Research article

Triangular algebras with nonlinear higher Lie n-derivation by local actions

  • Received: 14 November 2023 Revised: 07 December 2023 Accepted: 10 December 2023 Published: 26 December 2023
  • MSC : 15A78, 16W25, 17B40

  • This paper was devoted to the study of the so-called nonlinear higher Lie n-derivation of triangular algebras $ \mathcal{T} $, where $ n $ is a nonnegative integer greater than two. Under some mild conditions, we proved that every nonlinear higher Lie n-derivation by local actions on the triangular algebras is of a standard form. As an application, we gave a characterization of higher Lie $ n $-derivation by local actions on upper triangular matrix algebras, block upper triangular matrix algebras and nest algebras, respectively.

    Citation: Xinfeng Liang, Mengya Zhang. Triangular algebras with nonlinear higher Lie n-derivation by local actions[J]. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126

    Related Papers:

  • This paper was devoted to the study of the so-called nonlinear higher Lie n-derivation of triangular algebras $ \mathcal{T} $, where $ n $ is a nonnegative integer greater than two. Under some mild conditions, we proved that every nonlinear higher Lie n-derivation by local actions on the triangular algebras is of a standard form. As an application, we gave a characterization of higher Lie $ n $-derivation by local actions on upper triangular matrix algebras, block upper triangular matrix algebras and nest algebras, respectively.



    加载中


    [1] R. V. Kadison, Local derivations, J. Algebra, 130 (1990), 494–509. https://doi.org/10.1016/0021-8693(90)90095-6
    [2] D. R. Larson, A. M. Sourour, Local derivations and local automorphisms of B(X), Proc. Sympos. Pure Math., 51 (1990), 187–194.
    [3] S. Ebrahimi, Lie triple derivations on primitive rings, Asian-Eur. J. Math., 08 (2015), 1550019. https://doi.org/10.1142/S1793557115500199 doi: 10.1142/S1793557115500199
    [4] P. S. Ji, R. R. Liu, Y. Z. Zhao, Nonlinear Lie triple derivations of triangualr algebras, Linear Multilinear A., 60 (2012), 1155–1164. https://doi.org/10.1080/03081087.2011.652109 doi: 10.1080/03081087.2011.652109
    [5] X. F. Qi, Characterization of Lie higher derivations on triangular algebras, Acta Math. Sin.-English Ser., 29 (2013), 1007–1018. https://doi.org/10.1007/s10114-012-1548-3 doi: 10.1007/s10114-012-1548-3
    [6] X. F. Qi, J. C. Hou, Lie higher derivations on nest algebras, Comm. Math. Res., 26 (2010), 131–143.
    [7] Z. K. Xiao, F. Wei, Nonlinear Lie higher derivations on triangular algebras, Linear Multilinear A., 60 (2012), 979–994. https://doi.org/10.1080/03081087.2011.639373 doi: 10.1080/03081087.2011.639373
    [8] J. K. Li, Q. H. Shen, Characterizations of Lie higher and Lie triple derivations on triangular algebras, J. Korean Med. Sci., 49 (2012), 419–433. https://doi.org/10.4134/JKMS.2012.49.2.419 doi: 10.4134/JKMS.2012.49.2.419
    [9] M. Ferrero, C. Haetinger, Higher derivations and a theorem by Herstein, Quaest. Math., 25 (2002), 249–257. https://doi.org/10.2989/16073600209486012 doi: 10.2989/16073600209486012
    [10] M. Khrypchenko, F. Wei, Lie-type derivations of finitary incidence algebras, Rocky Mountain J. Math., 50 (2020), 163–175. https://doi.org/10.1216/rmj.2020.50.163 doi: 10.1216/rmj.2020.50.163
    [11] P. S. Ji, W. Q. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 435 (2011), 1137–1146. https://doi.org/10.1016/j.laa.2011.02.048 doi: 10.1016/j.laa.2011.02.048
    [12] W. H. Lin, Characterizations of Lie higher derivations on triangular algebras, Indian J. Pure Appl. Math., 51 (2020), 77–104. https://doi.org/10.1007/s13226-020-0386-8 doi: 10.1007/s13226-020-0386-8
    [13] M. Ashraf, A. Jabeen, Characterization of Lie type derivation on von Neumann algebra with local actions, Bull. Korean Math. Soc., 58 (2021), 1193–1208. https://doi.org/10.4134/BKMS.b200850 doi: 10.4134/BKMS.b200850
    [14] L. Liu, Lie triple derivations on factor von Neumann algebras, B. Korean Math. Soc., 52 (2015), 581–591. http://doi.org/10.4134/BKMS.2015.52.2.581 doi: 10.4134/BKMS.2015.52.2.581
    [15] L. Liu, Lie triple derivations on von Neumann algebras, Chin. Ann. Math. Ser. B., 39 (2018), 817–828. https://doi.org/10.1007/s11401-018-0098-0 doi: 10.1007/s11401-018-0098-0
    [16] X. P. Zhao, Nonlinear Lie triple derivations by local actions on triangular algebras, J. Algebra Appl., 22 (2023), 2350059. https://doi.org/10.1142/S0219498823500597. doi: 10.1142/S0219498823500597
    [17] X. F. Liang, D. D. Ren, Q. L. Li, Nonlinear Lie triple higher derivations on triangular algebras by local actions: A new perspective, Axioms, 11 (2022), 328. https://doi.org/10.3390/axioms11070328 doi: 10.3390/axioms11070328
    [18] H. Ghahramani, M. N. Ghosseiri, T. Rezaei, Characterizing Jordan derivable maps on triangular rings by local actions, J. Math., 2022 (2022), 9941760. https://doi.org/10.1155/2022/9941760 doi: 10.1155/2022/9941760
    [19] H. Ghahramani, A. H. Mokhtari, F. Wei, Lie centralizers and commutant preserving maps on generalized matrix algebras, J. Algebra Appl., 2022 (2022), 2450106. https://doi.org/10.1142/S0219498824501068 doi: 10.1142/S0219498824501068
    [20] W. S. Cheung, Commuting maps of triangular algebras, J. Lond. Math. Soc., 63 (2001), 117–127. https://doi.org/10.1112/S0024610700001642 doi: 10.1112/S0024610700001642
    [21] K. R. Davidson, Nest algebras, London: Longman Scientific and Technical Publishing Corporation, 1988.
    [22] W. S. Cheung, Lie derivations of triangular algebras, Linear Multilinear A., 51 (2003), 299–310. https://doi.org/10.1080/0308108031000096993 doi: 10.1080/0308108031000096993
    [23] D. Benkovic, D. Eremita, Multiplicative Lie n-derivations of triangular rings, Linear Algebra Appl., 436 (2012), 4223–4240. https://doi.org/10.1016/j.laa.2012.01.022 doi: 10.1016/j.laa.2012.01.022
    [24] Z. K. Xiao, F. Wei, Lie triple derivations of triangular algebras, Linear Algebra Appl., 437 (2012), 1234–1249. https://doi.org/10.1016/j.laa.2012.04.015 doi: 10.1016/j.laa.2012.04.015
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(906) PDF downloads(163) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog