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1. Introduction

An important inequality for classical convex functions which has been extensively studied in
recent decades is the Hermite-Hadamard’s inequality, which was obtained by Hermite and Hadamard
independently. This inequality gives lower and upper estimates for the integral average of any convex
function formed on a compact interval encompassing the domain midpoint and endpoints. To, more
precise, In [1] Let f : I C R — R be a convex function on the interval I of real numbers and a, a; € 1
with a; < a,. Then

f(al+a2) <1 faz F)dA < f—(al);ﬂ’“).
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In the field of analysis, numerous mathematicians have observed the significance of the double
inequality and have also used it in various useful applications. Moreover, it has been extended to
various structures utilizing the classical convex function. Fractional calculus has applications in a
variety of engineering and science domains, including electromagnetic, photoelasticity, fluid
mechanics, electrochemistry, biological population models, optics, and signal processing. Due to its
vast variety of applications, many mathematicians employed fractional calculus concepts and studied
in various areas, one of which is integral inequalities for different classes of functions. For example,
some authors, [2-5] obtained the inequalities for Riemann-Liouville fractional integrals and
AB-fractional integral operator. Dragomir et al. [6], proved some Hermite-Hadamard type
inequalities for Riemann-Liouville fractional integrals. In [7], Dragomir used the generalized form of
Riemann-Liouville fractional integrals and proved some new Ostrowski type inequalities for bounded
functions. In [8], he used the generalized form of Riemann-Liouville fractional integrals and proved
some new trapezoid type inequalities for bounded functions. He gave trapezoid and ostrowski type
inequalities using the fractional integrals. Igbal et al. [9] presented some fractional midpoint type
inequalities for convex functions. In recent years much attention has been devoted to the theory of
convex sets and theory of convex functions by generalizing and extending these concepts in different
dimensions using innovative techniques. Here, we recall the important definitions related to convex
function and left-right Riemann-Liouville fractional integrals.

Definition 1.1. [7] Let I be an interval in R. A function f : I C R — R is said to be convex on [a, @3],
with @y < ay, where ay, a; € 1, if,

fQar+ (A =-Day) <Af (@) + (1 =) fle), A€[0,1].

Definition 1.2. [10] For f € Lla;,a,]. The left-sided and right-sided Riemann-Liouville fractional
integrals of order k € R* that are defined by

()@= 5 [ =00 (O sm <xsa.

and

respectively, Where F( ) is Gamma function and its definition is I'(x) = fooo e “u*'du. It is to be noted
that JO, | f() = J,, f() = f0).

If we put k = 1, the fractional integral becomes the classical integral. The recent results and the
properties concerning this operator can be found [11, 12].

An inequality which is notable as Simpson’s inequality in [1]:

Theorem 1.1. Suppose f : [a;, 2] — R is four times continuously differentiable function on (a, a;)
and || f(4)||m = SUPge(q,.an) | f@ (9)| < o0, then the following inequality holds:

a1 + ay

I I )
'[gf(al) A gf(az)] ‘ Ll an

AIMS Mathematics Volume 8, Issue 7, 15950-15968.



15952

The accompanying ongoing improvements for Riemann-Liouville fractional integral on double and
Simpson’s inequalities are demonstrated by Hwang et al. (see [13]).

Theorem 1.2. Let f : [a;,a;] — R be a differentiable function on (a,a,) and 0 < k < 1. If |f'| is
convex function on (a1, @], then the following inequality holds:

fla)+f@ T+l
2 2(CL’2 - CZ])K

(G’ _a')(zk_l) , v
< 3m&+n [If" (@Dl +1f (@]

Proposition 1.1. Suppose that all the assumptions of Theorem 2, are satisfied. If we choose k = 1, we
have trapezoid inequality:

fla)+ fla) 1 \f%f“”x

(€, flan) + JE, . f(a)]
(1.2)

D[P @l + 1 @], (1.3)

(07
<
2 )y —

which is obtained by Dragomir in [14].

Theorem 1.3. Let f : [a;,a;] — R be a differentiable function on (a,a,) and 0 < k < 1. If |f'| is
convex function on (a1, @], then the following inequality holds:

Tk+1)
sy e S0+ T @] =1

a—a (2Tk-1+1
T 4k+1) 2x-1

ay +a’2)
2

(1.4)

)[|f (@) +1f (@] .

Proposition 1.2. Suppose that all the assumptions of Theorem 3, are satisfied. If we choose k = 1, we
have midpoint inequality:

1 @2 )+ ap
ay — j;l f(X)dx_f( 2 )

which is obtained by Kirmaci in [15].
Theorem 1.4. Let f : [a;,a2] — R be a differentiable function on (ay,a;) and 0 < k < 1. If |f'] is

convex on [y, a,], then the following inequality holds:

F(K+ 1) 5—1 )+ ap 6 — 5+ 1f(a1)+f(a2)
2(a2_al)K[ o (@) + T fle) | - [ f( > )+ o 5 ]

1 [2+1 5¢1+1 51
= K+1( 2::1 - 6K: )+(12><6K)](6¥2—a1)[|f’(a1)|+|f’(a2)|],

an

< ;“Wwwm+wmmL (15)

(1.6)

Proposition 1.3. Suppose that all the assumptions of Theorem 1.4, are satisfied. If we choose k = 1,
we have Simpson’s inequality:

1
—Umwwdm %fmg
(1.7)
5
J%;ﬂﬁv<m+vmm]

which is obtained by Sarikaya in [16].
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In [17], Lian et al. presented fractional integrals inequalities for concave function as follows,

Theorem 1.5. Let f : [a),az] — R be a differentiable function on (a,a,) and 0 < k < 1. If |f'| is
convex function on (a1, @], then the following inequality holds:

2 . 2 )
(041 —0/2) J("‘mz) fle) = ( a - a, ) J(awxz) f((lz)]

k+3a+k+Day ,(K+1)C¥1+(K+3)a’2)]

2(k+2) 2(k+2)
Proposition 1.4. Suppose that all the assumptions of Theorem 1.5, are satisfied. If we choose k = 1,
we have midpoint inequality:

CZ] + an ) + 2a;
— f FOodx - ) f (—)

The current study is organized in two sections. The first section is related to the introductory body,
where ideas and the hypotheses that provides the foundation for the advancement of the work has
been discussed. While the second section has been divided into three sub-sections which shows the
outcomes acquired for each of the inequalities under investigation. Moreover, the purpose of this paper
is to study Hermite-Hadamard and Simpson’s-like integral inequalities for convex functions as well
as concave functions by applying the fractional concept. We also discuss the relation of our results
with comparable results existing in the literature. Furthermore as applications, we find some means,
g-digamma function and modified Bessel function type inequalities. We expect that the study initiated
in this paper may inspire new research in this area.

+ I'k+1
CY1 a2)+ (k+1)

(a2 —ay)

i

(1.8)

) — A
T 4k+1)

i

ay — ]
B 8

2aq + az)

lf ] (1.9)

2. Main results
Here, we prove an important new Lemma for Riemann-Livouille fractional integrals, which plays a
key role to prove our main results as follows:

Lemma 2.1. Let f : [a;, az] — R be adifferentiable function on (a1, ay) witha; < ax. If f* € L]ay, a;]
with) <k < 1,41 €[0,1],and p, ¥ € [0, 1], then the following equality holds:

2K—2+p+0(f(a1)+f(az))+2—/?—79 (“1+“2)_ T+ 1) | 7€, Flan) + TS, | flan)]

2 2 2k 2 2(ay — ay)¥
2K+2 L1+ 02+ 03+ Q)

where
1
O = f[(1—/1)K—P]f'(/1011+(1—/1)a1+a2)d/1,
0 2
1
0, = f[19—(1—ﬂ)"]f’(/lozz+(1—/l)al+a2)d/l,
0 2
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) + ay

Qs

1
f [2- 0 +p-217 (2
0

1
f[Z—ﬂ—(Z—ﬂ)“]f'(/l
0

Proof. Integrating by parts successively, in order to compute each integral, one obtain

+ (1 —/l)az)d/l,

) + an

Q4

+ (1 —/l)al)d/l.

a1 + @y

1

0 = f[(l—/l)K—p]f'(/la1+(l—/l) >
0

2[(1 = 2 = p] £ (Aes + (1 = D) 252)dA

)d/l

1

a —ap o
e f (1 -1~ lf(/lozl +(1—/1)a1+“2)d/1
1 2
= ( p) (0’1 +a'2)
_ az_mf( ay+ 2D (M
K(2K+1) ave 1
(@ —a)™ (x- )" (.
2 — ai
Simple calculations analogously
1
0, = f [0 -1 - f (/1024_(1 PN ;az)d/l
0
L 2[0-(1= ] f (Aan + (1 - ) E)day
i ar — @ .
t o f (1 -2 1]0(/10[24_(1_/1)a1+a2)d/l
1 2
= 2(1_19) (CL’1+a'2)
= az_mf( ) + z—aflf .
K(2K+1) o 1
_m ﬁ1+02 (Q’Z - x)K_ f(x) dx.
-2
a) +a;

1

03 = f[(Z—/l)K+p—2]f’(/l +(1—/l)a/2)d/1
0
2[2- 2 +p - 2] £(A%5%2 + (1 = D) dA

a; — @

0
4= azf(z D f 1”2 (l—ﬁ)ag)dﬂ
1~

202=-2 2 1—
( +P)f( )+ ( P)f(dl‘;az)

ar — —

k+1 @)
—& f (x—a) f(x)dx.

Kk+1
(ar —ay) 1

(2.1

(2.2)

(2.3)
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a1 + ay

Q4

1
f [2—19—(2—/1)’<]f’(/l +(1—/l)a/1)d/l
0

2[2-8 - Q2= DT f (12 + (1= Dey)day

ar — @ 0
2 1
ul f(2—&)“‘1f(/1—a1+a2+(1—/1)cx1)d/1
ay — a2 Jo 2
202=2+9) 2(1-9) (o) +a
- 22D 20D e
) — @y ) — 2
K(2K+1) arn 1
— (a2 = ) f(x)dx. (2.4)
(a2 — ;) @

ar—ay

Hence, by adding (2.1)~(2.4), and multiplying the resultant one by <=5+, we obtain the resultant
equality.

Theorem 2.1. Let f : [a;,a2] — R be a differentiable function on (ay, ;) with @y < a,. If ' €
L' [a),a,] with 0 < k < 1 and p,9 € [0,1], and |f’| is a convex on [ay, ], then the following
inequality holds:

2K_2+p+ﬁ(f(a1)+f(a2))+2—p—ﬁf(a1+a2)

2 2 2 2
St [Ty )+ T fa) @5)
L (@-a) U +Us+ U32—:+l2]4 +Us+ Us Un 4 UD) o o)),
where,
U = fol I[(1 = ) - p]| 2da
[1 (-0 20-p)0-(1-0)"
(k + Dk +2) (k+1)
+§(1 —2((1 —pl))z)].
U, = fol (1 =" = pl|(1 - D da

Z(p%)lﬁ-l(l—p%) 1—2(p%)K+l 1_2(p%)/<+2
G+ T k+D GiD&x+2

+p(1-2(1 —pi))—g(l ~2(1 —pi)z)].
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Ada

Us

fol I[9 - (1 - 2]
1=2(1-(1-98))" 2(1-9)(1-(1-04)"

(k+ Dk +2) (k+1)
) 1\\2
+§(1—2«1—ﬁQ)ﬂ.

1
Ui = [ lp-a-ar

207 (1-04) 1-2(08)" 1-2(9%)7
G+ D T xk+D  GrDx+2)
9

+0(1—2(1—195))—5(1—2(1—193)2)].

(1-24da

Us

1
f [[2 -2+ p-2]|2d2
0

1422 2202~ (2 - (2 - p))")*?
K2 +3k+2
1-22-Q2-p)F(2-@-@2=-p)))
(k+1)

+2-p) (% -(e-e —p))l)z) .

+

1
f0|[(2—/1)K+p—2]|(1—/l)d/1
1 d(k(p—3)+p—2)2 - p)* )
Ep(_ k+ Dk +2) —2% +8’°_9)
K(—4(2—p)K+2K+1+K+3)+1
k+1D(k+2)

&
Il

+

AdA

1
v = [ f2-9-@-a1
0

142642 222 = (2 = (2 — §))F )<+2
K2 +3k+2

1-22-Q2-9) (2-2-@-0)H))
- k+1)
1 1,2
Jr(z—ﬁ)(5 -(@-@-0)) )
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Us

1
f [2-9-@-19[1-21da
0

_ 10(_4(;«# —3)+ 09— 2)(2 - 9
2 (k + D)(k + 2)
k(4@ -9y + 2T+ k+3) + 1
(k + D)k + 2)

—2ﬁ2+80—9)

+

Proof. From Lemma 2.1 and convexity, it follows that,

2K_2+p+19(f(011)+f(0/2))+2—p—19f(0/1+0/2)

2 2 2K 2
r 1
_%[ I (CORR/MICH)]
R l K a) +a
- 22K+21j(: [(1 =D =plf (/lal+(1—/l) 12 Z)d/l‘
) — aq

: 1 o7 )+ ay
8 -0 (e s 0 -0 2520y

r — A

! p .o+ a
T fo[(2—ﬂ) +p—2]f(/l ‘2 2+(1—/l)a/2)d/1‘

) — @ a1+a2
tm fo[ ~e- (A2 - e

) + ay

IA

2K+z f|(1—ﬂ)— 117 (/lal+(1—/1) )W

“’;;f“flﬂ (1)
== fl(z A+ p =21 (A2 (l—ﬂ)az)ld/l

@ —a Al o [ Q1 T @2
= N R A

a1+a2

(mz (1= )ldﬂ

+ (1 —/l)al)ld/l

IA

o - ar- ]|[/1|f(al)l+(1—ﬁ)‘f(— |2
ot -
ST fl(2 Ay +p=2| |2l
= f|2 9-2- |

[A F@) + 1 -2

]d/l

(=D <a2>|]

(GRS ‘ + (1= D1f @] 42
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2 2 K 2
Fk+1) . )
_m [J(az)’f(al) + J(a1)+f(a2)]

(,—a)(Uy+ U, +Us + Uy +Us+ Ug+ U; + Ug) ,
(I @)l + I @))).

2k_2+p+19(f(a/1)+f(0/2))+2—p—19f(0/1+0/2)

The proof is completed.

Example 2.1. Let [a),a>] = [0, 1] and define the function f : [0,1] = R as f (1) = 2> + 3. Let us
consider the right-hand side of the inequality (2.5) as follows:

(Qz—&l)(Ul+U2+U3+U4+U5+U6+U7+Ug)

2K+2
2(—p1 + k(207 = 3p + 2) = 22— p) + p(2 — p) + 21 + 2p?)
B (k+1)
2(=3p = 91+ 2k + I = 22 = 9 + 9 (=3k + (2 - D) - 3) +4)

+

(k+1)

From the definitions of fractional integrals, the equalities

2"—2+p+19(f(0)+f(1))+2—p—19f(1) Tk + 1)

> 2 I3 30—y e F@0) + T o f )

~ 2—p—ﬂ(§)+2k—2+p+0(9) 1(33K2+99K+72)

2

2« 8 2« 2 8k2 + 24k + 16

are valid. Finally, we have the following inequality:

2—p—19(33) 1(33k2+99%+72
2% 8) 2\ 82+24k+16
1[2(K2—8.2K+2K+2+4K+5) 2(-4.2¢+ 21 4k + 3) 2(K+1)+2}
. (26)

< + +
2K+2 k+1D(+2) k+1D(k+2) k+1D(+2)

As one can see in Figure 1, (2.6) in Example 1 shows the correctness of this inequality for all
values of xk € (0, 1] and special choices of p, . The Figure 1 represents the Graphical description of
inequality (2.6) and their difference.

Remark 2.1. If we choose p = ¢ =1, «
inequality (1.3).

1, in Theorem 2.1, then inequality (2.5) reduces to

Remark 2.2. If we choose p = ¢ = 0, «
inequality (1.5).

1, in Theorem 2.1, then inequality (2.5) reduces to

Remark 2.3. If we choose p = 0
inequality (1.7).

[SST

, k = 1, in Theorem 2.1, then inequality (2.5) reduces to

AIMS Mathematics Volume 8, Issue 7, 15950-15968.
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The left term=Red, The right term=Blue
1.1
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0 0.2 04 0.6 0.8 1

ik

Figure 1. Graphical description of inequality (2.6).

Theorem 2.2. Let f : [, @] — R be a differentiable function on (a1, a,) with @y < a; with 0 <
k<1,2€[0,1],and p,& € [0,1].If f' € L[ay, az2] and mapping |f'|? with g > 1, is convex on (a1, a;],
then the following inequality holds:

2K_2+p+ﬂ(f(al)+f(ag))+2—p—19f(cz]+a2)

2¢ 2 K 2
T(k+ 1) .
_2(a2 —ap)¥ [ ey @) +J (“ )+f(012)] 2/<+2 1
%U@l”q@huxaow+Lhux“‘+“%@ T+ah@1”q@@u<agw+zuux“1+“ﬁw)q}
1/
{<Un>1 Vol (Ul (a2>|‘f) + U Ul S U (@) q}]
2.7)
where,
1
Uy = fo [[(1 = v - p]|da
1= 2(1 —py)! 1
= I G -amp m= -t
1
U = f |9 - (1 = 2)¥]|dA
0

1 +2(1 = mp)<t!
K+ 1

—(1 =238, m=1-10.
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1
vn = [ lle-v-e-plldr
1_2K+1 +2(2—T]3)K+1

= — 2 =p)(1=2m), p3=2—-(2"—p)+.

K+ 1

Ui,

1
f [2-9-@-21]|da
0

1+ 2K+1 _ 2(2 _ n4)K+1

_ + Q=) (1 =2m8), na=2—(2=)*.

k+1

Proof. Utilizing the Lemma 2.1 and Power-mean inequality, we obtain

2°=2+p+(fla) + fla)) 2—-p—-0 (a1+a;
2 ( 2 )+ 2 f( 2 )

I'k+1)
_m[ (- @) + T, )+f(a2)]
1-1/q
< =5 (f (1= ay —pld/l)
a; + an la
(f (1 =)~ (ﬂa1+(1—/1) ) d/l)
1-1/q
2 ( f [0 — (1 = D)"] d/l)
l/q
(f [& - (1 - D] f(/laz+(1—/l)al+az)qd/1)
0 1-1/q
2K+2 (f 2D +p— 2|d/l)
l/q
( ( a/1+a/2+(1—/l)a2)qd/l)
) — @ 1-1/q
2 — @) )
+T(j; [2—0—(2—4)1613)
: 1/q
0 2

1-1/q
< =5 (f (1= 2" _pm)

X(fo (1 =) - pl (ﬂlf' (@)’ + (1 -2

q 1/q
Jor

,(CK] +C¥2)
2
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a a -l
2 — ]
S (f 9~ (1 - |d/l)

X(f 19— (1 —/l)KI(/llf’(az)lq+(1 - )
0

1-1/¢
T (f 2~ +p - 2|d/1)
(f Q= +p- 2|( |f ()
O —« 1-la
2 — U] K
T (fo [|2—ﬁ—(2—/l)|]d/l)

1
x(f |(2—/l)"+p—2|(/l az)q
0

2“—2+p+19(f(a/1)+f(a/2) + 2

2k 2

T+
2(ay — ay)

{(U@‘ la (Ullf (@)l + Uslf' (2

,(al +a2)
2

q 1/q
Jor

1/q
+(=D|f (az)lq) dﬂ)

1/q
+(1=DIf (al)l") dﬂ) :

-p—1 (aq +a/2)
2« ! 2

-
2K+2

[ @y~ S (@) +J, a)+f(a’2)]

>|q) : (Um)“”q(Uslf’(al)l"+U4|f( 1“”ZW) }

. {(Un)l‘”q(Uslf’(al - “2)|q+U6|f'(az>|‘1) + W (0 LI U ) q}]

(2.8)

The proof is completed.
Now we discuss the particular inequalities which generalize inequalities in classical sense.

Corollary 2.1. Suppose that all the assumptions of Theorem 2.2, are satisfied. If we choose p =9 = 1,
k =1, the following inequality holds:

2 ar — @
a, — a % , q 1',a1+a24<11 g , g 1 (a1 + 9\
<2 [(3|f(a1)l+3f( - )) +(3|f(cvz)|+3f( : ))]

Corollary 2.2. Suppose that all the assumptions of Theorem 2.2, are satisfied. If we choose p = ¢ = 0,
k =1, the following inequality holds:

fla)+ fla) 1 f o
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a) +a; 1 @2
|f( 2 )_az—alf flupdu

431

) — @y a1+az)

<2 [(%v’(alnu%]f( - )]

Corollary 2.3. Suppose that all the assumptions of Theorem 2.2, are satisfied. If we choose p = 9 = %,
k = 1, the following inequality holds:

0\ 1 2
) +(§ |f’(6¥2)|q+§

()

1 1 @2
|§{2f(6¥1+C¥2)+f(6¥1)+f(6¥2)}_ f Fdu

2 2 @y — a1 Jg

(57)

29

< 5(0’2—0’1) % 29
162

] e a9\
72 g1 @i+ 75 ‘

Now we obtain some estimates of Simpson’s and Hermite-Hadamard-inequalities for concavity.

NP
+8—1|f(6¥2)|+

(57)

Theorem 2.3. Let f : [a1,a;] — R be a differentiable mapping on (ay, as) with a; < a;,0 <k < 1,
and p,? € [0,1], g > 1. If | f'|? is concave on [y, a;], then the following inequality holds:

2K_2+p+19(f(a1)+f(a2))+2—p—ﬁf(a1+a2)

2 2 K 2
I'k+1) . )
“Sar o F@) + I fla)]
o | v -’ 5 U U o tap
S0[22:<+20[1 {ngf,{ sl 2X( 2 )}]*‘Uloxf,{ 3><(a/2)2104><( 2 )})I}

Uy

(U5X(¥)+U6X(a’2) (U7X(%)+ng(a1)
+Upn X |f +Up X |f : (2.9)
U“ U12
Proof. Using the concavity of |f’|? and the power-mean inequality, we know that for 4 € [0, 1], O
If"(Aay + (1 = D)l > Af (@) + (1 = DIf (@)l
> (AUf (@l + (1 = DIf (@)])
Hence

If" (A + (1 = D)l = Af (@)l + (1 = DIf (a2).

By the concavity and Jensen integral inequality, we have
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2k_2+p+19(f(a/1)+f(012))+2—p—ﬁf(011+012)

2K 2 2K 2
C(k+1)
_m[ (a2)” f(al) + J(a )+f(612)]
fl [(1 =D =p]|(Aa; + (1 = 2) 2E2)|dA
2K+2 (f |(1_/1) - |d/l) f’ 0 1 ‘( 2 )
o 1= = pl|da
: K aj+ar
az;zafl fl|[19—(1— )f, [ w-a —14)] (/10/24-(1—/1)7) il
2 Il =a-ay]

(4252 + (1 = D )| da

CUz -
2/<+2

_ 1 "2 =D+ p—2]|(1222 + (1 - D an)|da
azmal (f |[(2—/1)“+p—2]|d/1) f ks 1p ‘( 2 az)| ]
2 b (@ =% +p-2]|da
1
(f 29— -]

[[[2-9-@- 2]
)|

f2-9-@-d

U1 (a’l)+ U (aﬁ-a/z) a U3 (Cl’z)+ U (111+a!2)
< 2K+2 Lo |f’ Us ] 2K+2 LU |f Us
@ (Us (m)+ Us (a2) a —a Uy (mmz)+ Us (a))
S QM)f[ 2% S ) |f 7

2K_22'|"(P+17(f(01)*2‘f(02))+ 2_;_ ﬁf(aﬁ ;‘Clz)
Tk + 1)

[ (T (@) + I, )+f(az)]

_2K+l(a2 _QI)K
U, X(a1)+ UzX(%)
Ug X + Ujg X
Uy

{(Us X (%) + Us X (0’2)}

ay —a
2K+2

fl

’ U3X(a'2)+U4x((Yl+a/2>
! Uio
’ (U7 x (%) + Us X (1)
U12 ’

+U12><f

fl

+U11 X

Ul]

which completes the proof.

As a special case of Theorem 2.3, we obtain the following result,

Corollary 2.4. Suppose that all the assumptions of Theorem 2.3, are satisfied. If we choose p = 19 = %,
k = 1, we have Simpson’s inequality:

AIMS Mathematics Volume 8, Issue 7, 15950-15968.



15964

zf(al+az) fla) + fla)] 1 fazf(u)du
2 @y — A1 Jo,

5(a/2—a/1) Hf 16a1+29a/2)+f,(29a/1+16a2)].

45
Remark 2.4. Our inequality (2.10) is an improvement of Alomari inequality as obtained in [18].

(2.10)

2.1. Applications to special means:

Let consider the following special means for a; # a,.

The arithmetic mean:
a1+ ar

Ala, ap) = )

, ap1,a €R.
The logarithmic-mean:

a; —
L(a;, ap) = Jail # lasl, @, #0, ay, a2 €R.

In|az| — Infa|

The generalized logarithmic-mean:

r+l r+1 %
((C:Zi 1)(az(cil)m)l L reR\(=1,0), aj,a; > 0.

L(a),a;) =

Proposition 2.1. Suppose r € R\{-1,0} and a;,a; € R such that 0 < a; < a, with q > 1, then the
following inequality holds:

‘A (a1, @) — L (a1, @)

< r(a; — al)[ glml" N 1 '(a/l + a/z)"l
8 3 3 2

o s ez )
— | — .
372 T s 2

Proof. The assertion follows from Corollary 2.1 for the function f(x) = x" and r as specified above. O

Proposition 2.2. Suppose g > 1 and ay, @y € R, such that 0 < a, < a», then the following inequality

holds:
'A_l (a1, @) - L™ (1, @)
(@2 — ay) (1 2, i
< %[( @, |A (al,a2>|) ( ol + 5] 2<a1,a2>|") |
Proof. The assertion follows from Corollary 2.2 for the function f(x) = i O
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2.2. Q-digamma function

Suppose 0 < q < 1, the gq-digamma function ¢, is the q-analogue of the digamma function ¢
defined by (see [19,20] ).

i qk+x
g=-In(-q+ Ingq) ———
k=0 q

i qu

=—In(l-q)+ lnqzl_ =
k=0 q

For ¢ > I and x > 0, q-digamma function ¢4defined by

1 ©— q
(pq:—ln(q—l)+ lnqx—i—Zm

1 (o)
— _In(q-1)+ 1nq[x—§—z

Proposition 2.3. Suppose a, a; be real numbers such that 0 < a; < a,, with g > 1, then the following
inequality holds:

1 a2
‘A (‘Pq (@1),¢q (02)) T f ©q (u) du

g+ 232

1
q)q ]
Proof. The assertion can be obtained immediately by using Corollary 2.1 to f(g) = ¢q(€) and € > 0,
J'(&) = @y (&) is convex on (0, +00). O

1
N (2 1
) + (5 |‘Pq (0/2)|q + 3

, (@1 T Q2
90‘1( 2 )

1
Pq (0/1)|q + 3

Proposition 2.4. Suppose a, @, be real numbers such that 0 < a; < a,, with g > 1, then the following
inequality holds:

3200 (252) + A (g0 (0 ) | - - ! - f " a0 du

7]
i 1
, (@1 T @ 4\ 8 , (@1 T @p q\4q
“q ( 2 ) * 81 90(1( 7 ) ]
Proof. The assertion can be obtained immediately by using Corollary 2.3 to f(g) = ¢q(€) and & > 0,
J'(&) = gy (&) is convex on (0, +00). -

S5(C¥2—C¥1)

72

8 4 29
X[(S_l lea @)l + 153

29
162

(@) +
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2.3. Modified Bessel function:

Recall the first kind of modified Bessel function 1, , which has the series representation ( [19], p.77).

(E)p+2m
2

lp = Zm!r(p+m+ 0’

m>0

where x € R and p > -1, while the second kind modified Bessel function K, ( [19], p.78) is usually
defined as

nl, () -1, (%)
KD = sinpr

Here, we consider the function €, (x) : R — [1, co0) defined by

Q,(x)=2T(p+1)x7L(x),

where I is the Gamma function.

Proposition 2.5. Suppose p > —1 and 0 < a; < a;. Then

a) +a 1 -2
Qp( = 2)— f Q, (e)de

@y — a1 Jg,

Q=

)+ ay

< (02—01)[(1 :

q
S m 50/1 |Qp+1(a/1)| +

a) +a
Qp“( 12 2)

q)é ]

q)
a1 + @y

3

1
+ (502 |Qp+l (0/2)|q +

a1+
Q”“( 12 2)

Specifically, if p = —%, then

+ 1 2
cosh (cn e ) - f cosh (&) de

2 ay) —

21—

: a+ay \ |4
< (042—041)[ 1 [sinh(a)|? a +a smh(%)
- o 04
B 8 3 ! (3] 3 011-;&2
1
ar+ar \ |9\ 4
N 1 sinh(afz)q+011+a2 smh( b 2) ]
—a .
3 2 (0%} 3 “1‘502

Proof. The assertion can be obtained immediately by using Corollary 2.2 to f(g) = ,(¢), € > 0, and
Q; (&) = lﬁ »+1 (&) . Now taking into account the relations _ 1 (&) = cosh (&) and Q% (&) = %h(s) O
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3. Conclusions

In this article, we have established an integral identity via Riemann-Livouille fractional integral.
Based on this identity, we present several midpoint, trapezoid and Simpson’s-type inequalities whose
absolute values are convex and concave. It is also shown that several results are given by special cases
of the main results. We deduce that the findings proved in this work are naturally universal, contribute
to the theory of inequalities. Finally, we have presented some applications to special means, g-digamma
and modifies Bessel functions with respect to our deduced results. In future studies, researchers can
obtain generalized versions of our results by utilizing other kinds of convex function classes or different
types of generalized fractional integral operators.
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