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Bangchao Yin and Shujie Zhai∗

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China

* Correspondence: Email: zhaishujie@zzu.edu.cn.

Abstract: In this paper, we will prove that a closed Möbius minimal and Möbius isotropic
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1. Introduction

For a connected smooth n-dimensional hypersurface x : Mn → Sn+1 in the unit sphere without
umbilical points, Wang [18] introduced four basic Möbius invariants g, B, A and Φ, which are called
the Möbius metric, the Möbius second fundamental form, the Blaschke tensor and the Möbius form
respectively (for their definitions see Section 2 below), he also gave the fundamental theorem and
basic formulas. Since then, the Möbius differential geometry of submanifolds for general dimension
and codimension in a sphere has been well investigated and significant progress has been made in this
area [6–10, 13].

One of the important aspects of Möbius geometry of hypersurfaces in a sphere is Möbius minimal
hypersurfaces (also known as Willmore hypersurfaces), which is the critical point of the Möbius
volume functional (volume functional of Möbius metric g) (see [18] for details):

W(M) =

∫
M

dvg =

∫
M
ρndvg0 =

n
n − 1

∫
M

(S − nH2)
n
2 dvg0 , (1.1)

where S is the square of the length of the second fundamental form, H is the mean curvature, g =

ρ2dx · dx is the Möbius metric, g0 = dx · dx is the induced metric, ρ2 = n
n−1 (S − nH2). In [18]

(or [11]), the authors computed the Euler-Lagrange equation of the above Möbius volume function
for any n-dimensional submanifold. Guo-Li-Wang [5] gave an important example of Möbius minimal
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hypersurfaces:

Wn,m := Sm

√n − m
n

 × Sn−m

(√
m
n

)
→ Sn+1,

which is called Willmore tori, it is minimal if and only if n = 2m for some m.
Hypersurface x : Mn → Sn+1 is called Möbius isotropic if Φ ≡ 0 and A = µg, where µ is the

Blaschke eigenvalue (i.e. the eigenvalue of Blaschke tensor A with respect to g) of x. According
to Liu-Wang-Zhao’s main result in [14], we know that the Blaschke eigenvalue µ has to be constant,
and x is Möbius equivalent to either a minimal hypersurface with constant scalar curvature in Sn+1

(if µ > 0), or the preimage of a stereographic projection of a minimal hypersurface with constant
scalar curvature in Rn+1 (if µ = 0), or the image of the standard conformal map τ : Hn+1 → Sn+1

+ of a
minimal hypersurface with constant scalar curvature in hyperbolic space Hn+1 (if µ < 0), because such
hypersurfaces are closely related to Chern’s conjecture, it has received extensive attention, and many
meaningful results [1–3, 16] have been obtained about minimal hypersurfaces of Sn+1 with constant
scalar curvature.

Recently, Deng-Gu-Wei [4] proved that a minimal Willmore hypersurface M4 of S5 with constant
scalar curvature is isoparametric. Motivated by Deng-Gu-Wei’s paper, we investigated Möbius minimal
hypersurface M4 in the context of Möbius geometry, and obtained the following classification theorem:

Theorem 1.1. Let x : M4 → S5 be a closed Möbius minimal and Möbius isotropic hypersurface
without umbilic points, then x is Möbius equivalent to one of the following hypersurfaces:

(1) the torus S2( 1
√

2
) × S2( 1

√
2
)→ S5;

(2) the Cartan minimal hypersurface in S5 with four distinct principal curvatures.

We organize the paper as follows. In Section 2, we review the Möbius invariants and its integrability
conditions for hypersurfaces in the unit sphere, and give some basic formulas for Möbius minimal and
Möbius isotropic hypersurfaces in S5. In Section 3, we consider the case that there are two distinct
principal curvatures at one point and prove that its Möbius second fundamental form is parallel. In
Section 4, we show that there do not exist Möbius minimal and Möbius isotropic hypersurfaces with
three distinct principal curvatures at the minimum point of f4. In Section 5, we will discuss the case
that there are four distinct principal curvatures at the minimum point of f4, and prove that the Blaschke
eigenvalue µ ≥ 1

32 . Finally, we complete the proof of Theorem 1.1 in Section 6.

2. Möbius invariants and some basic formulas

In this section, we first review Möbius invariants and the structure equations for hypersurfaces in
Sn+1 (see [18] for details), and then we give some basic formulas for Möbius minimal and Möbius
isotropic hypersurface in S5.

Let Rn+3
1 be the Lorentz space with standard inner product 〈·, ·〉 given by

〈X,W〉1 = −x0w0 + x1w1 + · · · + xn+2wn+2,

for X = (x0, x1, · · · , xn+2), W = (w0,w1, · · · ,wn+2) ∈ Rn+3. The half cone in Rn+3 is defined as

Cn+2
+ = {X ∈ Rn+3

1 | 〈X, X〉 = 0, x0 > 0}.
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For an immersed umbilic-free hypersurface x : Mn → Sn+1 ⊂ Rn+2, we define its Möbius position
vector Y : Mn → Cn+2

+ by

Y = ρ(1, x), ρ2 =
n

n − 1
(S − nH2) > 0.

Theorem 2.1 ( [18]). Two hypersurfaces x, x̃ : Mn → Sn+1 are Möbius equivalent if and only if there
exists T in the Lorentz group O(n + 2; 1) acting on Rn+3

1 , such that Y = ỸT .

It follows immediately from Theorem 2.1 that g = 〈dY, dY〉 = ρ2dx ·dx is a Möbius invariant, which
is called the Möbius metric of x.

Let ∆ and R denote the Laplacian and the normalized scalar curvature of the Möbius metric g, we
define

N = −
1
n

∆Y −
1

2n2 (1 + n2R)Y. (2.1)

Then we have 〈Y,Y〉 = 〈N,N〉 = 0, 〈Y,N〉 = 1.
We use the following range of indices: 1 ≤ i, j, k, . . . ≤ n.
Choosing a local orthonormal basis {Ei} with respect to g with dual basis {ωi}, and E is the Möbius

normal vector field of x. Putting Ei(Y) = Yi, then we have

〈Yi,Y j〉 = δi j, 〈Yi,Y〉 = 〈Yi,N〉 = 0, (2.2)

and {Y,N,Y1, . . . ,Yn, E} forms a moving frame in Rn+3
1 along M. The structure equations are given by

dY =
∑

i

ωiYi, dN =
∑

i, j

Ai jω jYi +
∑

i

CiωiE, (2.3)

dYi = −
∑

j

Ai jω jY − ωiN +
∑

j

ωi jY j +
∑

j

Bi jω jE, (2.4)

dE = −
∑

i

CiωiY −
∑

i, j

Bi jω jYi, (2.5)

where {ωi j} is the connection form of the Möbius metric g. It is clear that

B =
∑

i, j

Bi jωi ⊗ ω j, A =
∑

i, j

Ai jωi ⊗ ω j, Φ =
∑

i

Ciωi (2.6)

are all Möbius invariants and called the Möbius second fundamental form, the Blaschke tensor and the
Möbius form of x, respectively. They can be represented by Euclidean invariants as follows:

Bi j =ρ−1(hi j − Hδi j),
Ai j =ρ−2(Hessi j(log ρ) − ei(log ρ)e j(log ρ) − Hhi j

)
−

1
2
ρ−2(‖∇̄ log ρ‖2 − 1 + H2)δi j,

Ci = − ρ−2(H,i +
∑

j

(hi j − Hδi j)e j(log ρ)
)
,

where Hessi j and ∇̄ are the Hessian-matrix and the gradient with respect to dx · dx.
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The components of the covariant differentiation of B, they are defined by∑
k

Bi jkωk = dBi j +
∑

k

Bikωk j +
∑

k

Bk jωki. (2.7)

Let Bi jkl be the second covariant derivative, they satisfy the following Ricci identity

Bi jkl − Bi jlk =
∑

m

BimRm jkl +
∑

m

Bm jRmikl. (2.8)

Among the integrability conditions for the structure equations (2.3)-(2.5), we have the following
(cf. [18]):

Bi jk − Bik j = δi jCk − δikC j, (2.9)

Ri jkl = BikB jl − BilB jk + δikA jl + δ jlAik − δilA jk − δ jkAil, (2.10)∑
i

Bii = 0,
∑

i, j

B2
i j =

n − 1
n

, (2.11)

Ri jkl denotes the components of the Riemannian curvature tensor of g.
Hypersurface x : Mn → Sn+1 ⊂ Rn+2 is Möbius minimal if and only if (see [18])∑

i, j

Bi ji j +
∑
i, j,k

BikBk jB ji +
∑

i, j

Ai jBi j = 0. (2.12)

If x : Mn → Sn+1 is Möbius isotropic, then we have

Ai j = µδi j, Ci = 0, Bi jk = Bik j, (2.13)

Ri jkl = (BikB jl − BilB jk) + 2µ(δikδ jl − δilδ jk). (2.14)

Substituting (2.13) and
∑

i Bii = 0 into (2.12), then it reduces to∑
i, j,k

BikBk jB ji = 0. (2.15)

We define four functions:

f1 = ‖B‖2 =
∑

i, j

B2
i j, f2 = ‖∇B‖2 =

∑
i, j,k

B2
i jk,

f3 =
∑
i, j,k

BikBk jB ji, f4 =
∑
i, j,k,l

BikBk jB jlBli.

Assume that x is a Möbius minimal and Möbius isotropic hypersurface in S5, then by
straightforward computation, we have the following lemma.

Lemma 2.1. Let x : M4 → S5(1) be a umbilic-free closed Möbius minimal hypersurface. If x is Möbius
isotropic, then

f2 = ‖∇B‖2 = 6(
3

32
− µ) = const., (2.16)
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4 f3 = 6
∑
i, j,k,l

BiklBk jlB ji = 0, (2.17)

∆ f4 = 32(µ −
3

32
) f4 + 8Ã + 4B̃, (2.18)

where ∇ and ∆ are the gradient and Laplacian of the Möbius metric g,

Ã =
∑

i, j,k,l,m

BmlkBmliBk jB ji, B̃ =
∑

i, j,k,l,m

BmklBmiBk jBi jl.

Proof. Using (2.11), (2.14) and the Ricci identity (2.8), we have

0 =
1
2
4 f1 =

1
2

∑
i, j,k

(B2
i j)kk = ‖∇B‖2 − ‖B‖2(‖B‖2 − 8µ),

where f1 = ‖B‖2 = 3
4 , thus (2.16) follows.

Since (2.15) means f3 = 0, then we have

0 = ( f3)mn = (
∑
i, j,k

BikBk jB ji)mn

= 3
∑
i, j,k

BikmnBk jB ji + 6
∑
i, j,k

BikmBk jnB ji,
(2.19)

combining this and (2.8), (2.14), we can have

0 = ∆ f3 = 24(µ −
3

32
) f3 + 6

∑
i, j,k,l

BiklBk jlB ji, (2.20)

which gives (2.17) immediately.
Analogously, by (2.11), (2.13) and (2.14), we can have

4 f4 =
∑

i, j,k,l,m

(BkmBmiBi jB jk)ll = 4
∑

i, j,k,l,m

BkmllBmiBi jB jk

+ 4
∑

i, j,k,l,m

(2BkmlBmilBi jB jk + BkmlBmiBi jlB jk)

=32(µ −
3
32

) f4 + 4
∑

i, j,k,l,m

(2BmlkBmliBk jB ji + BmklBmiBk jBi jl),

then we get (2.18). �

For an arbitrary fixed point p ∈ M, we choose orthonormal frame such that Bi j = λiδi j. We call λi

the Möbius principal curvatures at p, they satisfy

4∑
i=1

λi = 0,
4∑

i=1

λ3
i = 0,

4∑
i=1

λ2
i =

3
4
. (2.21)

Without loss of generality, we will assume that λ1 ≥ λ2 ≥ λ3 ≥ λ4, then we have the following
observation.
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Lemma 2.2. Let x : M4 → S5 be an umbilic-free closed Möbius minimal and Möbius isotropic
hypersurface, if λ1 ≥ λ2 ≥ λ3 ≥ λ4 at p. Then

λ1 + λ4 = 0, λ2 + λ3 = 0.

Proof. Since λ3
1 + λ3

2 + λ3
3 + λ3

4 = 0, then we have

(λ1 + λ2)(λ2
1 − λ1λ2 + λ2

2) + (λ3 + λ4)(λ2
3 − λ3λ4 + λ2

4) = 0.

Combining λ1 + λ2 = −(λ3 + λ4), we get

(λ1 + λ2)[λ2
1 + λ2

2 − (λ2
3 + λ2

4)] = 0.

By λ1 + λ3 = −(λ2 + λ4) and λ1 + λ4 = −(λ2 + λ3), we obtain

(λ1 + λ2)(λ1 + λ3)(λ1 + λ4) = 0. (2.22)

We claim λ1+λ2 , 0 under the assumption that λ1 ≥ λ2 ≥ λ3 ≥ λ4, if otherwise, λ1 = λ2 = λ3 = λ4 = 0,
which is a contradiction to

∑
i λ

2
i = 3

4 . Hence

(λ1 + λ3)(λ1 + λ4) = 0. (2.23)

If λ1 + λ3 , 0, then λ1 + λ4 = −(λ2 + λ3) = 0.
If λ1 + λ3 = 0, then λ1 ≥ λ2 ≥ −λ1 ≥ −λ2, which implies

λ1 = λ2 > 0, λ3 = λ4 = −λ1. (2.24)

These complete the proof of Lemma 2.2. �

According to Lemma 2.2, at a fixed point, there are three cases:

Case I, λ1 = λ2 > 0 > λ3 = λ4 = −λ1;
Case II, λ1 > λ2 = λ3 > λ4, λ2 = λ3 = 0, λ4 = −λ1;
Case III, λ1 > λ2 > λ3 > λ4, λ3 = −λ2, λ4 = −λ1.

(2.25)

3. Two distinct Möbius principal curvatures at one point

In this section, we deal with Case I and prove the following result.

Theorem 3.1. Let x : M4 → S5 be a closed Möbius minimal and Möbius isotropic hypersurface
without umbilic points. If there are two distinct principal curvatures at a fixed point, then ‖∇B‖ = 0.

We first prove a simple and useful lemma.

Lemma 3.1. For any k, l ∈ {1, 2, 3, 4}, we have

B11k + B22k = 0, B33k + B44k = 0; (3.1)

B11kl + B22kl = −
1

2λ

∑
i, j

Bi jkBi jl = −(B33kl + B44kl). (3.2)
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Proof. Since
∑

i Bii = 0, taking the first and second covariant derivative, we have

B11k + B22k + B33k + B44k = 0, (3.3)

B11kl + B22kl + B33kl + B44kl = 0. (3.4)

Similarly, by f1 = ‖B‖2 =
∑

i, j(Bi j)2 = 3
4 , we can get∑

i, j

Bi jBi jk = 0,
∑

i, j

(Bi jkBi jl + Bi jBi jkl) = 0. (3.5)

In case I, λ1 = λ2 = −λ3 = −λ4 = λ , 0, so we get

λ(B11k + B22k − B33k − B44k) = 0, (3.6)∑
i, j

Bi jkBi jl + λ(B11kl + B22kl − B33kl − B44kl) = 0. (3.7)

Hence, by (3.3), (3.6), (3.4) and (3.7), we obtain (3.1), (3.2) hold. �

The following lemma describes the relations between the components of ∇B, which are crucial to
the proof of Theorem 3.1.

Lemma 3.2. The elements of {Bi jk} satisfy the following equations:

B2
111 + B2

222 = B2
133 + B2

134 = B2
233 + B2

234, (3.8)

B2
333 + B2

444 = B2
113 + B2

123 = B2
114 + B2

124, (3.9)

B133B233 + B134B234 = 0, (3.10)

B113B114 + B123B124 = 0, (3.11)

− B111B113 + B222B123 + B133B333 − B134B444 = 0, (3.12)

B111B114 − B222B124 + B134B333 + B133B444 = 0, (3.13)

B111B123 + B222B113 + B233B333 − B234B444 = 0, (3.14)

B111B124 + B222B114 − B234B333 − B233B444 = 0. (3.15)

Proof. From (2.19) and the fact that λ1 = λ2 = λ = −λ3 = −λ4 , 0, we have

0 =
∑
i, j,k

BikmnBk jB ji + 2
∑
i, j,k

BikmBk jnB ji = 2
∑
i,k

BikmBiknλi

= 2λ
∑

k

(B1kmB1kn + B2kmB2kn − B3kmB3kn − B4kmB4kn).

Thus ∑
k

(B1kmB1kn + B2kmB2kn − B3kmB3kn − B4kmB4kn) = 0. (3.16)

Using (3.1) and setting (m, n) = (1, 1), (2, 2), (3, 3), (4, 4) in (3.16), then (3.8) and (3.9) can be
obtained immediately.

Analogously, taking (m, n) = (1, 2), (3, 4), (1, 3), (1, 4), (2, 3), (2, 4) in (3.16), respectively, we can
get the remaining equations in Lemma 3.2. �
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As a direct application of Lemma 3.2, we have

Lemma 3.3. For any k ∈ {1, 2, 3, 4}, the following equation holds∑
i, j

B2
i jk = 4(B2

111 + B2
222 + B2

333 + B2
444) =

1
4
‖∇B‖2. (3.17)

Proof. Using (3.1), (3.8) and (3.9), we have∑
i, j

B2
i j1 =B2

111 + B2
221 + B2

331 + B2
441 + 2B2

121

+ 2B2
131 + 2B2

141 + 2B2
231 + 2B2

241 + 2B2
341

=4(B2
111 + B2

222 + B2
333 + B2

444).

Similarly, we get ∑
i, j

B2
i j2 =

∑
i, j

B2
i j3 =

∑
i, j

B2
i j4 = 4(B2

111 + B2
222 + B2

333 + B2
444),

thus (3.17) follows. �

By making use of Lemma 3.1-3.3, we get some relations about {Bi jkl}.

Lemma 3.4.
B1122 = B2211, B1111 = B2222, B1112 = −B2212,

B1134 = −B2234, B3334 = −B4434, B3312 = −B4412.

Proof. By (2.14) and the Ricci identity (2.8), we obtain

B1122 = B1212 = B2211 + (2µ + λ1λ2)(λ1 − λ2) = B2211.

On the other hand, from (3.2) and (3.17), we know that

B1111 + B2211 = B1122 + B2222,

thus we have B1111 = B2222.
By making use of Lemma 3.1 and (3.10), (3.11), we have∑

i, j

Bi j1Bi j2 = 2(B133B233 + B134B234) = 0,∑
i, j

Bi j3Bi j4 = 2(B113B114 + B123B124) = 0.

From the above equations and (3.2), we get

B3312 + B4412 = B1112 + B2212 = 0,
B1134 + B2234 = B3334 + B4434 = 0.

Hence, we have completed Lemma 3.4. �

AIMS Mathematics Volume 6, Issue 8, 8426–8452.



8434

From (3.17), we can see that (B2
111 + B2

222) + (B2
333 + B2

444) = 1
16‖∇B‖2 is independent of the choice

of the basis {Ei}
4
i=1, thus for any fixed E3 and E4, B2

111 + B2
222 is invariant under the rotation of {E1, E2}.

Similarly, using (3.17), we can also see that B2
333 + B2

444 is invariant under the rotation of {E3, E4}. For
convenience, we introduce the following notation:

d1 = B2
111 + B2

222, d2 = B2
333 + B2

444. (3.18)

In order to get further relations between the components of ∇B, we set

G1 =

(
B133 B134

B233 B234

)
, G2 =

(
B113 B123

B114 B124

)
. (3.19)

Then (3.8)-(3.11) can be rewritten as

G1G1
T = d1I, G2G2

T = d2I, (3.20)

where I is the identity matrix. Using Lemma 3.2, we have the following:

Lemma 3.5. If d1d2 , 0, then |G1||G2| > 0. Furthermore, when |G1| > 0, we have

|G1| = d1, GT
1 = G∗1, |G2| = d2, GT

2 = G∗2. (3.21)

where |Gi|, GT
i and G∗i denote the determinant, transpose matrix and adjoint matrix of Gi respectively.

Proof. From (3.8), (3.9), we know that Gi = 0 if di = 0 (i = 1, 2), this and (3.20) imply that

|Gi| = ±di, GT
i = ±G∗i , i = 1, 2. (3.22)

By (3.12)-(3.15), we know that (B111, B222, B333, B444) satisfies the following homogeneous system
of linear equations: 

−B113 B123 B133 −B134

B114 −B124 B134 B133

B123 B113 B233 −B234

B124 B114 −B234 −B233




x1

x2

x3

x4

 =


0
0
0
0

 . (3.23)

Denote the coefficient matrix by F, then by (3.8)-(3.11), (3.19) and (3.22) we deduce that

|F|2 = |FFT | = {(d1 + d2)2 − (|G1| + |G2|)2}2

= {(d1 + d2)2 − (d1 ± d2)2}2.
(3.24)

Since (3.23) has nonzero solution if and only if |F| = 0. Hence, if d1d2 , 0, we have |F|2 = 0, thus
by (3.22), (3.24) we get |G1||G2| > 0. Assume |G1| > 0, then (3.22) gives (3.21). We have completed
the proof of Lemma 3.5. �

To prove Theorem 3.1, we assume on the contrary that ‖∇B‖2 = 16(d1 + d2) , 0, then at least one
of {d1, d2} is nonzero. Without loss of generality, suppose d1 , 0. Thus, we may divide the discussion
into two cases.

Case I-(i): d1 , 0, d2 = 0; Case I-(ii): d1 , 0, d2 , 0.
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3.1. Case I-(i) does not occur.

In this case, from (3.9) and (3.18), we immediately get

B333 = B444 = B123 = B113 = B124 = B114 = 0. (3.25)

For fixed directions E3 and E4, we can reselect {E1, E2} if necessary such that B222 = 0, then fix
E1 and rotate the directions {E3, E4}, such that B134 = 0. Since λ1 = λ2, λ3 = λ4, so the above
transformations of the frame preserve Bi j = λiδi j at the point p. More precisely we have

d1 = B2
111 = B2

133 = B2
234 , 0, B233 = B134 = B222 = 0. (3.26)

Lemma 3.6. If d1 , 0, d2 = 0, then there exist local othonomal frame {Ei} such that (3.25) and (3.26)
hold. Furthermore, we have

B1111 = 3B1122 = B2222, (3.27)

(B3311 − B4411)B133 + 2B1234B234 = 0. (3.28)

Proof. From Lemma 2.1, we know that f2 = ‖∇B‖2 = const., taking the covariant derivatives of f2 by
direction E1, we get:

0 =
1
2

( f2)1 = B1111B111 + 3B2211B122

+ 3(B3311B133 + B4411B144 + 2B1234B234)
= B111(B1111 − 3B2211)

+ 3(B3311B133 − B4411B133 + 2B1234B234).

(3.29)

Taking the covariant derivatives of 4 f3, by (2.17), gives us

0 =
1
6

(4 f3)1 =
∑
i, j,k,l

(BiklBk jlB ji)1

= 2
∑
i, j,k,l

Bikl1Bk jlBi j +
∑
i, j,k,l

BiklBk jlBi j1

= 2
∑
i, j,k

Bi jk1Bi jkλi +
∑
i, j,k,l

Bi jkBi jlBkl1.

(3.30)

Using (3.25), (3.26) and (3.17), we conclude the second term∑
i, j,k,l

Bi jkBi jlBkl1 =
∑
i, j,k

B2
i jkBii1 =

1
4
‖∇B‖2

∑
i

Bii1 = 0.

So by making use of (3.1), (3.25), (3.26), we have

B111(B1111 − 3B2211) − (B3311B133 − B4411B133 + 2B2341B234) = 0. (3.31)

Combining (3.31) and (3.29), we get

(B3311 − B4411)B133 + 2B1234B234 = 0,
B111(B1111 − 3B2211) = 0.

Which together with (3.26) imply that B1111 = 3B2211.
From this and Lemma 3.4, the proof of Lemma 3.6 is completed. �
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In order to get more information about the second order covariant differential of tensor B, we take
the third covariant derivative of f3 and get the following:

Lemma 3.7. In Case I-(i), the following equations hold

B1122B111 + B1234B234 = 0, (3.32)

B1234B111 + B3344B234 = 0, (3.33)

(B1122 − B2222)B111 − (B3322 − B4422)B133 = 0, (3.34)

(B1144 − B2244)B111 − (B3344 − B4444)B133 = 0. (3.35)

Proof. Taking the third covariant derivative of f3, we have

0 =
∑
i, j,k

(BikBk jB ji)pqm = 3
∑
i, j,k

Bi jpqmB jkBki + 6
∑
i, j,k

Bi jpB jkqBkim

+ 6
∑
i, j,k

(Bi jpqB jkmBki + Bi jpmB jkqBki + Bi jqmB jkpBki)

= 3
∑

i

Biipqmλ
2 + 6

∑
i, j,k

Bi jpB jkqBkim

+ 6
∑

i, j

λi(Bi jpqBi jm + Bi jpmBi jq + Bi jqmBi jp).

Thus we have ∑
i, j,k

Bi jpB jkqBkim +
∑

i, j

λi(Bi jpqBi jm + Bi jpmBi jq + Bi jqmBi jp) = 0. (3.36)

We will rewrite (3.36) in case of (p, q,m) = (1, 1, 1), (2, 3, 4), (2, 2, 1), (4, 4, 1) respectively.
If (p, q,m) = (1, 1, 1), we have∑

i, j,k

Bi j1B jk1Bki1 + 3
∑

i, j

λiBi j11Bi j1 = 0. (3.37)

Using (3.25), (3.26) and (3.1), the first term of (3.37) reduces to∑
i, j,k

Bi j1B jk1Bki1 = B3
111 + B3

122 + B3
133 + B3

144

= B3
111 + (−B111)3 + B3

133 + (−B133)3 = 0.

Thus we have
∑

i, j Bi j11Bi j1λi = 0, hence

λ
∑

j

(B1 j11B1 j1 + B2 j11B2 j1 − B3 j11B3 j1 − B4 j11B4 j1) = 0,

which together with (3.1) yields

(B1111 − B2211)B111 − (B3311 − B4411)B133 = 0. (3.38)

Substitute (3.27), (3.28) into (3.38), we can get (3.32).
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If (p, q,m) = (2, 3, 4), we have∑
i, j,k

Bi j2B jk3Bki4 +
∑

i, j

λi(Bi j23Bi j4 + Bi j24Bi j3 + Bi j34Bi j2) = 0. (3.39)

It is easy to check that the first term
∑

i, j,k Bi j2B jk3Bki4 = 0, thus (3.39) can be simplified as

0 =
∑

i, j

λi(Bi j23Bi j4 + Bi j24Bi j3 + Bi j34Bi j2)

=λ(B1423B144 + B2323B234 − B3223B324 − B4123B414)
+ λ(B1324B133 + B2424B243 − B3124B313 − B4224B423)
+ λ(B1234B122 + B2134B212 − B3434B342 − B4334B432),

this and (3.25), (3.26), (3.1) imply that

B1234B111 + B3344B234 = 0.

Thus (3.33) is obtained.
If (p, q,m) = (2, 2, 1), we rewrite (3.36) as

0 =
∑
i, j,k

Bi j2B jk2Bki1 +
∑

i, j

λi(Bi j22Bi j1 + 2Bi j21Bi j2). (3.40)

For the first term, by direct computation, we find it is vanished, then (3.40) can be simplified as

0 =
∑

i, j

λi(Bi j22Bi j1 + 2Bi j21Bi j1)

=λ(B1122B111 + B2222B221 − B3322B331 − B4422B441)
+ 2λ(B1221B122 + B2121B212 − B3421B342 − B4321B432)

=λ(B1122B111 − B2222B111 − B3322B331 + B4422B133),

in the last equality, we used (3.32) and (3.1). Thus we get (3.34).
If (p, q,m) = (4, 4, 1), we have

0 =
∑
i, j,k

Bi j4B jk4Bki1 +
∑

i, j

λi(Bi j44Bi j1 + 2Bi j41Bi j4). (3.41)

The first term vanished, (3.41) can be reduced to

0 =
∑

i, j

λi(Bi j44Bi j1 + 2Bi j41Bi j4)

=λ(B1144B111 + B2244B221 − B3344B331 − B4444B441)
+ 2λ(B1441B144 + B2341B234 − B3241B324 − B4141B414),

which together with (3.1) give that

(B1144 − B2244)B111 − (B3344 − B4444)B133 = 0.

We have completed the proof of Lemma 3.7. �
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Corresponding to subcase I-(i): d1 , 0, d2 = 0, we have the following result:

Proposition 3.1. Let x : M4 → S5(1) be a closed Möbius minimal and Möbius isotropic hypersurface
without umbilic points. If there are two distinct principal curvatures at a fixed point, then subcase I-(i)
does not occur.

Proof. Since B2
111 = B2

234 , 0, then from (3.32) and (3.33) we conclude that

B3344 = B1122. (3.42)

From B2
111 = B2

133, we have either B111 = B133 or B111 = −B133.
If B111 = B133, then (3.34) and (3.35) reduce to

B1122 − B2222 − B3322 + B4422 = 0,
B1144 − B2244 − B3344 + B4444 = 0.

On the other hand,
∑

i Bii = 0 gives

B1122 + B2222 + B3322 + B4422 = 0, (3.43)
B1144 + B2244 + B3344 + B4444 = 0. (3.44)

The above four equations imply that

B4422 = −B1122, B3344 = −B2244. (3.45)

Using (3.45) and (3.42), we get B4422 = B2244. By means of Ricci identity, we have

0 = B2244 − B4422 = B2424 − B2442 = 2λ(2µ − λ2). (3.46)

Thus µ = 1
2λ

2 = 3
32 , by (2.16) we have ‖∇B‖2 = 0, this is a contradiction.

If B111 = −B133 , 0, similar to the case B111 = B133, from (3.34), (3.35) and (3.42), we can get

B4422 = −B2222, B1144 = −B3344 = −B1122. (3.47)

By using (3.47), (3.2) and (3.17) we have

B2244 − B4422 = B2244 − B1122 − B4422 + B1122

= (B2244 + B1144) + (B2222 + B1122)

= −
2

2λ

∑
i, j

B2
i j4 = −

1
λ

(
1
4
‖∇B‖2).

(3.48)

On the other hand, by Ricci identity, (2.16) and
∑

i λ
2
i = 3

4 , we have

B2244 − B4422 = 2λ(2µ − λ2) = 4λ(µ −
3

32
) = −

2λ
3
‖∇B‖2. (3.49)

Combining (3.49), (3.48) and λ2 = 3
16 , we have ‖∇B‖2 = 0, which is a contradiction.

In conclusion, we have completed the proof of Proposition 3.1. �
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3.2. Case I-(ii) does not occur.

We will deal with Case I-(ii) and prove it does not occur.
For any fixed direction E3, we can rotate the directions {E1, E2} if necessary such that B123 = 0, then

fix E1 and rotate {E3, E4}, such that B333 = 0. Since λ1 = λ2, λ3 = λ4, the above transformations of the
frame preserve Bi j = λiδi j at the point p. We now assume that B123 = B333 = 0, then by (3.19), (3.21)
we get

B113 = B124, B133 = B234, B233 = −B134,

d2 = B2
444 = B2

113 , 0, B123 = B114 = B333 = 0.
(3.50)

Hence, there are two subcases: (a): B444 = B113, (b): B444 = −B113.
Here we will only discuss the Case (a), the other case follows similarly.

Substituting B444 = B113 = B124 into (3.12) and (3.13), we get

−(B111 + B134)B444 = 0, (B133 − B222)B444 = 0,

which implies
B111 = −B134, B222 = B133. (3.51)

Summarizing the above discussion, under case (a), we have

B111 = −B134 = B233, B222 = B133 = B234,

B444 = B113 = B124, B123 = B114 = B333 = 0.
(3.52)

Lemma 3.8. In Case I-(ii), we have the following equations

B1111 − B2211 + 2B3411 = 0, (3.53)

B3344 − B4444 + 2B1244 = 0, (3.54)

3B1122 + B1111 − 4B4412 + 2B3411 = 0, (3.55)

B3411 − B3422 + 2B3344 = 0. (3.56)

Proof. In the proof of Lemma 3.7, we calculated ( f3)pqm and got∑
i, j,k

Bi jpB jkqBkim +
∑

i, j

λi(Bi jpqBi jm + Bi jpmBi jq + Bi jqmBi jp) = 0. (3.57)

For convenience, we denote matrix Bk = (Bi jk), then the first term of the above equation can be written
as tr(BpBqBm). By direct computation, we have

tr(B3
1) = tr(B3

2) = tr(B3
4) = 0,

tr(B2
2B1) = tr(B2

1B2) = tr(B2
3B4) = 0.

(3.58)

To prove this lemma, we will rewrite (3.57) in case of (p, q,m) = (1, 1, 1), (2, 2, 2),
(2, 2, 1), (1, 1, 2), (4, 4, 4), (3, 3, 4) respectively.

If (p, q,m) = (1, 1, 1), by (3.57) and (3.58), we have

0 = λ
∑

j

(B1 j11B1 j1 + B2 j11B2 j1 − B3 j11B3 j1 − B4 j11B4 j1), (3.59)
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which yields the following equation by (3.1) and (3.52):

B111(B1111 − B2211 + 2B3411) − B222(B3311 − B4411 + 2B2111) = 0. (3.60)

If (p, q,m) = (2, 2, 2), similar to the proof of (3.60), we can obtain

B222(B2222 − B1122 − 2B3422) + B111(−B3322 + B4422 − 2B1222) = 0. (3.61)

From Lemma 3.4, we get

B2222 − B1122 − 2B3422 = B1111 − B2211 + 2B3411,

B2111 = B1112 = −B2212 = −B1222.
(3.62)

From Lemma 3.3, we have
B1133 + B2233 = B1144 + B2244, (3.63)

which implies
B3311 − B4411 = −B3322 + B4422. (3.64)

Substituting (3.62), (3.64) into (3.61), we have

B222(B1111 − B2211 + 2B3411) + B111(B3311 − B4411 + 2B2111) = 0. (3.65)

By using (3.65), (3.60) and our assumption that d1 = B2
111 + B2

222 , 0, we get

B1111 − B2211 + 2B3411 = 0, B3311 − B4411 + 2B1112 = 0. (3.66)

Hence we obtain the Eq (3.53).
If (p, q,m) = (4, 4, 4), from (3.58), we know the first term of (3.57) is equal to zero, then rewrite

the second term, we have∑
i, j

Bi j44Bi j4λi = λ(−B3344B334 − B4444B444) + 2λB1244B124.

Combining (3.1) and (3.52), we obtain that:

B3344 − B4444 + 2B1244 = 0.

Thus we get (3.54).
If (p, q,m) = (2, 2, 1), the first term of (3.57) is also equal to zero, from the second term, we have

0 =
∑

i, j

Bi j22Bi j1λi + 2
∑

i, j

Bi j21Bi j2λi. (3.67)

Using (3.1) and (3.52), we can obtain

B111(3B1122 + B2222 − 2B4412 + 2B3312 − 2B3422)
− B222(2B2221 − B3322 + B4422 − 4B1234) = 0.

(3.68)
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If (p, q,m) = (1, 1, 2), analogously, by (3.58), (3.52), (3.1) and (3.57), we can get

B222(3B2211 + B1111 + 2B3312 − 2B4412 + 2B3411)
+ B111(2B2221 + B3311 − B4411 − 4B1234) = 0.

(3.69)

By using Lemma 3.4, (3.64), (3.69) and (3.68), we get:

3B2211 + B1111 − 4B4412 + 2B3411 = 0,
2B2221 + B3311 − B4411 − 4B1234 = 0.

Thus we get (3.55).
If (p, q,m) = (3, 3, 4), from (3.57), we get

(B3333 − B3344 + 2B3312) + 2(B3411 − B3422 + B3344) = 0. (3.70)

By using Lemma 3.1, (3.54) and (3.70), we get the following equalities:

B3411 − B3422 + 2B3344 = 0.

Thus we get (3.56).
In summing up, we have completed the proof of Lemma 3.8. �

Proposition 3.2. Let x : M4 → S5(1) be a closed Möbius minimal and Möbius isotropic hypersurface
without umbilic points. If there are two distinct principal curvatures at a fixed point, then Case I-(ii)
does not occur.

Proof. By Ricci identity and Gauss equation, we have

B1134 = B3411, B2234 = B3422, B4412 = B1244.

Lemma 3.4 and Lemma 3.8 yield
B1111 + 2B3411 = B2211, (3.71)

B3344 + 2B4412 = B4444, (3.72)

3B1122 + B1111 + 2B3411 − 4B4412 = 0, (3.73)

B3411 + B3344 = 0. (3.74)

Combining (3.71) and (3.73), we have

B1122 = −B3312 = B4412. (3.75)

Substituting (3.75), (3.74) into (3.71), (3.72), we have

B1111 + 2B3411 = B1111 − 2B3344 = B2211, (3.76)

B3344 + 2B4412 = B3344 + 2B1122 = B4444. (3.77)

Plus (3.76) and (3.77), we can get

B1111 + B2211 = B3344 + B4444. (3.78)
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On the other hand, from (3.2) and (3.17), we have

B1111 + B2211 = −(B3344 + B4444) = −
1

2λ
(
1
4
‖∇B‖2). (3.79)

Then (3.78) and (3.79) imply that ‖∇B‖ = 0, which contradicts our hypothesis.
Thus we have completed the proof of Proposition 3.2. �

Combining Proposition 3.1 and Proposition 3.2, we obtain that the assumption ‖∇B‖2 = 16(d1 +

d2) , 0 does not occur, therefore we have completed the proof of Theorem 3.1.

4. Three distinct principal curvatures at the minimum point of f4

In this section, we will deal with Case II, and prove that there do not exist Möbius minimal and
Möbius isotropic hypersurfaces with three distinct principal curvatures in S5.

Suppose the function f4 =
∑

i, j,k,l BikBklBl jB ji attained the minimum value at point p and we assume
there are three distinct Möbius principal curvatures at the point p. Then the Möbius principal curvatures
at the point p are

λ1(p) = −λ4(p) =

√
6

4
, λ2(p) = λ3(p) = 0.

For any point q ∈ M, we have

9
32

= f4(p) ≤ f4(q) = λ4
1(q) + λ4

2(q) + λ4
3(q) + λ4

4(q)

= [(λ2
1(q) + λ2

4(q))2 − 2λ2
1(q)λ2

4(q)] + [(λ2
2(q) + λ2

3(q))2 − 2λ2
2(q)λ2

3(q)]
= 2λ2

1(q)λ2
4(q) + 2λ2

2(q)λ2
3(q) = 2λ4

1(q) + 2λ4
2(q)

= 2[(λ2
1(q) + λ2

2(q))2 − 2λ2
1(q)λ2

2(q)]

=
9

32
− 4λ2

1(q)λ2
2(q) ≤

9
32

= f4(p).

Hence f4 ≡
9
32 is a constant, which implies that M is a Möbius isoparametric hypersurface with Möbius

principal curvatures λ1 = −λ4 =
√

6
4 , λ2 = λ3 = 0. However the hypersurface with Möbius principal

curvatures above is not Möbius isotropic (refer to [8]). Thus this case does not occur.

5. Four distinct principal curvatures at the minimum point of f4

In this section, we will deal with Case III: there are four distinct Möbius principal curvatures at
the minimum point of f4. Suppose λ1 > λ2 > 0 > λ3 > λ4 and λ1 = −λ4, λ2 = −λ3. We assume
the function f4 =

∑
i, j,k,l BikBklBl jB ji attained the minimum value at point p. If not specified, all the

computations in this section are considered at this point p.

Since the condition that M is Willmore minimal and Möbius isotropic mean f3 =
∑

i, j,k BikBk jB ji = 0,
while the function f4 attained the minimum value at point p means the covariant derivative of f4 equal
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to zero at the point p. From these and
∑

i Bii = 0,
∑

i, j B2
i j = 3

4 , we obtain that

B11k + B22k + B33k + B44k = 0,
λ1B11k + λ2B22k + λ3B33k + λ4B44k = 0,
λ2

1B11k + λ2
2B22k + λ2

3B33k + λ2
4B44k = 0,

λ3
1B11k + λ3

2B22k + λ3
3B33k + λ3

4B44k = 0.

Because of the coefficient determinant satisfies
∏

1≤i< j≤4(λ j − λi) , 0, then we deduce that

Biik = 0, ∀ i, k.

According to the result of [7], we know that the Möbius second fundamental form is nonparallel if
x : Mn → Sn+1 has four distinct principal curvatures, hence

‖∇B‖2 = 6(B2
123 + B2

124 + B2
134 + B2

234) , 0. (5.1)

From Lemma 2.1, we know that ‖∇B‖2 = constant, thus for any l = 1, 2, 3, 4, we get
∑

i, j,k Bi jkBi jkl = 0,
more precisely,

B1123B123 + B1124B124 + B1134B134 + B1234B234 = 0,
B2213B123 + B2214B124 + B1234B134 + B2234B234 = 0,
B3312B123 + B1234B124 + B3314B134 + B3324B234 = 0,
B1234B123 + B4412B124 + B4413B134 + B4423B234 = 0.

(5.2)

Secondly, by using (2.17), we take the derivative of ∆ f3 = 0 and get

2
∑
i, j,k

Bi jkmBi jkλi +
∑
i, j,k,l

Bi jkBi jlBklm = 0, ∀ m. (5.3)

In Lemma 2.1, we have defined

Ã =
∑

i, j,k,l,m

BmklBmilBk jB ji, B̃ =
∑

i, j,k,l,m

BmklBmiBk jBi jl.

By a direct computation, we can deduce

Ã − 2B̃ =
3
4

f4 −
9
8
µ. (5.4)

Since
0 =

1
3

∑
m,n

Bmn( f3)mn =
1
3

∑
m,n,i, j,k

Bmn(BikBk jB ji)mn

= 2B̃ +
∑

m,n,i, j,k

BmnBmnikBk jB ji + ‖B‖2 f4 − 2µ‖B‖4 − ( f3)2.
(5.5)

On the other hand, from ‖B‖2 =
∑

m,n B2
mn = 3

4 , we can get∑
m,n

BmnBmnik +
∑
m,n

BmnkBmni = 0. (5.6)
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Thus (5.5) and (5.6) imply (5.4).
Taking the covariant derivative of (5.4) at the minimum point of f4, we have∑

m,n,i, j,k

(BmnkBmniBk jB ji)s = 2
∑

m,n,i, j,k

(BmnBikmBk jnB ji)s. (5.7)

Making use of the Eqs (5.2)-(5.7), we can get the following two lemmas:

Lemma 5.1. B1234 = 0.

Proof. By differentiating f3 = 0 twice, we get∑
i

λ2
i Biimn + 2

∑
i, j

λiBi jmBi jn = 0 (5.8)

for all m, n = 1, 2, 3, 4.
Specially, for m = 2, n = 3, we get

λ2
1(B1123 + B4423) + λ2

2(B3323 + B2223) = 0.

Note that B1123 + B2223 + B3323 + B4423 = 0 and λ1 , λ2 together indicate

B1123 + B4423 = 0. (5.9)

On the other hand, for s = 1, 4, by rewriting (5.7) and using (5.2), we get

(λ2
2 − λ

2
1)(B1123B123 + B1234B234) = 2B123B124B134λ1,

(λ2
2 − λ

2
1)(B1234B123 + B4423B234) = 2B124B134B234λ4.

(5.10)

Combining (5.9), the first equation of (5.10) times B234 plus the second equation times B123 implies

(λ2
2 − λ

2
1)(B2

123 + B2
234)B1234 = 0.

Analogously, it is easy to see B2214 + B3314 = 0 from (5.8), then using (5.7) and (5.2), we can deduce
that

(λ2
1 − λ

2
2)(B2

124 + B2
134)B1234 = 0.

Since λ1 > λ2 > λ3 > λ4 means λ2
1−λ

2
2 , 0, so from (5.1) and the above equations, we get B1234 = 0. �

According to Lemma 5.1, we have B1234 = 0. then (5.2) can be reduced to

B1123B123 + B1124B124 + B1134B134 = 0,
B2213B123 + B2214B124 + B2234B234 = 0,
B3312B123 + B3314B134 + B3324B234 = 0,
B4412B124 + B4413B134 + B4423B234 = 0.

(5.11)

From (5.3), we have

B1123B123λ1 + B1124B124λ2 + B1134B134λ3 = −3B123B124B134,

B2213B123λ1 + B2214B124λ2 + B2234B234λ4 = −3B123B124B234,

B3312B123λ1 + B3314B134λ3 + B3324B234λ4 = −3B123B134B234,

B4412B124λ2 + B4413B134λ3 + B4423B234λ4 = −3B124B134B234.

(5.12)
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From (5.7), we have

B1123B123λ
2
2 + B1124B124λ

2
1 + B1134B134λ

2
1 = 2B123B124B134λ1,

B2213B123λ
2
2 + B2214B124λ

2
1 + B2234B234λ

2
2 = 2B123B124B234λ2,

B3312B123λ
2
2 + B3314B134λ

2
1 + B3324B234λ

2
2 = 2B123B134B234λ3,

B4412B124λ
2
1 + B4413B134λ

2
1 + B4423B234λ

2
2 = 2B124B134B234λ4.

(5.13)

By making use of these equations, we can get the following lemma:

Lemma 5.2. B123B124B134B234 = 0.

Proof. Suppose on the contrary that B123B124B134B234 , 0.
The third equation of (5.11), (5.12), (5.13) constitute a linear equation system of B3312, B3314, B3324.

We denote

D(3) =

∣∣∣∣∣∣∣∣∣
B123 B134 B234

B123λ1 B134λ3 B234λ4

B123λ
2
2 B134λ

2
1 B234λ

2
2

∣∣∣∣∣∣∣∣∣ = 2B123B134B234λ1(λ2
1 − λ

2
2),

D(3)
1 =

∣∣∣∣∣∣∣∣∣
0 B134 B234

−3B123B134B234 B134λ3 B234λ4

2B123B134B234λ3 B134λ
2
1 B234λ

2
2

∣∣∣∣∣∣∣∣∣
= −(λ1 − λ2)(3λ1 + λ2)B123B2

134B2
234.

By Cramer’s rule we can have

B3312 =
D(3)

1

D(3) = −
(3λ1 + λ2)B134B234

2λ1(λ1 + λ2)
.

Similarly, from the last equation of (5.11), (5.12), (5.13), we can get

B4412 =
D(4)

1

D(4) = −
(λ1 + 3λ2)B134B234

2λ2(λ1 + λ2)
.

Thus

B3312 + B4412 = −
B134B234

2(λ1 + λ2)

(
4 +

(λ1 + λ2)2

λ1λ2

)
. (5.14)

On the other hand, taking m = 1, n = 2 in (5.8), we have

B1112 =
2B134B234

λ1 − λ2
− B4412, B2212 = −

2B134B234

λ1 − λ2
− B3312. (5.15)

From ‖B‖2 = 3
4 , we have ∑

i

λiBiimn +
∑

i, j

Bi jmBi jn = 0,∀ m, n. (5.16)

In particular, for m = 1, n = 2, we get

λ1(B1112 − B4412) + λ2(B2212 − B3312) + 2B134B234 = 0. (5.17)

AIMS Mathematics Volume 6, Issue 8, 8426–8452.



8446

Substitute (5.15) into (5.17), we get the following equality:

−2(λ1 + λ2)(B3312 + B4412) = 0. (5.18)

Since λ1 > λ2 > 0, so (5.18) and (5.14) yield B134B234 = 0, which contradicts our assumption that
B123B124B134B234 , 0.

Hence we complete the proof of this lemma. �

Lemma 5.2 says that at least one of {B123, B124, B134, B234} is equal to zero.
From (2.16), (2.17), (5.4) and (5.1), we have the following linear equation system of

B2
123, B2

124, B2
134, B2

234:
B2

123 + B2
124 + B2

134 + B2
234 = e,

λ1B2
123 + λ2B2

124 − λ2B2
134 − λ1B2

234 = 0,
(4λ2

1 + λ2
2)(B2

124 + B2
134) + (λ2

1 + 4λ2
2)(B2

123 + B2
234) = y.

(5.19)

where e = 3
32 − µ, y = 3

8 f4 −
9
16µ.

By (5.1), we know that B2
123 + B2

124 + B2
134 + B2

234 = e , 0, thus the second equation of (5.19) and
our assumption λ1 > λ2 > 0 imply that

B2
123 + B2

124 , 0, B2
134 + B2

234 , 0. (5.20)

According to (5.20) and Lemma 5.2, we can divide the discussions into four cases:

Case III − (i) : B123 = 0, or B234 = 0;
Case III − (ii) : B134 = 0, B124 = 0;
Case III − (iii) : B134 = 0, B123B124B234 , 0;
Case III − (iv) : B124 = 0, B123B134B234 , 0.

By discussing these cases one by one, we will prove that Blaschke eigenvalue µ is greater than or equal
to 1

32 , precisely, we have the following lemmas.

Lemma 5.3. If B123 = 0 or B234 = 0, then µ ≥ 1
32 .

Proof. If B123 = 0, from (5.19), we have

0 ≤ B2
134 = −

(4λ2
1 + 4λ2

2 − 3λ1λ2)e − y
6λ2(λ1 − λ2)

.

Since λ1 > λ2 > 0 and λ1 = −λ4, λ2 = −λ3, then

2(λ2
1 + λ2

2) = ‖B‖2 =
3
4
, f4 = 2(λ4

1 + λ4
2) =

9
32
− 4λ2

1λ
2
2.

Thus
0 ≥ (4λ2

1 + 4λ2
2 − 3λ1λ2)e − y

= (
3

32
− µ)(

3
2
− 3λ1λ2) −

3
8

(
9

32
− 4λ2

1λ
2
2) +

9
16
µ

=
3
2

(
λ2

1λ
2
2 + 2(µ −

3
32

)λ1λ2 −
5
8
µ +

3
64 × 2

)
=

3
2

[
(λ1λ2 + µ −

3
32

)2 − µ2 −
7
16
µ +

15
32 × 32

]
≥ −

3
2

(µ2 +
7

16
µ −

15
32 × 32

).

AIMS Mathematics Volume 6, Issue 8, 8426–8452.



8447

The above inequality indicates

µ2 +
7

16
µ −

15
32 × 32

= (µ −
1

32
)(µ +

15
32

) ≥ 0. (5.21)

On the other hand, from

0 ≥ (4λ2
1 + 4λ2

2 − 3λ1λ2)e − y

= (−
15
16

+ 3λ1λ2)µ +
3
2
λ2

1λ
2
2 −

9
32
λ1λ2 +

9
256

= (−
15
16

+ 3λ1λ2)µ +
3
2

(λ1λ2 −
3
32

)2 +
45

32 × 64

> (−
15
16

+ 3λ1λ2)µ,

and
−

15
16

+ 3λ1λ2 ≤ −
15
16

+
3
2

(λ2
1 + λ2

2) = −
6

16
< 0,

we know that µ > 0. Hence, (5.21) immediately implies µ ≥ 1
32 .

If B234 = 0, from (5.19), we have

B2
124 = −

(4λ2
1 + 4λ2

2 − 3λ1λ2)e − y
6λ2(λ1 − λ2)

.

By similar arguments as the case B123 = 0, we also obtain µ ≥ 1
32 .

We have completed the proof of Lemma 5.3. �

Lemma 5.4. Case III-(ii): B134 = 0, B124 = 0 does not occur.

Proof. By differentiating f3 and ‖B‖2 twice, we get (5.8) and (5.16). Setting (m, n) = (1, 1), (4, 4) in
(5.8) and (5.16), we get the following equations:

λ2
1(B1111 + B4411) + λ2

2(B2211 + B3311) = 0,
λ2

1(B1144 + B4444) + λ2
2(B2244 + B3344) = 0,

λ1(B1111 − B4411) + λ2(B2211 − B3311) + 2B2
123 = 0,

λ1(B1144 − B4444) + λ2(B2244 − B3344) + 2B2
234 = 0.

(5.22)

We note that
(B1111 + B4411) + (B2211 + B3311) = 0,
(B1144 + B4444) + (B2244 + B3344) = 0.

(5.23)

Combining (5.22) and (5.23), we get

B1111 + B4411 = 0, B1144 + B4444 = 0, (5.24)

and
− 2λ1B4411 + 2λ2B2211 + 2B2

123 = 0,
2λ1B1144 + 2λ2B2244 + 2B2

234 = 0.
(5.25)
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Plus the above two equations, we can have

2λ1(B1144 − B4411) + 2λ2(B2211 + B2244) + 2(B2
123 + B2

234) = 0. (5.26)

On the other hand, by differentiating f4 twice, we get

1
4

( f4)mn =
∑

i

λ3
i Biimn + 2

∑
i, j

λ2
i Bi jmBi jn +

∑
i, j

λiλ jBi jmBi jn, (5.27)

for all m, n = 1, 2, 3, 4.
Using (5.27) and (5.26), we obtain

1
4

[( f4)11 + ( f4)44] = 2λ3
1(B1144 − B4411) + 2λ3

2(B2211 + B2244) + 2λ2
2(B2

123 + B2
234)

= 2λ1(λ2
1 − λ

2
2)(B1144 − B4411) = 4λ2

1(λ2
1 − λ

2
2)(2µ − λ2

1),

in the last equality, we have used Ricci identity. Since f4 take the minimum value at p, so the Hessian
matrix of f4 is positive, which implies

0 ≤ ( f4)11 + ( f4)44 = 16λ2
1(λ2

1 − λ
2
2)(2µ − λ2

1). (5.28)

Thus we have µ ≥ 1
2λ

2
1 >

3
32 , which contradicts ‖∇B‖2 ≥ 0. �

Lemma 5.5. If B134 = 0, B123B124B234 , 0, then µ ≥ 1
32 .

Proof. From (5.19), we get

B2
234 =

(4λ2
1 + 4λ2

2 + 3λ1λ2)e − y
6λ1(λ1 + λ2)

,

B2
123 =

(4λ2
1 + 4λ2

2 − 3λ1λ2)e − y
6λ1(λ1 − λ2)

,

B2
124 = −

(4λ2
2 + λ2

1)e − y

3(λ2
1 − λ

2
2)

,

where e = 3
32 − µ, y = 3

8 f4 −
9
16µ.

Taking (m, n) = (1, 4) in (5.27) and (5.16) respectively, we get

1
4

( f4)14 = λ3
1(B1114 − B4414) + λ3

2(B2214 − B3314) + 2λ2
2B134B234, (5.29)

λ1(B1114 − B4414) + λ2(B2214 − B3314) + 2B123B234 = 0. (5.30)

From (5.24), we know that B1114 = −B4414, B2214 = −B3314, thus

2λ1B1114 + 2λ2B2214 + 2B123B234 = 0, (5.31)

1
4

( f4)14 = 2λ3
1B1114 + 2λ3

2B2214 + 2λ2
2B134B234. (5.32)
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We take the value B2214 of Lemma 5.1 into (5.32), make it reduce to

1
4

( f4)14 = −2(λ2
1 + λ2

2)B123B234. (5.33)

Since
1
4

∆ f4 = 2Ã + B̃ + 8(µ −
3

32
) f4

=
5‖B‖4(‖B‖2 − 8µ)

18
+
‖B‖2 f4 − 2µ‖B‖4

3
+ 8(µ −

3
32

) f4.

(5.34)

Since f4 take the minimum at p, we conclude the Hessian matrix of f4 is positive at p. Thus we have
the following inequality:

(∆ f4)2 ≥
(
( f4)11 + ( f4)44

)2
≥ 4( f4)11( f4)44 ≥ 4[( f4)14]2,

combining (5.34) and (5.33), this inequality indicates that(5‖B‖4(‖B‖2 − 8µ)
18

+
‖B‖2 f4 − 2µ‖B‖4

3
+ 8(µ −

3
32

) f4

)2

≥ 16(λ2
1 + λ2

2)2B2
123B2

234.

(5.35)

Substituting B2
234 and B2

123 into inequality (5.35). Let λ2
1 = tλ2

2 (t > 1), then ‖B‖2 = 2(1 + t)λ2
2 = 3

4 and
f4 = 2(1 + t2)λ4

2, thus from (5.35) we can get

aµ2 + 2bµ + c ≥ 0, (5.36)

where
a = −4(399t5 − 755t4 + 1270t3 − 54t2 + 139t + 25)

= −4(7t + 1)(57t4 − 116t3 + 198t2 − 36t + 25)

= −4(7t + 1){57(t −
58
57

)2 + [198 − 57(1 +
1

57
)2 − 36]t2 + (6t − 3)2 + 16},

b = 2(1 + t)λ2
2(1235 − 223t4 + 2 × 259t3 + 42t2 + 47t + 5)

=
3
4

[123t3(t − 1)2 + 23t4 + 395t3 + 42t2 + 47t + 5],

c = −(t + 1)2λ4
2(30t5 − 59t4 + 232t3 + 42t2 + 10t + 1)

= −
9

64
[30t3(t − 1)2 + t4 + 202t3 + 42t2 + 10t + 1].

It is easy to check that a < 0, c < 0, b > 0, thus (5.36) implies

b −
√

b2 − ac
−a

≤ µ ≤
b +
√

b2 − ac
−a

(5.37)

In order to prove µ ≥ 1
32 , we will prove that 1

32 ≤
b−
√

b2−ac
−a , which is equivalent to

a + 64b + 1024c ≤ 0. (5.38)
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By direct computation, we have

a + 64b + 1024c = −4{3t5 − 203t4 + 3406t3 + 954t2 − 65t + 1}
= −4(3t + 1)(t2 − 34t + 1)2 ≤ 0.

Hence, we get µ ≥ 1
32 in case III-(iii).

By the equivalent condition (5.38), we get µ ≥ 1
32 under the case B2

134 = 0. �

For the case III-(iv): B124 = 0, B123B134B234 , 0, by totally similar arguments as that in Lemma 5.5,
we can get µ ≥ 1

32 .

Theorem 5.1. Let x : M4 → S5 be a closed Möbius minimal and Möbius isotropic hypersurface
without umbilic points. If there are four distinct Möbius principal curvatures at the minimum point of
f4, then M4 is Möbius equivalent to an isoparametric hypersurface.

Proof. Denote the normalized scalar curvature of the Möbius metric g and the induced metric dx · dx
by R and κ respectively.

From (2.14), it is easy to get

12R = 24µ −
∑

i, j

B2
i j = 24µ −

3
4

= 24(µ −
1
32

). (5.39)

Combining Lemma 5.3, Lemma 5.5 and (5.39), we obtain R ≥ 0.
In addition, x : M4 → S5 is Möbius isotropic (µ ≥ 1

32 ) means that it is Möbius equivalent to a
minimal hypersurface with constant scalar curvature in S5, more precisely, H = 0 and κ = constant,
then by Gauss equation

R̄i jkl = (δikδ jl − δilδ jk) + (hikh jl − hilh jk),

we know that

ρ2 =
4
3

(S − 4‖H‖2) =
4
3

S = 16(1 − κ) = const.

Thus by Eq (1.8) in [18], we can get κ = ρ2R ≥ 0.
By using the result of section 5 in [4] or section 4 in [15], we conclude that x is Euclidean

isoparametric, and the Blaschke eigenvalue µ = 1
32 .

�

Remark 5.1. We will give another interpretation of the proof of Theorem 5.1. (5.39) and (2.21) mean
that the following conditions are satisfied:

(1) R ≥ 0; (2)
∑4

i=1 λ
k
i (k = 1, 2, 3) are constants; (3) M4 has four distinct principal curvatures

somewhere.
By the Corollary 1.1 of [17], we conclude that all the Möbius principal curvatures are constant and

R = 2(µ− 1
32 ) ≡ 0, which together with ρ = const, H = 0 and Bi j = ρ−1(hi j −Hδi j) imply that M4 is an

isoparametric hypersurface.
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6. Proof of Theorem 1.1

Proof of Theorem 1.1.
In Section 3, 4 and 5 we discussed three cases to prove Theorem 1.1.

Case 1: If there are two distinct principal curvatures at the minimum point of f4, by Theorem 3.1 and
(2.16), we have ∇B ≡ 0 and µ > 0. According to Proposition 5.1 of [7], we conclude that x : M4 → S5

is Möbius isoparametric. Then using the results of [12] and [14], we know that x is Möbius equivalent
to the minimal Willmore torus in S5, to be precise, it is S2( 1

√
2
) × S2( 1

√
2
).

Case 2: According to the arguments in section 4, we know that there do not exist any Möbius minimal
and Möbius isotropic hypersurfaces with three distinct principal curvatures.
Case 3: If there are four distinct principal curvatures at the minimum point of f4, according to the
proof of Theorem 5.1, x is Möbius equivalent to an Euclidean isoparametric hypersurface in S5. More
precisely, x is Möbius equivalent to the Cartan minimal hypersurface in S5 with four distinct principal
curvatures (see [1] or [15] for details).

Therefore, we have completed the proof of Theorem 1.1.
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