The main objective of this article is to build up a new integral equality related to Riemann Liouville fractional (RLF) operator. Based on this integral equality, we show numerous new inequalities for differentiable convex as well as concave functions which are similar to celebrated Hermite-Hadamard and Simpson's integral inequalities. The present outcomes of this paper are a unification and generalization of the comparable results in the literature on Hermite-Hadamard and Simpson's integral inequalities. Furthermore as applications in numerical analysis, we find some means, q-digamma function and modified Bessel function type inequalities.
Citation: Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum. New developments in fractional integral inequalities via convexity with applications[J]. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
The main objective of this article is to build up a new integral equality related to Riemann Liouville fractional (RLF) operator. Based on this integral equality, we show numerous new inequalities for differentiable convex as well as concave functions which are similar to celebrated Hermite-Hadamard and Simpson's integral inequalities. The present outcomes of this paper are a unification and generalization of the comparable results in the literature on Hermite-Hadamard and Simpson's integral inequalities. Furthermore as applications in numerical analysis, we find some means, q-digamma function and modified Bessel function type inequalities.
[1] | S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs Victoria University, 2000. |
[2] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[3] | J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator, AIMS Mathematics, 7 (2022), 3303–3320. https://doi.org/10.3934/math.2022184 doi: 10.3934/math.2022184 |
[4] | M. Karim, A. Fahmi, Z. Ullah, M. A. T. Bhatti, A. Qayyum, On certain Ostrowski type integral inequalities for convex function via AB-fractional integral operator, AIMS Mathematics, 8 (2023), 9166–9184. https://doi.org/10.3934/math.2023459 doi: 10.3934/math.2023459 |
[5] | A. Qayyum, I. Faye, M. Shoaib, On new generalized inequalities via Riemann-Liouville fractional integration, J. Fract. Calc. Appl., 6 (2015), 91–100. |
[6] | S. S. Dragomir, M. I. Bhatti, M. Iqbal, M. Muddassar, Some new Hermite-Hadamard's type inequalities, J. Comput. Anal. Appl., 18 (2015), 655–660. |
[7] | S. S. Dragomir, Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll., 20 (2017). |
[8] | S. S. Dragomir, Trapezoid type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, Acta Univ. Sapientiae, Math., 12 (2020), 30–53. https://doi.org/10.2478/ausm-2020-0003 doi: 10.2478/ausm-2020-0003 |
[9] | M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integral, J. Comput. Anal. Appl., 23 (2017), 1137–1145. https://doi.org/10.1186/s13660-019-2160-1 doi: 10.1186/s13660-019-2160-1 |
[10] | R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Vienna: Springer, 1997. |
[11] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure Appl. Math., 10 (2009), 86. |
[12] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497. |
[13] | S. R. Hwang, K. L. Tseng, K. C. Hsu, New inequalities for fractional integrals and their applications, Turk. J. Math., 40 (2016), 471–486. https://doi.org/10.3906/mat-1411-61 doi: 10.3906/mat-1411-61 |
[14] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X |
[15] | U. S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4 |
[16] | M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. |
[17] | T. Lian, W. Tang, R. Zhou, Fractional Hermite-Hadamard inequalities for $\left(s, m\right) $-convex or $s$-concave functions, J. Inequal. Appl., 240 (2018). https://doi.org/10.1186/s13660-018-1829-1 doi: 10.1186/s13660-018-1829-1 |
[18] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for $s$-convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009), 13–20. |
[19] | G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1995. |
[20] | S. Jain, K. Mehrez, D. Baleanu, P. Agarwal, Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019). https://doi.org/10.3390/math7020163 doi: 10.3390/math7020163 |