Research article

Note on fractal interpolation function with variable parameters

  • Received: 31 October 2023 Revised: 04 December 2023 Accepted: 20 December 2023 Published: 26 December 2023
  • MSC : 28A80, 47H10, 65D05

  • Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions $ W_n(x, y) = \big(a_n x+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. Then, we may define the generalized affine FIF $ f $ interpolating a given data set $ \big\{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \big\} $, where $ I = [x_0, x_N] $. In this paper, we discuss the smoothness of the FIF $ f $. We prove, in particular, that $ f $ is $ \theta $-hölder function whenever $ \psi_n $ are. Furthermore, we give the appropriate upper bound of the maximum range of FIF in this case.

    Citation: Najmeddine Attia, Taoufik Moulahi, Rim Amami, Neji Saidi. Note on fractal interpolation function with variable parameters[J]. AIMS Mathematics, 2024, 9(2): 2584-2601. doi: 10.3934/math.2024127

    Related Papers:

  • Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions $ W_n(x, y) = \big(a_n x+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. Then, we may define the generalized affine FIF $ f $ interpolating a given data set $ \big\{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \big\} $, where $ I = [x_0, x_N] $. In this paper, we discuss the smoothness of the FIF $ f $. We prove, in particular, that $ f $ is $ \theta $-hölder function whenever $ \psi_n $ are. Furthermore, we give the appropriate upper bound of the maximum range of FIF in this case.



    加载中


    [1] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2 (1986), 303–329. https://doi.org/10.1007/BF01893434 doi: 10.1007/BF01893434
    [2] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
    [3] M. A. Navascuès, M. V. Sebastian, Fitting curves by fractal interpolation: An application to the quantification of cognitive brain processes, In: Thinking in patterns, 2004,143–154. https://doi.org/10.1142/9789812702746_0011
    [4] P. R. Massopust, Fractal functions, fractal surfaces, and wavelets, Orlando: Academic Press, 1995.
    [5] A. Petrusel, I. A. Rus, M. A. Serban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223–237. https://doi.org/10.1007/s11228-014-0291-6 doi: 10.1007/s11228-014-0291-6
    [6] X. Y. Wang, F. P. Li, A class of nonlinear iterated function system attractors, Nonlinear Anal. Theor., 70 (2009), 830–838. https://doi.org/10.1016/j.na.2008.01.013 doi: 10.1016/j.na.2008.01.013
    [7] M. A. Navascuès, M. V. Sebastian, Smooth fractal interpolation, J. Inequal. Appl., 2006 (2006), 78734. https://doi.org/10.1155/JIA/2006/78734 doi: 10.1155/JIA/2006/78734
    [8] A. K. B, Chand, G. P. Kapoor, Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal., 44 (2006), 655–676. https://doi.org/10.1137/040611070 doi: 10.1137/040611070
    [9] J. Kim, H. Kim, H. Mun, Nonlinear fractal interpolation curves with function vertical scaling factors, Indian J. Pure Appl. Math., 51 (2020), 483–499. https://doi.org/10.1007/s13226-020-0412-x doi: 10.1007/s13226-020-0412-x
    [10] S. Ri, A new nonlinear fractal interpolation function, Fractals, 25 (2017), 1750063. https://doi.org/10.1142/S0218348X17500633 doi: 10.1142/S0218348X17500633
    [11] N. Vijender, Bernstein fractal trigonometric approximation, Acta Appl. Math., 159 (2018), 11–27. https://doi.org/10.1007/s10440-018-0182-1 doi: 10.1007/s10440-018-0182-1
    [12] P. Viswanathan, A. K. B. Chand, M. A. Navascuès, Fractal perturbation preserving fundamental shapes: Bounds on the scale factors, J. Math. Anal. Appl., 419 (2014), 804–817. https://doi.org/10.1016/j.jmaa.2014.05.019 doi: 10.1016/j.jmaa.2014.05.019
    [13] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055 doi: 10.1512/iumj.1981.30.30055
    [14] K. Lésniak, Infinite iterated function systems: A multivalued approach, Bulletin Polish Acad. Sci. Math., 52 (2004), 1–8. https://doi.org/10.4064/ba52-1-1 doi: 10.4064/ba52-1-1
    [15] A. Mihail, R. Miculescu, The shift space for an infinite iterated function system, Math. Rep., 11 (2009), 21–32.
    [16] A. Mihail, R. Miculescu, Generalized IFSs on non-compact spaces, Fixed Point Theory Appl., 2010 (2010), 584215. https://doi.org/10.1155/2010/584215 doi: 10.1155/2010/584215
    [17] N. A. Secelean, Countable iterated function systems, Far East J. Dyn. Syst., 3 (2001), 149–167.
    [18] F. Strobin, J. Swaczyna, On a certain generalization of the iterated function system, Bull. Aust. Math. Soc., 87 (2013), 37–54. https://doi.org/10.1017/S0004972712000500 doi: 10.1017/S0004972712000500
    [19] K. R. Wicks, Fractals and hyperspaces, 1991. Berlin, Heidelberg: Springer. https://doi.org/10.1007/BFb0089156
    [20] M. A. Navascués, C. Pacurar, V. Drakopoulos, Scale-free fractal interpolation, Fractal Fract., 6 (2022), 602. https://doi.org/10.3390/fractalfract6100602 doi: 10.3390/fractalfract6100602
    [21] S. Ri, New types of fractal interpolation surfaces, Chaos Solitons Fractals, 119 (2019), 291–297. https://doi.org/10.1016/j.chaos.2019.01.010 doi: 10.1016/j.chaos.2019.01.010
    [22] N. Attia, H. Jebali, On the construction of recurrent fractal interpolation functions using Geraghty contractions, Electron. Res. Arch., 31 (2023), 6866–6880. https://doi.org/10.3934/era.2023347 doi: 10.3934/era.2023347
    [23] N. Attia, M. Balegh, R. Amami, R. Amami, On the Fractal interpolation functions associated with Matkowski contractions, Electron. Res. Arch., 31 (2023), 4652–4668. https://doi.org/10.3934/era.2023238 doi: 10.3934/era.2023238
    [24] A. R. Goswami, Z. Páles, On approximately monotone and approximately Hölder functions, Period. Math. Hung., 81 (2020), 65–87. https://doi.org/10.1007/s10998-020-00351-0 doi: 10.1007/s10998-020-00351-0
    [25] A. R. Goswami, Z. Páles, Characterization of approximately monotone and approximately Hölder functions, Math. Inequal. Appl., 24 (2021), 247–264.
    [26] A. K. B. Chand, G. P. Kapoor, Smoothness analysis of coalescence hidden variable fractal interpolation functions, Int. J. Nonlinear Sci., 3 (2007), 15–26.
    [27] A. K. B. Chand, G. P. Kapoor, Stability of affine coalescence hidden variable fractal interpolation functions, Nonlinear Anal. Theor., 68 (2008), 3757–3770. https://doi.org/10.1016/j.na.2007.04.017 doi: 10.1016/j.na.2007.04.017
    [28] C. Gang, The smoothness and dimension of fractal interpolation functions, Appl. Math. JCU, 11 (1996), 409–418.
    [29] Md. Nasim Akhtar, M. Guru Prem Prasad, M. A. Navascués, Box dimension of $\alpha$-fractal function with variable scaling factors in subintervals, Chaos Solitons Fractals, 103 (2017), 440–449. https://doi.org/10.1016/j.chaos.2017.07.002 doi: 10.1016/j.chaos.2017.07.002
    [30] H. Y. Wang, J. S. Yu, Fractal interpolation functions with variable parameters and their analytical proper ties, J. Approx. Theory, 175 (2013), 1–18.
    [31] M. F. Barnsley, Fractals everywhere, Boston: Academic Press, 1988.
    [32] D. S. Mazel, M. H. Hayes, Using iterated function systems to model discrete sequences, IEEE Trans. Signal Process., 40 (1992), 1724–1734. https://doi.org/10.1109/78.143444 doi: 10.1109/78.143444
    [33] N. Vijender, V. Drakopoulos, On the Bernstein affine fractal interpolation curved lines and surfaces, Axioms, 9 (2020), 119. https://doi.org/10.3390/axioms9040119 doi: 10.3390/axioms9040119
    [34] H. Y. Wang, X. J. Li, Perturbation error analysis for fractal interpolation functions and their moments, Appl. Math. Lett., 21 (2008), 441–446. https://doi.org/10.1016/j.aml.2007.03.026 doi: 10.1016/j.aml.2007.03.026
    [35] H. J. Ren, W. X. Shen, A dichotomy for the Weierstrass-type functions, Invent. Math., 226 (2021), 1057–1100. https://doi.org/10.1007/s00222-021-01060-2 doi: 10.1007/s00222-021-01060-2
    [36] T. Y. Hu, K. S. Lau, Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc., 335 (1993), 649–665.
    [37] L. Jiang, H. J. Ruan, Box dimension of generalized affine fractal interpolation functions, J. Fractal Geom., 10 (2023), 279–302. https://doi.org/10.4171/JFG/136 doi: 10.4171/JFG/136
    [38] M. A. Navascués, Fractal polynomial interpolation, Z. Anal. Anwend., 24 (2005), 401–418. https://doi.org/10.4171/ZAA/1248 doi: 10.4171/ZAA/1248
    [39] M. A. Navascués, Fractal trigonometric approximation, Electron. Trans. Numer. Anal., 20 (2005), 64–74.
    [40] M. A. Navascués, Fractal functions on the sphere, J. Comput. Anal. Appl., 9 (2007), 257–270.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1324) PDF downloads(139) Cited by(2)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog