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1. Introduction

For a connected smooth n-dimensional hypersurface x : M" — S"*! in the unit sphere without
umbilical points, Wang [18] introduced four basic Mdbius invariants g, B, A and ®, which are called
the Mobius metric, the Mobius second fundamental form, the Blaschke tensor and the Mdbius form
respectively (for their definitions see Section 2 below), he also gave the fundamental theorem and
basic formulas. Since then, the Mdbius differential geometry of submanifolds for general dimension
and codimension in a sphere has been well investigated and significant progress has been made in this
area [6-10, 13].

One of the important aspects of M&bius geometry of hypersurfaces in a sphere is Mobius minimal
hypersurfaces (also known as Willmore hypersurfaces), which is the critical point of the Mdbius
volume functional (volume functional of M&bius metric g) (see [18] for details):

W(M):fdvngp”dvgo:Lf(S—nHZ)’z'dvgo, (1.1)
M M n—1Jy

where S is the square of the length of the second fundamental form, H is the mean curvature, g =
p*dx - dx is the Mobius metric, g0 = dx - dx is the induced metric, p* = -2-(S — nH?). In [18]
(or [11]), the authors computed the Euler-Lagrange equation of the above Mobius volume function
for any n-dimensional submanifold. Guo-Li-Wang [5] gave an important example of Mdbius minimal
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hypersurfaces:

Wom = S’"( n- m) X S”"”(1 /ﬂ) — s,
n n

which is called Willmore tori, it is minimal if and only if n = 2m for some m.

Hypersurface x : M" — S™*! is called Mobius isotropic if ® = 0 and A = ug, where u is the
Blaschke eigenvalue (i.e. the eigenvalue of Blaschke tensor A with respect to g) of x. According
to Liu-Wang-Zhao’s main result in [14], we know that the Blaschke eigenvalue u has to be constant,
and x is Mobius equivalent to either a minimal hypersurface with constant scalar curvature in S"*!
(if u > 0), or the preimage of a stereographic projection of a minimal hypersurface with constant
scalar curvature in R"*! (if 4 = 0), or the image of the standard conformal map 7 : H*"*! — $"*! of a
minimal hypersurface with constant scalar curvature in hyperbolic space H"*! (if u < 0), because such
hypersurfaces are closely related to Chern’s conjecture, it has received extensive attention, and many
meaningful results [1-3, 16] have been obtained about minimal hypersurfaces of S"*! with constant
scalar curvature.

Recently, Deng-Gu-Wei [4] proved that a minimal Willmore hypersurface M* of S° with constant
scalar curvature is isoparametric. Motivated by Deng-Gu-Wei’s paper, we investigated Mobius minimal
hypersurface M* in the context of Mébius geometry, and obtained the following classification theorem:

Theorem 1.1. Let x : M* — S° be a closed Mébius minimal and Mobius isotropic hypersurface
without umbilic points, then x is Mobius equivalent to one of the following hypersurfaces:

(1) the torus $*(5) x $*(<5) — §%

(2) the Cartan minimal hypersurface in S° with four distinct principal curvatures.

We organize the paper as follows. In Section 2, we review the Mobius invariants and its integrability
conditions for hypersurfaces in the unit sphere, and give some basic formulas for Mobius minimal and
Mobius isotropic hypersurfaces in S3. In Section 3, we consider the case that there are two distinct
principal curvatures at one point and prove that its Mobius second fundamental form is parallel. In
Section 4, we show that there do not exist Mobius minimal and M&bius isotropic hypersurfaces with
three distinct principal curvatures at the minimum point of f;. In Section 5, we will discuss the case
that there are four distinct principal curvatures at the minimum point of f;, and prove that the Blaschke
eigenvalue u > 3i2 Finally, we complete the proof of Theorem 1.1 in Section 6.

2. Mobius invariants and some basic formulas

In this section, we first review Mobius invariants and the structure equations for hypersurfaces in
S"*1 (see [18] for details), and then we give some basic formulas for Mdbius minimal and Mobius
isotropic hypersurface in S°.

Let R be the Lorentz space with standard inner product (-, -) given by

X, Wy = =x"w° + xw! + 4 I,
for X = (x°, x!, -, x"*?), W = W, w!, -+, w"?) € R"3. The half cone in R** is defined as
C'™? = (X e RI™ [ (X, X) =0, xo > 0}
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For an immersed umbilic-free hypersurface x : M" — S™! c R"™?2, we define its Mdbius position
vector Y : M" — C"*? by

Y=p(l,x), p*= #(5 —nH?) > 0,

Theorem 2.1 ( [18]). Two hypersurfaces x,x : M" — S™' are Mébius s equivalent if and only if there
exists T in the Lorentz group O(n + 2; 1) acting on R’{”, such thatY = YT.

It follows immediately from Theorem 2.1 that g = (dY,dY) = p*dx-dx is a Mdbius invariant, which
is called the M&bius metric of x.

Let A and R denote the Laplacian and the normalized scalar curvature of the Mdbius metric g, we
define

N = —lAY - L(1 +n’R)Y. (2.1)
n 2n?

Then we have (Y, Y) =(N,NY=0, (Y,N)=1.

We use the following range of indices: 1 <1, j,k,... < n.

Choosing a local orthonormal basis {E;} with respect to g with dual basis {w;}, and E is the M&bius
normal vector field of x. Putting E;(Y) = Y;, then we have

Y, Yj> = 51']', (Y, Y)=(Y;,N) =0, (2.2)
and {Y,N, Y,,...,Y,, E} forms a moving frame in R’{” along M. The structure equations are given by

dY = Z (,Uin', dN = ZA,]CL)JY, + Z Ci(.t)l'E, (23)

i ij i
in = —ZA,»jij—a)iN+Zwinj+ZBijij, (24)

J J J
dE = — Z C[(U,‘Y — Z B,‘j(x)jYi, (25)

i i

where {w;;} is the connection form of the Mobius metric g. It is clear that
B= ZBija)i@wj, A= ZAija)i@wj, D = ZC,‘(A),’ (26)
0 0 i

are all Mobius invariants and called the Mobius second fundamental form, the Blaschke tensor and the
Mobius form of x, respectively. They can be represented by Euclidean invariants as follows:
Bi; =p”'(hij — H6y)),
Ay =p~*(Hess;j(log p) — e:(log p)e (log p) — Hh;;)
1,
=50 (IVlogpll’ — 1+ H*)y;

Ci==p(H;+ ) (hi; = Ho;e;(logp)),
J

where Hess;; and V are the Hessian-matrix and the gradient with respect to dx - dx.
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The components of the covariant differentiation of B, they are defined by
Z Bijkwk = dBl'j + Z Bikwkj + Z Bkjwki' (27)
k k k

Let B;j; be the second covariant derivative, they satisfy the following Ricci identity

ljkl l]lk - Z BlmRm]kl + Z Bm]lekl (28)

Among the integrability conditions for the structure equations (2.3)-(2.5), we have the following
(ctf. [18]):
Bijx — Bixj = 6;;Cx — 0iC}, (2.9)

Rijii = BuBji — ByBjx + 0yAji + 0 jAix — 0yA ji — 0 jiAir, (2.10)

> Bi=0, >p="
i i.j

R;ji denotes the components of the Riemannian curvature tensor of g.
Hypersurface x : M" — S"*! ¢ R**? is Mdbius minimal if and only if (see [18])

Z Bijij + Z By BB + ZAIJBU = 0. (2.12)

(A

(2.11)

If x : M" — S™*! is Mobius isotropic, then we have

Ajj=poy,  Ci=0, By = Bu;s (2.13)
Riji = (BuBji — ByB ) + 2u(6ixd ji — 6110 ji)- (2.14)
Substituting (2.13) and }}; B; = 0 into (2.12), then it reduces to
2. BuBuBji =0. (2.15)
ik

We define four functions:

fi = IBI* = B, . L=IVBIP= ) B,
J J

i,j.k

fs = Z Bl‘kBijji, fa= Z By By;BjBy;.

i,k i, jk,l
Assume that x is a Mdobius minimal and Mobius isotropic hypersurface in S5, then by

straightforward computation, we have the following lemma.

Lemma 2.1. Let x : M* — S°(1) be a umbilic-free closed Mobius minimal hypersurface. If x is Mobius
isotropic, then

£ =B’ = 6(— — p1) = const., (2.16)
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Afz =6 Z BBy iBji = 0, (2.17)
ikl
3 _
Afi = 32— 33)fa+ 8A + 4B, (2.18)

where V and A are the gradient and Laplacian of the Mobius metric g,

A= Z Bk BiiBijB i, B= Z BB B jBiji.-

i,j.k,lm i,j.k,lm

Proof. Using (2.11), (2.14) and the Ricci identity (2.8), we have

_1 _ 2N 2 2 2
0= EAfl =3 ;(B,-j)kk = [IVBII” = IIBI[*(IBII” — 8),
where f; = ||B|]* = %, thus (2.16) follows.
Since (2.15) means f; = 0, then we have

0= (f:"&)mn = (Z BikBijji)mn

ik
(2.19)
=3 Z BiymnBijBji + 6 Z Bk By jnBji,
i,jk i,j.k
combining this and (2.8), (2.14), we can have
3
0=Af; =24(u - ﬁ)fs + 6”21;1 BiByjiBji, (2.20)
which gives (2.17) immediately.
Analogously, by (2.11), (2.13) and (2.14), we can have
Afy = Z (BimBniBijBji)u = 4 Z BionuBiBijB ji
i,j.k,lm i,j.k,lm
+4 Z (2BimBniBijBjk + BimBniBijiB i)
i, ).k, lm
3
=32(u— =)fs +4 Z 2Bk BiiBijBji + BukiBimiBijBij),
32 i,j.k,lm
then we get (2.18). |

For an arbitrary fixed point p € M, we choose orthonormal frame such that B;; = 4;6;;. We call 4;
the Mobius principal curvatures at p, they satisfy

4 4 4 3
D=0, Y a=0 Za?:z. 2.21)

Without loss of generality, we will assume that 4; > A, > A3 > A4, then we have the following
observation.
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Lemma 2.2. Let x : M* — S’ be an umbilic-free closed Mébius minimal and Mébius isotropic
hypersurface, if 1y > A, > A3 > A4 at p. Then

A1+ A4 =0, A+ A3 =0.
Proof. Since 4] + A3 + A3 + A3 = 0, then we have
(A + )] — 1 + 3) + (A3 + (A5 — 1344 + A3) = 0.
Combining A; + 4, = —(43 + A4), we get
(A + [+ 45— (A5 + )] =0.
By 4; + 43 = =(1, + A4) and A, + 44 = —(A, + A3), we obtain
(A1 + ) + 3)(A + A) = 0. (2.22)

We claim A; + A, # 0 under the assumption that 4y > A, > A3 > Ay, if otherwise, 4y = A, = A3 = A4, =0,
which is a contradiction to ) ; /ll.z = %. Hence

(A + A3)(A; +A4) = 0. (2.23)

If/ll + A3 # 0, then A+ A4 = —(/7.2 + /13) =0.
If A1+ 43 =0, then Al =2 A > - =2 —Ay, which 1mp11es

A=A > 0, /13 =A4 = -A1;. (224)
These complete the proof of Lemma 2.2. O
According to Lemma 2.2, at a fixed point, there are three cases:

Case I, /l]:/lz>0>/13:/14:—/11;
Case 1I, A >b=A3>A, Ah=A43= 0, Ay = —Ay; (225)
Case 1III, Al > A > A3 > Ay, Az =—Ap, Ay = —A;.

3. Two distinct Mobius principal curvatures at one point

In this section, we deal with Case I and prove the following result.

Theorem 3.1. Let x : M* — S° be a closed Mébius minimal and Mobius isotropic hypersurface
without umbilic points. If there are two distinct principal curvatures at a fixed point, then ||VB|| = 0.

We first prove a simple and useful lemma.

Lemma 3.1. Forany k,l € {1,2, 3,4}, we have

Bk + By = 0, B3si + By = 0; (3.1)

1
B + By = 31 Z By Biji = —(B33ig + Baag). (3.2)
i,j
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Proof. Since ) ; B;; = 0, taking the first and second covariant derivative, we have

Biik + By + B3z + By = 0, (3.3)
Biix + Boow + B3sw + Baar = 0. (3.4
Similarly, by f; = [BII* = ¥, (Bij)* = 3, we can get
Z BijBij = 0, Z(BijkBijl + B;jBjjiu) = 0. (3.5)
i,j i,j

Incasel, 4, =4, = -A3 = -4, = 4 # 0, so we get

A(By1x + Bogi — B3sk — Bag) = 0, (3.6)
Z B;jBiji + A(Bi1x + Bayx — B33y — Baarr) = 0. 3.7
ij
Hence, by (3.3), (3.6), (3.4) and (3.7), we obtain (3.1), (3.2) hold. O

The following lemma describes the relations between the components of VB, which are crucial to
the proof of Theorem 3.1.

Lemma 3.2. The elements of {B;} satisfy the following equations:

B}y + By = Biys + By = By + By, (3.8)

B3y + By = Blj3 + Bly; = Bijy + Bl (3.9)
B133B233 + B134Bazs = 0, (3.10)

Bi13B114 + Bi23Bia = 0, (3.11)

— Bi11B113 + B2 Bios + Bi33Bszs — BizaBaas = 0, (3.12)
Bi11B114 — BpBioa + B134B3ss + Bi33Bua = 0, (3.13)
Bi11B123 + B2aBi13 + Ba33Bazs — BysaBaas = 0, (3.14)
Bi11B124 + By Bi1a — Ba3a B3z — BazzBaag = 0. (3.15)

Proof. From (2.19) and the fact that 4y = 4, = 1 = —A3 = -4 # 0, we have
0= Z BityunBijBji + 2 Z BixwBijnBji = 2 Z BiimBikn A
ik ik K

=24 Z(BlkmBlkn + BomBoin — B3imB3in — BaimBakn)-
%

Thus
Z(BlkmBlkn + BojnBoin — B3B3k — BagmBagn) = 0. (3.16)
X

Using (3.1) and setting (m,n) = (1,1), (2,2), (3,3), (4,4) in (3.16), then (3.8) and (3.9) can be
obtained immediately.

Analogously, taking (m,n) = (1,2), (3,4), (1,3), (1,4), (2,3), (2,4) in (3.16), respectively, we can
get the remaining equations in Lemma 3.2. O
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As a direct application of Lemma 3.2, we have

Lemma 3.3. For any k € {1, 2, 3,4}, the following equation holds

1
Z B}, = 4(Bj)| + By, + Bis; + Byy,) = ZIIVBllz. (3.17)
i,j

Proof. Using (3.1), (3.8) and (3.9), we have
Z B}y =Bty + By + By + Biyy + 2B
ij
+2B1;, +2B3,, + 2B3;, + 2B, + 2B3,,
=4(B}, + B3y, + By + Biy).

Similarly, we get
2 2 2 2 2 2 2
Z Bijp = Z B3 = Z Bjy = 4(Biy, + By, + B33z + Biyy),
Lj i.j i.j

thus (3.17) follows. O
By making use of Lemma 3.1-3.3, we get some relations about {B; ji;}.

Lemma 3.4.
BIIZZ = 32211’ Bllll = BZ2ZZa BlllZ = _322127

Bi134 = —B234, B3334 = —Byszs, Bzzio = —Bun.

Proof. By (2.14) and the Ricci identity (2.8), we obtain
Bi122 = Biaiz = Booin + Cu+ 41 2)(4 — ) = B
On the other hand, from (3.2) and (3.17), we know that
Bii11 + B = Biio + B,

thus we have Bllll = 32222.
By making use of Lemma 3.1 and (3.10), (3.11), we have

Z Bij1Bijy = 2(B133B23s + Bi3aBaa) = 0,

i,j

Z Bij3Bijs = 2(B113B114 + B123B124) = 0.

ij
From the above equations and (3.2), we get

B3312 + Bys12 = B2 + Byin = 0,

Bi134 + Byyzs = B3szza + Bayza = 0.

Hence, we have completed Lemma 3.4. O
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From (3.17), we can see that (B}, + B3,,) + (B3 + B%,,) = |[VB|I* is independent of the choice
of the basis {E;}?_, thus for any fixed E5 and E4, B}, + B, is invariant under the rotation of {Ej, E,}.
Similarly, using (3.17), we can also see that B§33 + 342‘44 is invariant under the rotation of {E5, E,}. For
convenience, we introduce the following notation:

dy =B}, +B3,,,  dy=B;+Bi,. (3.18)

In order to get further relations between the components of VB, we set

Glz(Bm B34 ’ G22(8113 B3 . (3.19)
By33 By

Then (3.8)-(3.11) can be rewritten as
G\G\" =dil, GG, =dlI, (3.20)

where / is the identity matrix. Using Lemma 3.2, we have the following:

Lemma 3.5. If d\d, # 0, then |G,||G2| > 0. Furthermore, when |G| > 0, we have
|G\l = di, G| =G}, |Ga| =db, G} =G. (3.21)
where |G;|, GI and G} denote the determinant, transpose matrix and adjoint matrix of G; respectively.
Proof. From (3.8), (3.9), we know that G; = 0if d; = 0 (i = 1, 2), this and (3.20) imply that
|G| = +d;, GT = +G;, i=1,2. (3.22)

By (3.12)-(3.15), we know that (B, B2, B333, Baas) satisfies the following homogeneous system
of linear equations:

—Bi13 Bz Bz —Bi X 0
Biis  —Bia Bias Bz X2 0

= 3.23

Bz Biiz Bz —Bys || x3 0 (3:23)
B4 Biis =By —Bjs3 X4 0

Denote the coeflicient matrix by F, then by (3.8)-(3.11), (3.19) and (3.22) we deduce that

F* = |FFT| = {(di + d»)* — (IG1| + |G2))*)?

|F|” = | | ={(di + dr)” — (|G| + |G2])7} (3.24)

={(d) + dr)* = (dy + dr)*}*,

Since (3.23) has nonzero solution if and only if |F| = 0. Hence, if d,d, # 0, we have |F|*> = 0, thus
by (3.22), (3.24) we get |G1||G;| > 0. Assume |G| > 0, then (3.22) gives (3.21). We have completed
the proof of Lemma 3.5. m|

To prove Theorem 3.1, we assume on the contrary that ||[VB|?> = 16(d, + d>) # 0, then at least one
of {d,, d,}is nonzero. Without loss of generality, suppose d; # 0. Thus, we may divide the discussion
into two cases.

CaseI-(i): d, #0,d, = 0; Case I-(ii): d; £ 0, d, £ 0.
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3.1. Case I-(i) does not occur.

In this case, from (3.9) and (3.18), we immediately get
B33z = Bays = Biz = Bi13 = Bioga = By = 0. (3.25)

For fixed directions E5 and E4, we can reselect {E, E,} if necessary such that B,y = 0, then fix
E, and rotate the directions {E5, E4}, such that Bjzs = 0. Since A4; = Ay, A3 = A4, so the above
transformations of the frame preserve B;; = A;0;; at the point p. More precisely we have

di = B}y, = Biy3 = B33, #0,  Biyss = Bizu = By = 0. (3.26)

Lemma 3.6. Ifd, # 0, d, =0, then there exist local othonomal frame {E;} such that (3.25) and (3.26)
hold. Furthermore, we have
Bi111 = 3B1i22 = B, (3.27)

(B3311 — Baa11)Bi133 + 2B1234B234 = 0. (3.28)

Proof. From Lemma 2.1, we know that f> = ||[VB||* = const., taking the covariant derivatives of f> by
direction E, we get:

1
0= E(fZ)l = BllllBlll + 3322113122

+ 3(B3311B133 + Baa11Biaa + 2B1234B234) (3.29)
= Bi1(Bii1 — 3Ba11)

+ 3(B3311B133 — Baa11B133 + 2B1234B23a).
Taking the covariant derivatives of A f3, by (2.17), gives us

1
0= E(Aﬁ)l = E (BiiBijiB i)
il

=2 Z B B jiBij + Z BBy iBiji (3.30)

il ikl
=2 Z Bij BjxA; + Z B;j1B;jiBi.

i jk i jik,l
Using (3.25), (3.26) and (3.17), we conclude the second term
1

Z BiyBijiBu = Z B,-ijBiil = Z”VBHZ Z By = 0.

i.jikl ik i
So by making use of (3.1), (3.25), (3.26), we have

Bi11(Bi111 — 3Byi11) — (B3311B133 — Baa1 Bi33 + 2B341By34) = 0. (3.31)

Combining (3.31) and (3.29), we get

(B3311 — Baa11)B133 + 2B1234 B34 = 0,
Bi11(Bi111 = 3B»11) = 0.

Which together with (3.26) 1mp1y that Bi111 = 3B»i1.
From this and Lemma 3.4, the proof of Lemma 3.6 is completed. O
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In order to get more information about the second order covariant differential of tensor B, we take

the third covariant derivative of f; and get the following:
Lemma 3.7. In Case I-(i), the following equations hold
Bi122B111 + B123aBazs = 0,

B1234B111 + B33as B34 = 0,
(Bi122 = B222)Bi11 — (B33 — Bag2o)Bi3z = 0,
(Bi144 — B4a)Bi11 — (B334s — Baaaa)Bi33 = 0.

Proof. Taking the third covariant derivative of f;, we have

0= Z(BikBijji)pqm =3 Z BijpqmBjxBii + 6 Z BiipB iy Brim

ik ik ik
+6 Z(BiquBjkmBki + BjjpmB jiqBii + BijgmB jkpBri)
ik
2
=3 Z Biipqm/l +6 Z Bijijqukim
f ik

+6 Z Ai(BiquBijm + Bijmeijq + B,‘quB,'jp).

ij
Thus we have
Z Bijp B jkgBrim + Z Ai(BijpgBijm + BijpmBijq + BijgmBijp) = 0.
ik ij
We will rewrite (3.36) in case of (p,q,m) = (1,1,1), (2,3,4), (2,2,1), (4,4, 1) respectively.
If (p,q,m)=(1,1,1), we have
Z BijiBjx1Bri1 + 3 Z AiBijnuBiji = 0.
ik i
Using (3.25), (3.26) and (3.1), the first term of (3.37) reduces to
Z BijiBju B = By, + By, + Bly; + By,
ik
= By, + (=B’ + Bjy; + (=Bi33)’ = 0.

Thus we have }; ; B;ji1Bij14; = 0, hence

/12(3111131]'1 + Byj11Baji — B3ji1Bsji — Bsji1Baj1) = 0,
J

which together with (3.1) yields
(Bii11 = B211)Biit — (Bsain — Baai)Bizz = 0.

Substitute (3.27), (3.28) into (3.38), we can get (3.32).

(3.32)

(3.33)
(3.34)
(3.35)

(3.36)

(3.37)

(3.38)
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If (p,q,m) = (2,3,4), we have
Z Bij»Bji3Byis + Z Ai(Bij23Bijs + BijpaBij3 + Bij3aBijn) = 0. (3.39)
i,j.k ij
It is easy to check that the first term };; ik BijaBjx3Bria = 0, thus (3.39) can be simplified as
0= Z Ai(Bijp3Bija + BijpaBijs + BijzaBip)
i,j
=A(B1423B14s + B2323B234 — B3203B324 — B4123B414)

+ A(B1324B133 + Bo424Boaz — B3124B313 — B4ysBao3)
+ A(B1234B122 + B1134B212 — B3434B34> — B4334B43)),

this and (3.25), (3.26), (3.1) imply that
Bi234Bi11 + B33a4Boss = 0.

Thus (3.33) is obtained.
If (p,q,m) = (2,2, 1), we rewrite (3.36) as
0= Z BijBjiaBiit + Z Ai(Bij2Biji + 2Bij1B;j). (3.40)
i,jk ij
For the first term, by direct computation, we find it is vanished, then (3.40) can be simplified as
0= Z Ai(Bijn2Bij1 + 2B;jp1B;j1)
iJ
=A(B1122B111 + By Byi — B3322B331 — BasxoBaay)
+ 2A(B1221B122 + Ba121Ba12 — B3421 B3gz — Byzo1Bas2)
=A(B1122B111 — By Bi11 — B33 B3zi + BaaBi3s),

in the last equality, we used (3.32) and (3.1). Thus we get (3.34).
If (p,q,m) = (4,4, 1), we have

0= Z B;jsBjiaBri1 + Z Ai(BijsaBiji + 2B;ja1Bija). (3.41)

i,jk i.j

The first term vanished, (3.41) can be reduced to

0= Z Ai(BijaaBiji + 2B;ja1Bijs)
Lj
=A(B114aBi11 + B2aa B — B3344B331 — BasaaBaay)
+ 2A(B1441B144 + B23a1Ba3s — B3241B324 — B4141Ba1a),

which together with (3.1) give that

(Bi144 — Baa)Bi11 — (B33as — Bagaa)Bi33 = 0.

We have completed the proof of Lemma 3.7. O
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Corresponding to subcase I-(i): d; # 0, d, = 0, we have the following result:

Proposition 3.1. Let x : M* — S°(1) be a closed Mobius minimal and Mébius isotropic hypersurface
without umbilic points. If there are two distinct principal curvatures at a fixed point, then subcase I-(i)
does not occur.

Proof. Since Bfu = B§34 # 0, then from (3.32) and (3.33) we conclude that
B3344 = Byi2s. (3.42)

From B}, = Bi,;, we have either By = By3; or By = —Bj3;.

If By;; = B33, then (3.34) and (3.35) reduce to

31122 - 32222 - B3322 + B4422 = Oa

Bi144 — Bopas — B3zas + Bagas = 0.

On the other hand, }}; B;; = 0 gives

Bi12s + Byoyo + B3zoy + Bagpn = 0, (3.43)
Bi14s + Byoas + B3zas + Baaas = 0. (3.44)

The above four equations imply that
Baay = —Bi122, Bizas = —Baua. (3.45)
Using (3.45) and (3.42), we get By, = Byss. By means of Ricci identity, we have
0 = Byjas — Baszy = Bosps — Boggn = 22Q2u — A%). (3.46)

Thus u = 14% = 2, by (2.16) we have |[VB|[> = 0, this is a contradiction.

If By;; = —Bj33 # 0, similar to the case Bjj; = Bis3, from (3.34), (3.35) and (3.42), we can get
By = =By,  Biiag = —B3zas = —Biin. (3.47)
By using (3.47), (3.2) and (3.17) we have

Booas — Bagzy = Byoas — Bi12o — Baapo + Biio
= (B4 + Biiaa) + (Baxoa + Biin)

) |1 (3.48)
=—— > B, = ——(=|IVB|".
o ZJ b=~ (IVBIP)
On the other hand, by Ricci identity, (2.16) and }; /l? = 431’ we have
Byoug — Baazy = 242 — A7) = 4A(u — ﬁ) = —?”VB” . (3.49)
Combining (3.49), (3.48) and A% = %, we have ||[VBJ|* = 0, which is a contradiction.
In conclusion, we have completed the proof of Proposition 3.1. O
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3.2. Case I-(ii) does not occur.

We will deal with Case 1-(i1) and prove it does not occur.

For any fixed direction E3, we can rotate the directions {E, E,} if necessary such that B3 = 0, then
fix E; and rotate {E5, E,}, such that B3;; = 0. Since A; = A,, A3 = A4, the above transformations of the
frame preserve B;; = A;0;; at the point p. We now assume that Bi,3 = B33z = 0, then by (3.19), (3.21)
we get

B113 = Bi24, B3z = Baa, Bazz = =By,

) ) (3.50)
dy = By, = Byj3#0, Bipz = By = B33 = 0.
Hence, there are two subcases: (a): By = Bi13,  (b): Bas = —Bq13.
Here we will only discuss the Case (a), the other case follows similarly.
Substituting Byss = B13 = Bia4 into (3.12) and (3.13), we get
—(Bi11 + B134)Bas = 0,  (Bi33 — By2)Baas = 0,
which implies
Bi11 = =B34, By = Biss. (3.51)
Summarizing the above discussion, under case (a), we have
Bi = =By = Byss,  Ban = Bizs = By,
111 134 233 222 133 234 (3.52)
By = By13 = Bios, B2z = Bi1s = B33 = 0.
Lemma 3.8. In Case I-(ii), we have the following equations
Bii11 — By + 2B3411 = 0, (3.53)
B33a4 — Bagas + 2Bp44 = 0, (3.54)
3B1122 + Bii11 — 4Baar2 + 2B34y; = 0, (3.55)
B34 — B3axo + 2B3344 = 0. (3.56)
Proof. In the proof of Lemma 3.7, we calculated (f3),,» and got
Z Bijy B jkgBrim + Z Ai(BijpgBijm + BijpmBijg + BijgmBijp) = 0. (3.57)

ik ij
For convenience, we denote matrix B = (B;j), then the first term of the above equation can be written
as tr(B,B,B,,). By direct computation, we have

tr(B3) = tr(B3) = tr(B3) = 0,

3.58
tr(B3B,) = tr(B1B,) = tr(B3B,) = 0. (3:38)
To prove this lemma, we will rewrite (3.57) in case of (p,q.m) = (1,1,1), (2,2,2),
(2,2,1), (1,1,2), (4,4,4), (3,3,4) respectively.
If (p,q,m)=(1,1,1), by (3.57) and (3.58), we have
0= AZ(BljllBljl + Byj11Baji — B3ji1B3ji — BajiiBaji), (3.59)

J
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which yields the following equation by (3.1) and (3.52):
Bi11(Bi111 — Bt + 2Bsann) — Bao(Bszin — Baann + 2Boin) = 0. (3.60)
If (p,q,m) = (2,2,2), similar to the proof of (3.60), we can obtain
B2 (B — Biiza = 2Baan) + Bii1(—=Bssn + Bax — 2Bixn) = 0. (3.61)
From Lemma 3.4, we get

B2y — Bii22 — 2B3422 = Bii11 — Baoir + 2B3ayy,

(3.62)
Bs111 = Bii12 = =Bz = —Binx.
From Lemma 3.3, we have
Bi133 + B33 = Biiaa + By, (3.63)
which implies
B3311 — Baa1 = —B33 + Ban. (3.64)
Substituting (3.62), (3.64) into (3.61), we have
By2y(Bii11 — Boii + 2Bsarr) + Bii1(Bszi1 — Baain +2B5111) = 0. (3.65)
By using (3.65), (3.60) and our assumption that d, = B}, + B3,, # 0, we get
Bii11 — B +2B3411 =0,  Bszip — By +2Bg12 = 0. (3.66)

Hence we obtain the Eq (3.53).

If (p,q,m) = (4,4,4), from (3.58), we know the first term of (3.57) is equal to zero, then rewrite
the second term, we have

Z Bij44Bij4/1i = A(=B3344B334 — B4444Baas) + 2AB1244B124.

ij
Combining (3.1) and (3.52), we obtain that:

B3344 — Bysas + 2B1oas = 0.

Thus we get (3.54).
If (p,q,m) = (2,2, 1), the first term of (3.57) is also equal to zero, from the second term, we have

0= Z BijpnBijidi +2 Z Bij1BijpA;. (3.67)
ij ij

Using (3.1) and (3.52), we can obtain

B111(3By122 + By — 2Basin + 2B3312 — 2B3422)

(3.68)
— By22(2By21 — B33 + Baaop — 4Bi234) = 0.
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If (p,q,m) = (1, 1,2), analogously, by (3.58), (3.52), (3.1) and (3.57), we can get

By2,(3By11 + Biii + 2B3312 — 2Bysin + 2B3411)
+ B111(2Bx21 + B3311 — Baain — 4B1234) = 0.

By using Lemma 3.4, (3.64), (3.69) and (3.68), we get:

3Byi1 + Biiir — 4Basiz + 2B34y1 = 0,
2By1 + B3311 — Baarn — 4B234 = 0.

Thus we get (3.55).
If (p,q,m) = (3,3,4), from (3.57), we get

(B3333 — B3sas + 2B3312) + 2(Bsa11 — Bagoz + Bizas) = 0.
By using Lemma 3.1, (3.54) and (3.70), we get the following equalities:
B3411 — B3ago + 2B3344 = 0.

Thus we get (3.56).
In summing up, we have completed the proof of Lemma 3.8.

(3.69)

(3.70)

O

Proposition 3.2. Let x : M* — S°(1) be a closed Mobius minimal and Mébius isotropic hypersurface
without umbilic points. If there are two distinct principal curvatures at a fixed point, then Case I-(ii)

does not occur.

Proof. By Ricci identity and Gauss equation, we have

Bi134 = B3a11, Bza = B3azo, Basio = Bioaa.

Lemma 3.4 and Lemma 3.8 yield
Bi111 + 2B3411 = By,

B3344 + 2B4s12 = Bysaa,
3B1122 + Biii1 + 2Bsain — 4By = 0,
B3411 + B3zs = 0.
Combining (3.71) and (3.73), we have

BllZZ = _B3312 = B4412-

Substituting (3.75), (3.74) into (3.71), (3.72), we have
Bii11 + 2B3a11 = Bii1i — 2B3sas = By,

B33as + 2Bus12 = B3sas + 2B1120 = Bagus.

Plus (3.76) and (3.77), we can get

Bi111 + Booi1 = Bszas + Bagas.

(3.71)
(3.72)
(3.73)
(3.74)

(3.75)

(3.76)

(3.77)

(3.78)
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On the other hand, from (3.2) and (3.17), we have

11
B + Byt = —(Bszas + Baaas) = —ﬁ(1||VB||2)' (3.79)
Then (3.78) and (3.79) imply that |[VB|| = 0, which contradicts our hypothesis.
Thus we have completed the proof of Proposition 3.2. O

Combining Proposition 3.1 and Proposition 3.2, we obtain that the assumption |[VB|* = 16(d; +
d,) # 0 does not occur, therefore we have completed the proof of Theorem 3.1.

4. Three distinct principal curvatures at the minimum point of f;

In this section, we will deal with Case II, and prove that there do not exist Mobius minimal and
Mobius isotropic hypersurfaces with three distinct principal curvatures in S°.

Suppose the function fy = 3, ;x, BaBuB;Bj; attained the minimum value at point p and we assume
there are three distinct Mobius principal curvatures at the point p. Then the Mdbius principal curvatures
at the point p are

6
Ai(p) = —A4(p) = T\/_’ A (p) = A3(p) = 0.

For any point ¢ € M, we have

9

3 = i) < ful@) = Ai(@) + B(9) + L5(q) + Ay(q)
= [(L(g) + 22(q))* = 222(q) 2] + [((q) + 22(q))* = 282()A(g)]
= 223(q)3(g) + 23()5(g) = 24}(q) + 243(q)
= 2[(A}(q) + B())* = 28 (@)]

9

3 = fa(p).

9
=35~ 4@L@ < 33

32

Hence f, = 39—2 is a constant, which implies that M is a Mobius isoparametric hypersurface with Mobius

principal curvatures 4; = —Ay4 = g, A, = A3 = 0. However the hypersurface with Mobius principal

curvatures above is not Mobius isotropic (refer to [8]). Thus this case does not occur.

5. Four distinct principal curvatures at the minimum point of f

In this section, we will deal with Case III: there are four distinct Mobius principal curvatures at
the minimum point of f;. Suppose 4; > A, > 0 > A3 > Ay and 4; = A4, A, = —A3. We assume
the function fy = X, .1, BuBuB;;Bj; attained the minimum value at point p. If not specified, all the
computations in this section are considered at this point p.

Since the condition that M is Willmore minimal and M6bius isotropic mean f3 = 3, ;, BuBi;Bji = 0,
while the function f; attained the minimum value at point p means the covariant derivative of f; equal
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to zero at the point p. From these and }}; B;; =0, X, ; ij = 3, we obtain that

Biix + Bagi + B3z + By = 0,

A Biix + 2By + A3 B3z + 4By = 0,
1By + 3By + BBz + By = 0,
LBy + BBy + B3B3z + 4By, = 0.

Because of the coefficient determinant satisfies [];<;<;<s(4; — 4;) # 0, then we deduce that

Biik = 0, Y i, k.

According to the result of [7], we know that the Mobius second fundamental form is nonparallel if

x : M" — S"*! has four distinct principal curvatures, hence

IVB||* = 6(3%23 + 3%24 + 3%34 + 3534) # 0.

(5.1

From Lemma 2.1, we know that ||[VB||> = constant, thus for any [ = 1,2, 3,4, we get 3. i.jk BijgBij = 0,

more precisely,
B1123B123 + B1124B124 + B1134B134 + B1234 B34 = 0,

B13B123 + BysjaBioa + B123aBisa + BapzaBoza = 0,
B3312B123 + B123aBioa + B331aBi3a + B33aBaza = 0,

B1234B123 + Bas12B124 + Bus13Bi3s + Bz Boza = 0.

Secondly, by using (2.17), we take the derivative of Af; = 0 and get

2 Z BijimBijx i + Z B;iBijiBum =0, ¥ m.
ik ikl

In Lemma 2.1, we have defined

A= > BuuBuiBiBj, B= ) BuuBuByBi.

i,j.k.lm i,j.k,l,m
By a direct computation, we can deduce

9

A-2B= fu= gh

3
4
Since 1 1

0= 5 %an(ﬁ)mn = 5 Z an(BikBijﬁ)m”

m,n,i, jk

=2B+ ) ByuBuuBiBji + IBIfi — 2uBII = ().

m,n,i, j.k

mn

> BunBuic + ) Buni B = 0.

3
On the other hand, from |B|* = },,, B3, = 3, we can get

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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Thus (5.5) and (5.6) imply (5.4).
Taking the covariant derivative of (5.4) at the minimum point of f;, we have

Z (ankaniniji)s =2 Z (anBikmBkjnBji)s-

m,n,i, jk m,n,i, jk
Making use of the Eqs (5.2)-(5.7), we can get the following two lemmas:
Lemma 5.1. By = 0.

Proof. By differentiating f; = 0 twice, we get
Z /11-2Biimn +2 Z AiBijmBijn = 0
i ij

forallm,n=1,2,3,4.

Specially, form = 2, n = 3, we get

AL(Bi12s + Baans) + A5(B33os + Banos) = 0.
Note that Bii123 + Bz + Bszoz + Bagys = Oand A; # A, tOgCthCI’ indicate
Bi123 + Baayz = 0.

On the other hand, for s = 1,4, by rewriting (5.7) and using (5.2), we get

(A5 — A1)(B1123B123 + B1234B3s) = 2B123B124B134 .,
(A5 — 3)(B1234B123 + Buar3Bas) = 2B124B134 B3y,

(5.7)

(5.8)

(5.9)

(5.10)

Combining (5.9), the first equation of (5.10) times B34 plus the second equation times Bj,3 implies

(/15 - /l%)(B%B + 3334)31234 =0.

Analogously, it is easy to see B4 + B3z14 = 0 from (5.8), then using (5.7) and (5.2), we can deduce

that
(A7 = 5)(Blyy + Bl3y)Biozs = 0.

Since A; > A, > A3 > A, means A3—1A3 # 0, so from (5.1) and the above equations, we get Bjpzs = 0. O

According to Lemma 5.1, we have By,34 = 0. then (5.2) can be reduced to

B1123B123 + B1124B124 + B1134B134 = 0,
Bx13B123 + B21aBiog + BapzaBrig = 0,
B3312B123 + B3314B134 + B33oaB3g = 0,
Bas12B124 + Bas13Bi3a + Bagaz By = 0.

From (5.3), we have

B123B123A1 + B1124B124 A2 + B1134B13ads = —=3B123B124 B34,
B13B123A1 + B21aBi2ads + B3aBrsads = —=3B123B124Boss,
B3312B12341 + B331aB13aAs + B33 Bozads = —3B123B134Boss,
Bis12B1244s + Bys13B134A3 + Byy3 Br3gds = —3B124B134Bo3g.

(5.11)

(5.12)
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From (5.7), we have

Bi123B12343 + B1124B124A] + By13aBi3ad] = 2B123B1asBisady,
B13Bi235 + BapiaBioad + BansaBosuds = 2B123B12aBosuda,
B3312B123A5 + B33iaBi3ud] + BasoaBosuds = 2B123Bi3sBosds,
Bus12B124A7 + Busi3Bi3a AT + Buan3Brsyds = 2B124B134Basada.

(5.13)

By making use of these equations, we can get the following lemma:
Lemma 5.2. 3123312431343234 =0.

Proof. Suppose on the contrary that B3 B124B134B234 # 0.
The third equation of (5.11), (5.12), (5.13) constitute a linear equation system of Bs312, B3314, B3304.

We denote
BIZS Bl34 3234

D® =| Bisdi Bisads Baudy | = 2B123Bi3aBosa i (4] — A3),
Bi33A5 Bl Byudl
3 0 By Boyu
D(l) =| =3B123B134Bys  Bizads Bosdy
2B123B134Bossds  Biasdi  Boasd;
= —(A41 — )3 + L)Bi23 B3 Bs,.

By Cramer’s rule we can have

D(13) _ _(3/11 + A2)B134Bo34
D® 2/11(/11 + /12)

B331p =

Similarly, from the last equation of (5.11), (5.12), (5.13), we can get

4
Dy _ (A4 +322)B134By34

B = =
127 pa 2h(4 + Ay)
Thus )
Bi34Bo34 ( (A1 + A2) )
Bi3ip + Byupp = — 4+ . 5.14
3312 + Baarn 20+ ) L ( )
On the other hand, taking m = 1,n = 2 in (5.8), we have
2B134B>34 2B134B>34
B = ——— — Buyp, B =——— — Bs35. 5.15
ne = 4412 012 -1 3312 (5.15)
From ||B|* = 2, we have
Z AiBiimn + Z BijnBijn = 0,¥ m,n. (5.16)
; 0j
In particular, form = 1,n = 2, we get
Ai(Bi112 = Baain) + Aa(Baiz — B3zi) + 28134834 = 0. (5.17)
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Substitute (5.15) into (5.17), we get the following equality:

=2(A1 + A2)(B3z12 + Baarn) = 0. (5.18)

Since 4; > A, > 0, so (5.18) and (5.14) yield By34B234 = 0, which contradicts our assumption that
B123B124B134B234 # 0.
Hence we complete the proof of this lemma. O

Lemma 5.2 says that at least one of {B23, B124, B134, B234} 1s equal to zero.
From (2.16), (2.17), (5.4) and (5.1), we have the following linear equation system of

2 2 2 .
B]24’ Bl34’ 3234'

2 2 2 2 _
31232‘" By, +2B134 + 3%34 =e, .
A1 Biyy + 2By, — A2Bi5, — 1By, =0,

(427 + B)(B}y, + Biy,) + (A7 + 405)(B}; + B3y, = .

2
3123’

(5.19)

where e = %—,u, y= %ﬁ,—%,u.
By (5.1), we know that B}, + B}, + B},, + B3;, = e # 0, thus the second equation of (5.19) and
our assumption 4; > A, > 0 imply that

2 2
By + By

# 0,

Biy, + B3y, # 0. (5.20)

According to (5.20) and Lemma 5.2, we can divide the discussions into four cases:

Case III - (i) :

Case III — (i) :
Case III — (iii) :
Case III — (iv) :

B3 =0, or By =0;
B34 =0, By =0;

B34 =0, B23B124By3y # 0;
Bi24 =0, Bi23B134B234 # 0.

By discussing these cases one by one, we will prove that Blaschke eigenvalue u is greater than or equal

to 31—2 precisely, we have the following lemmas.
Lemma 5.3. IfB]23 =0 or Byy =0, thenu > 31—2
Proof. 1f B3 = 0, from (5.19), we have

(4/1% + 4&% - 3/11/12)6’ -y

053%34:_

Since 4; > A, > 0and 4; = —A4,

3
2047 + 43) = |IBI” = T

Thus

0 L(4 — A2)

/12 = —/13, then

9
fi=21+25) = % 4220,

0> (427 +415 -3 )e —y

3 3 3.9 9
= (53~ WG = 30) - S(55 — 4418 +

3'32 16"
_ %(/ﬁ/@ +2(u — 3%)/11/12 - g“ + 64:; 2)
= %[(/11/12 + - 33—2)2 - - 17_6'“ * 321:32]
3 7 15
> U 6 T3
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The above inequality indicates

SR £
KT 16H " 32x 32

1 15
=(y — — —)>0. 5.21
(u 32)(,U+32)_0 (5.21)
On the other hand, from

0> (445 +445 -3 ))e -y

15 3 9 9
= (—— + 31,1 LR - 0 —
(=g T3AH+ F 4k = i + oo
15 3 3, 45
= (e T3k Sl = B

15
> (—— + 3, bL)u,
( 16 1A2)u

and 15 15 3 6
—— 43U L < ——+ (A + ) = —— <0,
16 1y S —qe S+ ) = —7¢

we know that u > 0. Hence, (5.21) immediately implies u > %

If By34 = 0, from (5.19), we have

A2 + 422 =3 e — y
6A2(A; — )

3%24 ==
By similar arguments as the case Bi,; = 0, we also obtain y > %
We have completed the proof of Lemma 5.3. m|
Lemma 5.4. Case I1I-(ii): Biz4 =0, By = 0 does not occur.

Proof. By differentiating f; and ||BJ|> twice, we get (5.8) and (5.16). Setting (m,n) = (1,1), (4,4)in
(5.8) and (5.16), we get the following equations:

A(Bii11 + Baant) + 5(Bony + Baaiy) = 0,
A1(By144 + Baaas) + 5(Booas + Bazaa) = 0,

N (5.22)
Ai(Bi111 = Baarn) + A2(Baai1 — B3zi1) + 2By = 0,
A1(By144 — Baaas) + (Bysas — Bazas) + 2B35, = 0.
We note that
By + B + (By + B =0,
(Bi111 + Baai1) + (B + Bazin) (5.23)
(Bi144 + Baaas) + (Baoaa + Bszas) = 0.
Combining (5.22) and (5.23), we get
Bi111 + Bag = 0, Bi14s + Basas = 0, (524)
and 2
— 2A1Bys11 +245B1 +2B7,, =0,
1D4411 2D2211 123 (5.25)

2/1131144 + 2/1232244 + 23334 =0.
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Plus the above two equations, we can have
221 (Bi14g = Baan1) + 202(Baa11 + Bagas) + 2(Biy; + Bysy) = 0.

On the other hand, by differentiating f; twice, we get
1
Z(ﬁl)mn = Z /l?Biimn +2 Z ﬂsziijijn + Z AidjB;jmBijn,
i ij ij

forallm,n=1,2,3,4.
Using (5.27) and (5.26), we obtain

1
Z[(ﬁl)ll + (fa)aal = 2/1?(31144 — Baay) + 2/13(32211 + Boug) + 2/13(3%23 + 3334)
= 21(A] — A3)(Bi1as — Baan1) = 447(A4] — )2 — A7),

(5.26)

(5.27)

in the last equality, we have used Ricci identity. Since f; take the minimum value at p, so the Hessian

matrix of f; is positive, which implies

0 < (fn + (fo)as = 162383 = B3)(2u — A3).

Thus we have u > %/l% > %, which contradicts ||VBJ|> > 0.

Lemma 5.5. IfB]34 =0, B123B124By3s # 0, thenu > 3L2

Proof. From (5.19), we get
(A2 +423 + 30 )e—y

2
B = 6L (4 + 1) ’
5 - 42 + 422 = 30, )e — v
64,(4; — A2)
B, = _(4/15 + AD)e — y,

32 - 2)

wheree = 2 —pu, y=3fi—pu
Taking (m,n) = (1,4) in (5.27) and (5.16) respectively, we get

1
Z(fzt)m = A} (Bi114 — Baara) + 13(Baaia — Bazia) + 25B134Bosa,

A1(Bi114 — Baara) + 2(Baz1a — B331s) + 2B123By3s = 0.

From (5.24), we know that Byjj4 = —Ba41a, Ba14 = —B3314, thus

24 Bi114 + 23 Bp14 + 2B123B234 = 0,

1
Zl(f4)l4 = 2/1?31114 + 2/1332214 + 2/1531343234-

(5.28)

O

(5.29)

(5.30)

(5.31)

(5.32)
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We take the value B,,14 of Lemma 5.1 into (5.32), make it reduce to

1
é_l(f4)14 = —2(A7 + 13)B123Bsa. (5.33)
Since . 3
70 =28+ B+ 8(u - ),

51BI*(IBI* — 8w)  |IBII*f2 — 2ul|BI* 3
- 8(u — =) f.
13 M 3 8-

Since f; take the minimum at p, we conclude the Hessian matrix of f; is positive at p. Thus we have
the following inequality:

(5.34)

(Afzt)2 > ((fo)n + (]64)44)2 > 4(fi)11(fa)as = 4[(f4)14]2,

combining (5.34) and (5.33), this inequality indicates that

(SIIBII‘*(IIBII2 —8 IBII” f2 — 2uIIBJI*
18
> 16(A7 + A3)* B, B33,

3 2
8- ﬁ)f“) (5.35)

Substituting B3,, and B3,, into inequality (5.35). Let A2 = 43 (¢ > 1), then |B|* = 2(1 + )4} = 2 and
f1 = 2(1 + »)A3, thus from (5.35) we can get

ap® +2bu + ¢ > 0, (5.36)

where
a = —4(399F — 755¢* + 1270 — 547 + 139¢ + 25)

= —4(7t + 1)(57¢* — 116£° + 198¢* — 361 + 25)

= —4(7t + DH{57(t - 2)2 +[198 - 57(1 + %)2 —36]¢% + (61 — 3)* + 16},
b =2(1 + )A,2(123° — 223¢* + 2 x 2591 + 42¢% + 47t + 5)

= 3[123t3(t — 1) +23¢* + 395 + 421 + 47t + 5],
c=—(t+ 1)’45(30F — 59¢* + 232 + 421> + 10r + 1)

= —624[30?@ — 12+ £+ 202 + 42 + 10t + 1].

Itis easy to check thata <0, ¢ <0, b >0, thus (5.36) implies

b—- Vb —ac b+ Vb? —ac
SR LAy PR (5.37)
—a —a

1 1 b—Nb2—ac
In order to prove u > t 55 < e

> 35, We will prove tha , which is equivalent to

a+ 64b + 1024¢ < 0. (5.38)
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By direct computation, we have

a+ 64b + 1024¢ = —4{3F — 203¢* + 34067 + 9547* — 65t + 1}
=43t + 1)(* - 34t + 1)* <0.

Hence, we get u > 5 in case III-(iii).
By the equivalent condition (5.38), we get u > 31—2 under the case B% . =0. O

For the case III-(iv): Biy4 = 0, Bi23B134B234 # 0, by totally similar arguments as that in Lemma 5.5,
we can get u > %

Theorem 5.1. Let x : M* — S’ be a closed Mébius minimal and Mobius isotropic hypersurface
without umbilic points. If there are four distinct Mobius principal curvatures at the minimum point of
f1, then M* is Mébius equivalent to an isoparametric hypersurface.

Proof. Denote the normalized scalar curvature of the Mobius metric g and the induced metric dx - dx
by R and « respectively.
From (2.14), it is easy to get

3 1
12R =24y - » B} = 24u — 7= 28u- 3. (5.39)
ij

Combining Lemma 5.3, Lemma 5.5 and (5.39), we obtain R > 0.

In addition, x : M* — S’ is Mdbius isotropic (4 > 55) means that it is Mdbius equivalent to a
minimal hypersurface with constant scalar curvature in S°, more precisely, H = 0 and x = constant,
then by Gauss equation

Rijir = (66 — 6ud ji) + (hachjy — hihj),
we know that

4 4
p2 — 3(5 —4||H|>) = §S = 16(1 — k) = const.

Thus by Eq (1.8) in [18], we can get k = p’R > 0.
By using the result of section 5 in [4] or section 4 in [15], we conclude that x is Euclidean
isoparametric, and the Blaschke eigenvalue u = 3—12
|

Remark 5.1. We will give another interpretation of the proof of Theorem 5.1. (5.39) and (2.21) mean
that the following conditions are satisfied:

(hHR = 0; 2) Z?Zl /lf.‘(k = 1,2,3) are constants; (3) M* has four distinct principal curvatures
somewhere.

By the Corollary 1.1 of [17], we conclude that all the Mobius principal curvatures are constant and
R = 2(u — 35) = 0, which together with p = const, H = 0 and B;; = p~'(h;; — H5;j) imply that M* is an
isoparametric hypersurface.
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6. Proof of Theorem 1.1

Proof of Theorem 1.1.

In Section 3, 4 and 5 we discussed three cases to prove Theorem 1.1.
Case 1: If there are two distinct principal curvatures at the minimum point of f;, by Theorem 3.1 and
(2.16), we have VB = 0 and u > 0. According to Proposition 5.1 of [7], we conclude that x : M* — S°
is Mobius isoparametric. Then using the results of [12] and [14], we know that x is M&bius equivalent
to the minimal Willmore torus in S°, to be precise, it is Sz(\i@) X SZ(\/%).
Case 2: According to the arguments in section 4, we know that there do not exist any M&bius minimal
and Mobius isotropic hypersurfaces with three distinct principal curvatures.

Case 3: If there are four distinct principal curvatures at the minimum point of fs, according to the
proof of Theorem 5.1, x is Mobius equivalent to an Euclidean isoparametric hypersurface in S°. More
precisely, x is Mobius equivalent to the Cartan minimal hypersurface in S° with four distinct principal
curvatures (see [1] or [15] for details).

Therefore, we have completed the proof of Theorem 1.1.
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