang, C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure, J. Differ. Equations, 218 (2005), 292-324. doi: 10.1016/j.jde.2004.10.009 |
[11] | T. Kuniya, Global stability analysis with a discretization approach for an age-structured multigroup SIR epidemic model, Nonlinear Anal. Real World Appl., 12 (2011), 2640-2655. doi: 10.1016/j.nonrwa.2011.03.011 |
[12] | J. Wang, H. Shu, Global analysis on a class of multi-group SEIR model with latency and relapse, Math. Biosci. Eng., 13 (2016), 209-225. doi: 10.3934/mbe.2016.13.209 |
[13] | J. Yang, R. Xu, X. Luo, Dynamical analysis of an age-structured multi-group SIVS epidemic model, Math. Biosci. Eng., 16 (2019), 636-666. doi: 10.3934/mbe.2019031 |
[14] | R. S. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons Ltd, Chichester, 2004. |
[15] | J. Wu, Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996. |
[16] | A. Chekroun, T. Kuniya, An infection age-space structured SIR epidemic model with Neumann boundary condition, Appl. Anal., 1-14. |
[17] | R. Cui, Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differ. Equations, 261 (2016), 3305-3343. doi: 10.1016/j.jde.2016.05.025 |
[18] | A. Ducrot, P. Magal, S. Ruan, Travelling wave solutions in multigroup age-structured epidemic models, Arch. Ration. Mech. Anal., 195 (2010), 311-331. doi: 10.1007/s00205-008-0203-8 |
[19] | W. E. Fitzgibbon, J. J. Morgan, G. F. Webb, Y. Wu, A vector-host epidemic model with spatial structure and age of infection, Nonlinear Anal. Real World Appl., 41 (2018), 692-705. doi: 10.1016/j.nonrwa.2017.11.005 |
[20] | T. Kuniya, R. Oizumi, Existence result for an age-structured SIS epidemic model with spatial diffusion, Nonlinear Anal. Real World Appl., 23 (2015), 196-208. doi: 10.1016/j.nonrwa.2014.10.006 |
[21] | Y. Luo, S. Tang, Z. Teng, Global dynamics in a reaction-diffusion multi-group SIR epidemic model with nonlinear incidence, Nonlinear Anal. Real World Appl., 50 (2019), 365-385. doi: 10.1016/j.nonrwa.2019.05.008 |
[22] | X. Wang, X. Q. Zhao, J. Wang, A cholera epidemic model in a spatiotemporally heterogeneous environment, J. Math. Anal. Appl., 468 (2018), 893-912. doi: 10.1016/j.jmaa.2018.08.039 |
[23] | J. Yang, Z. Jin, F. Xu, Threshold dynamics of an age-space structured SIR model on heterogeneous environment, Appl. Math. Lett., 96 (2019), 69-74. doi: 10.1016/j.aml.2019.03.009 |
[24] | J. Yang, R. Xu, J. Li, Threshold dynamics of an age-space structured brucellosis disease model with Neumann boundary condition, Nonlinear Anal. Real World Appl., 50 (2019), 192-217. doi: 10.1016/j.nonrwa.2019.04.013 |
[25] | L. Zhao, Z. C. Wang, S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 1871-1915. doi: 10.1007/s00285-018-1227-9 |
[26] | L. Liu, J. Wang, X. Liu, Global stability of an SEIR epidemic model with age-dependent latency and relapse, Nonlinear Anal. Real World Appl., 24 (2015), 18-35. doi: 10.1016/j.nonrwa.2015.01.001 |
[27] | L. Liu, X. Feng, A multigroup SEIR epidemic model with age-dependent latency and relapse, Math. Methods Appl. Sci., 41 (2018), 6814-6833. doi: 10.1002/mma.5193 |
[28] | X. Ren, Y. Tian, L. Liu, X. Liu, A reaction-diffusion within-host HIV model with cell-to-cell transmission, J. Math. Biol., 76 (2018), 1831-1872. doi: 10.1007/s00285-017-1202-x |
[29] | H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, vol. 41 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1995. |
[30] | K. Yosida, Functional analysis, Springer, New York, 1978. |
[31] | Y. Lou, X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. doi: 10.1007/s00285-010-0346-8 |
[32] | J. K. Hale, Asymptotic behavior of dissipative systems, American Mathematical Society, Providence, RI, 1988. |
[33] | A. Berman, R. J. Plemmons, Nonnegative matrices in mathematical sciences, Academic Press, New York, 1979. |
[34] | M. A. Krasnosel'skiǐ, Positive solutions of operator equations, Noordhoff, Groningen, 1964. |
[35] | M. Y. Li, Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equations, 248 (2010), 1-20. doi: 10.1016/j.jde.2009.09.003 |