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Abstract: Fractal interpolation function (FIF) is a new method of constructing new data points within
the range of a discrete set of known data points. Consider the iterated functional system defined through
the functions Wn(x, y) =

(
anx + en, αn(x)y + ψn(x)

)
, n = 1, . . . ,N. Then, we may define the generalized

affine FIF f interpolating a given data set
{
(xn, yn) ∈ I × R, n = 0, 1, . . . ,N

}
, where I = [x0, xN]. In

this paper, we discuss the smoothness of the FIF f . We prove, in particular, that f is θ-hölder function
whenever ψn are. Furthermore, we give the appropriate upper bound of the maximum range of FIF in
this case.

Keywords: iterated function system; generalized affine fractal interpolation function; hölder and
Lipschitz functions
Mathematics Subject Classification: 28A80, 47H10, 65D05

1. Introduction and main results

In approximation theory, fractal interpolation is an alternative to classical interpolation used when
studying irregular curves. The motivation to study fractal interpolation functions (FIFs in short) comes
from the fact that most time series studied in practice often exhibit fluctuations or abrupt changes that
fractal interpolants can intrinsically model. The results indicate that the use of fractal interpolation
in many areas (financial applications for example) is promising. The concept of the FIF was first
introduced by Barnsley [1] via an iterated functional system (IFS in short) on a compact subset of
R, which fundamentally acts as the pivot to construct fractals. Since then, this theory has become a
useful and powerful tool in applied science and engineering [2–6]. Moreover, various and important
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properties of FIF have been proved, including smoothness, stability, and disturbance error (see for
instance [7–12]).

Specifically, IFS is a collection of a complete metric space (X, d) with a finite set of continuous
mappings w1,w2 . . . ,wN , for N ≥ 2. One can find that there exists a compact set G =

⋃N
n=1 wn(G)

referred to an invariant set or an attractor to the IFS. Moreover, Hutchinson’s idea gives that the
invariant compact set G is fully determined by the IFS, and also G is the limit of a sequence of sets that
can be built by the members of the IFS (see for instance [13–19] for some extension of Hutchinson’s
framework). Recently, many researchers have been working on some extensions of the IFS framework
(generalized contractions or more general spaces. . . ). Fixed point theory plays a significant and vital
role in the existence of invariant sets in different types of IFSs. To this end, many researchers have
studied the existence of FIFs by using different results related to the fixed point theory [9, 10, 20–23].

A function g, defined on a set I, is said to be a Hölder continuous function with exponent θ ( or
shortly θ–Hölder function) when g satisfies∣∣∣g(x) − g(y)

∣∣∣ ≤ c
∣∣∣x − y

∣∣∣θ, ∀x, y ∈ I,

for some positive constants c and 0 < θ ≤ 1. This relation is called the Hölder condition and, when
θ = 1, the function g is said to be Lipschitz in I with Lipschitz constant c. Let Φ : R+ −→ R+ be a
function. Then g is said to be a Φ-Hölder function if

|g(y) − g(x)| ≤ Φ(|y − x|), ∀x, y ∈ I.

We denote HΦ(I) the class of all Φ-Hölder functions on I [24, 25] : It is well known that the class of
HΦ(I) is closed and convex with respect to the pointwise supremum and infimum [24]. We say that Φ
satisfies the doubling condition if there exists ξ ≥ 1, depends on Φ and called Φ-Hölder constant, such
that

Φ(bx) ≤ ξbΦ(x) for b ≥ 1 and Φ(bx) ≤ ξΦ(x) for b < 1.

Also, we denote byHd
Φ

(I) the family ofΦ-Hölder functions such thatΦ satisfies the doubling condition.
The most important class of functions satisfies the doubling condition on R+ are the increasing and
subadditive function, that is, Φ(x + y) ≤ Φ(x) + ϕ(y), with Φ(0) = 0.

For n ∈ J :=
{
1, . . . ,N

}
, let αn : I −→ R be a Lipschitz function and ψn : I −→ R be a continuous

function. In this paper, we consider the generalized affine FIF defined byLn(x) = anx + en

Fn(x, y) = αn(x)y + ψn(x),
n ∈ J, (1.1)

where, the real positive numbers an and en are determined by condition (2.1) and such that
conditions (2.2) and (2.3) hold. This system is extensively studied when the functions {αn}n are
constants (they are called vertical scaling factors) [7, 8, 12, 26–29]. Further, the IFS can be selected
suitably so that the corresponding FIF shares the quality of smoothness or non-smoothness. This
depends on the choice of the vertical scaling factors and the functions ψn [26, 27, 30]. Then, choosing
the appropriate vertical scale factors and functions ψn remind fundamental and they can fit the real
rough curve precisely. Consider the case where the vertical scaling factor parameters are constants, then
Chen [28], Chand and Kapoor [26, 27] studied the smoothness of a class of FIFs and the smoothness

AIMS Mathematics Volume 9, Issue 2, 2584–2601.



2586

of coalescence hidden variable FIFs, respectively, using the techniques of operator approximation.
Moreover, and in the case where ψn, n ∈ J, are Lipschitz functions defined on I Yang and Yu [30]
investigated the smoothness of a class of FIFs with variable parameters using new techniques. In this
paper, we consider more general cases by letting ψn ∈ H

d
Φ

(I), n ∈ J. Our smoothness results are
obtained by evaluating | f (x) − f (y)| for x, y ∈ I. To this end, we study in Section 3, the effect of the
choice of the function ψn on the FIF denoted by f , when ψn ∈ H

d
Φ

(I). More precisely, we will prove
the following result.

Theorem 1.1. Let f be the FIF generated by the IFS (1.1) and assume that ψn ∈ H
d
Φ

(I). Let ζ :=
maxn ∥ψn∥∞, a = minn an, α := maxn ∥αn∥∞, ξr = ξa−r and C := maxn Cn where Cn is the Lipschitz
constant of αn. For a given x, y ∈ Ln1n2...nk(I), we have

| f (x) − f (y)| ≤
k∑

r=1

ξrα
r−1Φ
(∣∣∣x − y

∣∣∣) + k∑
r=2

ζαr−2C
1 − a

∣∣∣x − y
∣∣∣(a1−r − 1) + 2αk∥ f ∥∞.

Note that Theorem 1.1 considers only the case when x, y ∈ Ln1n2...nk(I) (see definition in Section 3).
However, for any x, y ∈ I, there exists k0 and {an j} j, such that

k0+1∏
j=1

an j ≤ |x − y] ≤
k0∏
j=1

an j , n j ∈ J.

It follows that x, y ∈ Ln1n2...nk0
(I) or x and y are belong to the adjacent two intervals with common

boundary point denoted by z and then | f (x) − f (y)| ≤ | f (x) − f (z)| + | f (z) − f (y)|. The previous
calculation may gives the useful upper bound of | f (x) − f (y)| for all x, y ∈ I. Moreover, , the most
widely Φ-Hölder functions are the θ-Hölder functions. To this end, let Φ0(x) = s|x|θ, for some positive
real number s and θ ∈]0, 1]. As an application of Theorem 1.1, we obtain the following result.

Corollary 1.1. Let f be the FIF generated by the IFS (1.1) such that αn are constant parameters,
ψn ∈ H

d
Φ0

(I). Assume that α := maxn |αn| < a = minn an then the function f is a θ-Hölder on I, that is,
there exists a positive constant d′ such that

| f (x) − f (y)| ≤ d′|x − y|θ, x, y ∈ I.

2. Preliminaries

2.1. Iterated function systems

Let (X, d) be a complete metric space. We define H(X) to be the set of all nonempty complex
subsets of X and g : X −→ X. The mapping g will said to be a contraction if there exists c ∈ [0, 1)
such that

d (g(x), g(y)) ≤ c d(x, y), ∀x, y ∈ X.

We define, on the setH(X), the Hausdorff metric dH defined as

d(A, B) = sup
x∈A

inf
y∈B

d(x, y) and d(B, A) = sup
x∈B

inf
y∈A

d(x, y), A, B ∈ H(X),
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where dH(A, B) = max{d(A, B), d(B, A)}. It is well known [31], that the space (H(X), dH) is complete,
and compact whenever X is compact. Now, we consider the IFS I = {X , wn ; n ∈ J}, where wn : X −→
X is a continuous mapping for n ∈ J, and the Hutchinson operator W as a selfmapping ofH(X) by

W(A) =
N⋃

n=1

wn(A) , ∀ A ∈ H(X).

A set G ∈ H(X) is said to be an attractor of the IFS if it satisfies G =
N⋃

n=1

wn(G) that is W(G) = G. In

fact, the IFS admits always at least one attractor [1]. Moreover, if the IFS is hyperbolic, that is each wn

is a contraction, then we can prove that the operator W is a contraction mapping on (H(X), dH) [1,31].

2.2. Fractal interpolation function

The FIF can be defined as an interpolant function such that its graph is a fractal, or also as fixed
point of maps using the notion of IFS. More precisely, let I = [x0, xN] be a real compact interval and
let ∆ =

{
(xn, yn) ∈ I × R ; n ∈ J0 := {0, 1, . . . ,N}

}
be a set of data, where x0 < x1 < · · · < xN ,

yi ∈ [a, b], with −∞ < a < b < ∞. For n ∈ J, set In = [xn−1, xn] and let Ln : I −→ In be a contractive
homeomorphism such that

Ln(x0) = xn−1, Ln(xN) = xn,

|Ln(x) − Ln(x′)| ≤ l|x − x′|, ∀ x, x′ ∈ I,
(2.1)

for some 0 ≤ l < 1. We consider N continuous mappings Fn : K := I × [a, b] −→ R satisfying

Fn(x0, y0) = yn−1, Fn(xN , yN) = yn, (2.2)

|Fn(x, y) − Fn(x, y′)| ≤ |rn||y − y′|, ∀x ∈ I, y, y′ ∈ [a, b], (2.3)

for some rn ∈ (−1, 1), n ∈ J. Now, we define the mapping Wn : K −→ In × R, as

Wn(x, y) =
(
Ln(x), Fn(x, y)

)
, ∀(x, y) ∈ K, n ∈ J.

It is well known that the IFS
{
K,Wn : n ∈ J

}
has a unique attractor G. Moreover G is the graph

of continuous function f : I −→ R that passes through all interpolation points (xn, yn), n ∈ J. This
function is called FIF corresponding to the points (xn, yn), n ∈ J. It is a self-affine function since each
affine transformation Wn maps the entire graph of the function to its section within the corresponding
interpolation interval [1].

Let G =
{
g : I −→ R, such that g is continuous, g(x0) = x0 and g(xN) = xN

}
. Then, (G, ρ) is a

complete metric space, where ρ is a metric defined by

ρ(g, h) = ∥g − h∥∞ = max{|g(x) − h(x)| : x ∈ I}, ∀g, h ∈ G.

Therefore, Read-Bajraktarevic operator T , defined on (G, ρ) by

T
(
g(x)
)
= Fn

(
L−1

n (x), g
(
L−1

n (x)
))
, x ∈ In, n ∈ J
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is a contraction mapping. Indeed, using (2.3), we obtain

∥T ( f ) − T (g)∥ ≤ α∥ f − g∥∞,

where α := maxn |αn|. Hence T possesses a unique fixed point f on G and then the FIF is the unique
function satisfying the following functional relation

f (x) = Fn

(
L−1

n (x), f
(
L−1

n (x)
))
, ∀x ∈ In, n ∈ J. (2.4)

The most widely studied FIFs are defined by the following system

Ln(x) = anx + en,

Fn(x, y) = αny + ψn(x),
n ∈ J,

where the real constants an and en are determined by condition (2.1), ψn are some continuous functions
such that conditions (2.2) and (2.3) hold, αn ∈ (−1, 1) are free parameters, called vertical scaling factors
of the transformations Wn, and have an important consequences on the properties of the FIF. Indeed,
if we consider the case of equally spaced interpolation points, we obtain smooth or non-smooth fractal
function depending on the scaling factors choice. More precisely, we have the box dimension D of the
graph of the FIF defined by [31]

D := 1 +
log
(∑N

n=1 |αn|
)

log(N)
. (2.5)

In particular, if α1 = · · · = αN = α then D = 2 + logN |α|. Nevertheless, there are questions about
optimal choice of the vertical scaling factors αn, n ∈ J, so that the obtained curves fit as closely as
possible the real values. There are different ways to measure the quality of fit of the interpolation, for
example one can use the normalized mean squared error [22] (see also [32, 33]).

In Figures 1–4, we plot the FIF associated to the interpolation points

∆ =
{
(0, 9), (0.2, 11), (0.4, 15), (0.6, 8), (0.8, 12), (1.0, 10)

}
.

However, different vertical scaling factors are employed in each construction. As, we can see, we
obtain different shape of graph of FIF even, here, the vertical scaling factors were carefully selected,
so that the box-counting dimension of each graph is equal to D = 1.3988. Hence, the self-similarity
of the fractal interpolation curve depends on the choice of the vertical scaling factors. To this end,
considering more general case by choosing a variable parameters (αn(x) instead of constant parameters
αn) provide a wide variety of systems for different approximations problems [30]. In the present work,
we consider the IFS, with variable parameters [30], defined by (1.1). In this case, the FIF will be called
generalized affine FIF and denoted by f α where α := (α1, α2, . . . , αN) (or simply by f if there is no
ambiguity).
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Figure 1. Scaling factors α =

(−0.3,−0.4,−0.3, 0.4, 0.5).
Figure 2. Scaling factors α =

(−0.4, 0.3,−0.4,−0.4, 0.4).

Figure 3. Scaling factors α =

(0.3,−0.5, 0.4,−0.3,−0.5).
Figure 4. Scaling factors α =

(−0.2,−0.6, 0.3, 0.5, 0.3).

3. Fractal interpolation function defined using Φ-Hölder functions

In this section we consider the generalized affine FIF generated by the IFS defined by (1.1) in
Section 1 We will assume, for n ∈ J, that the functions ψn ∈ H

d
Φ

(I) and αn : I −→ R are Lipschitz
functions, with Lipschitz constant Cn, such that α := maxn ∥αn∥∞ < 1, where ∥αn∥∞ := sup

{
αn(x); x ∈

I, n ∈ J
}
. Now, for x ∈ I, let Ln1n2...nk(x) := Ln1 ◦ Ln2 ◦ · · · ◦ Lnk(x)

Ln1n2...nk(I) := Ln1 ◦ Ln2 ◦ · · · ◦ Lnk(I),

where n j ∈ J, k ≥ 1, j ∈ {1, . . . , k}. We define also, for j = 1, . . . , k − 1, a shift operator σ j by
σ j(n1n2 . . . nk) = n j+1 . . . nk and

Lσ j(n1n2...nk)(x) = Ln j+1...nk(x), 1 ≤ j ≤ k − 1,

while Lσk(n1n2...nk)(x) = x. In this paper, we consider the following convention
∏0

j=1 S j(x) = 1 for any
family of functions {S j} j.

3.1. Proof of Theorem 1.1

First, we will prove the next lemma which will be useful in the proof of Theorem 1.1.

Lemma 3.1. Let k ≥ 1, for all x, y ∈ Ln1n2...nk(I), n j ∈ J and j = 1, . . . , k, there exist x̄, ȳ ∈ I such that
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(1) x =
(∏k

j=1 an j

)
x̄ +
∑k

r=1

(∏r−1
j=1 an j

)
enr and y =

(∏k
j=1 an j

)
ȳ +
∑k

r=1

(∏r−1
j=1 an j

)
enr .

(2) Let l ∈ {1, . . . , k}, then

∣∣∣∣Lσl(n1n2...nk)(x̄) − Lσl(n1n2...nk)(ȳ)
∣∣∣∣ = ( l∏

j=1

a−1
n j

)∣∣∣x − y
∣∣∣ (3.1)

and, there exits a positive constant ξl == ξa−l, such that∣∣∣∣ψnl

(
Lσl(n1n2...nk)(x̄)

)
− ψnl

(
Lσl(n1n2...nk)(ȳ)

)∣∣∣∣ ≤ ξlΦ
(∣∣∣x − y

∣∣∣). (3.2)

Proof. Using a successive iteration and induction (see [30], Lemma 3.1, and [34], Lemma 1) we have,
for all n j ∈ J, j = 1, . . . , k,

Ln1n2...nk(x) =
( k∏

j=1

an j

)
x +

k∑
r=1

( r−1∏
j=1

an j

)
enr . (3.3)

Since for every x, y ∈ I there exist x̄, ȳ ∈ I such that x = Ln1n2···nk(x̄) and y = Ln1n2···nk(ȳ), the first
assertion follows. Now, for l ∈ {1, . . . , k}, we have

Lσl(n1n2...nk)(x̄) =
( k−l∏

j=1

anl+ j

)
x̄ +

k−l∑
r=1

( r−1∏
j=1

anl+ j

)
enl+r

=
( k−l∏

j=1

anl+ j

)( k∏
j=1

a−1
n j

)[
x −

k∑
r=1

( r−1∏
j=1

an j

)
enr

]
+

k−l∑
r=1

( r−1∏
j=1

anl+ j

)
enl+r

=
( l∏

j=1

a−1
n j

)[
x −

k∑
r=1

( r−1∏
j=1

an j

)
enr

]
+

k−l∑
r=1

( r−1∏
j=1

anl+ j

)
enl+r .

Similarly, we have Lσl(n1n2...nk)(ȳ) =
(∏l

j=1 a−1
n j

)[
y−
∑k

r=1

(∏r−1
j=1 an j

)
enr

]
+
∑k−l

r=1

(∏r−1
j=1 anl+ j

)
enl+r and, as a

consequence, we get (3.1). In addition, since Φ satisfies the doubling condition, there exists a constant
ξ such that ∣∣∣∣ψnl

(
Lσl(n1n2...nk)(x̄)

)
− ψnl

(
Lσl(n1n2...nk)(ȳ)

)∣∣∣∣ ≤ Φ(∣∣∣∣Lσl(n1n2...nk)(x̄) − Lσl(n1n2...nk)(ȳ)
∣∣∣∣)

≤ Φ
( l∏

j=1

a−1
n j

∣∣∣x − y
∣∣∣)

≤ ξlΦ
(∣∣∣x − y

∣∣∣).
□

Now, we will give te prove of the Theorem 1.1. For this, let x, y ∈ Ln1n2...nk(I). Then, by
Lemma 3.1, there exist x̄, ȳ ∈ I such that x =

(∏k
j=1 an j

)
x̄ +
∑k

r=1

(∏r−1
j=1 an j

)
enr and y =

(∏k
j=1 an j

)
ȳ +
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r=1

(∏r−1
j=1 an j

)
enr . Moreover, using [30, Lemma 3.2], we get for r ≥ 2,

∣∣∣∣ r−1∏
l=1

αnl

(
Lσl(n1n2...nk)(x̄)

)
−

r−1∏
l=1

αnl

(
Lσl(n1n2...nk)(ȳ)

)∣∣∣∣
≤

r−1∑
l=1

αr−2C
∣∣∣∣Lσl(n1n2...nk)(x̄) − Lσl(n1n2...nk)(ȳ)

∣∣∣∣
≤

r−1∑
l=1

αr−2C
( l∏

j=1

a−1
n j

)∣∣∣x − y
∣∣∣

≤αr−2C
∣∣∣x − y

∣∣∣ r−1∑
l=1

a−l =
αr−2C
1 − a

∣∣∣x − y
∣∣∣(a1−r − 1).

(3.4)

Now, since f is the FIF generated by the system (1.1), we obtain, using the successive iteration and
induction,

f (x) = f
(
Ln1n2...nk(x̄)

)
=
[ k∏

j=1

αn j

(
Lσ j(n1n2...nk)(x̄)

)]
f (x̄)

+

k∑
r=1

[ r−1∏
j=1

αn j

(
Lσ j(n1n2...nk)(x̄)

)]
ψnr

(
Lσr(n1n2...nk)(x̄)

)
.

(3.5)

As a consequence, we get

| f (x) − f (y)| ≤
k∑

r=1

∣∣∣∣[ r−1∏
j=1

αn j

(
Lσ j(n1n2...nk)(x̄)

)]
ψnr

(
Lσr(n1n2...nk)(x̄)

)
−
[ r−1∏

j=1

αn j

(
Lσ j(n1n2...nk)(ȳ)

)]
ψnr

(
Lσr(n1n2...nk)(ȳ)

)∣∣∣
+
∣∣∣∣[ k∏

j=1

αn j

(
Lσ j(n1n2...nk)(x̄)

)]
f (x̄) −

[ k∏
j=1

αn j

(
Lσ j(n1n2...nk)(ȳ)

)]
f (ȳ)
∣∣∣∣.

Now, using (3.2) and (3.4), we obtain

| f (x) − f (y)| ≤
k∑

r=1

[∣∣∣∣ r−1∏
j=1

αn j

(
Lσ j(n1n2...nk)(x̄)

)∣∣∣∣∣∣∣ψnr

(
Lσr(n1n2...nk)(x̄)

)
− ψnr

(
Lσr(n1n2...nk)(ȳ)

)∣∣∣
+
∣∣∣∣ r−1∏

j=1

αn j

(
Lσ j(n1n2...nk)(x̄)

)
−

r−1∏
j=1

αn j

(
Lσ j(n1n2...nk)(ȳ)

)∣∣∣∣]ψnr

(
Lσr(n1n2...nk)(ȳ)

+ 2αk∥ f ∥∞

≤

k∑
r=1

ξrα
r−1Φ
(∣∣∣x − y

∣∣∣) + k∑
r=2

ζαr−2C
1 − a

∣∣∣x − y
∣∣∣(a1−r − 1) + 2αk∥ f ∥∞,

when we have used (3.2) and (3.4).
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Remark 3.1. Let x, y ∈ I and k0 be an integer such that

k0+1∏
j=1

an j ≤ |x − y] ≤
k0∏
j=1

an j , n j ∈ {1, . . . , k0}. (3.6)

In order to simplify, we may take C = α ( this is the case, for example, when αn are constant functions
α, for all n ∈ J). Therefore, using Theorem 1.1, we have, for all k ≥ k0,

| f (x) − f (y)| ≤
k∑

r=1

ξrα
r−1Φ
(∣∣∣x − y

∣∣∣) + k∑
r=2

ζαr−1

1 − a

∣∣∣x − y
∣∣∣(a1−r − 1) + 2αk∥ f ∥∞.

Moreover, we can choose k large enough so that

| f (x) − f (y)| ≤
k∑

r=1

ξrα
r−1Φ
(∣∣∣x − y

∣∣∣) + k∑
r=2

ζαr−1

1 − a

∣∣∣x − y
∣∣∣a1−r,

that is, we may take Ξk = 2αk∥ f ∥∞ −
k∑

r=2

ζαr−1

1 − a

∣∣∣x − y
∣∣∣ ≤ 0. Indeed, let A1 := ak0+1 ≤ |x − y| by (3.6) and

then

Ξk = 2αk∥ f ∥∞ −
k∑

r=2

ζαr−1

1 − a

∣∣∣x − y
∣∣∣ ≤ 2αk∥ f ∥∞ − A1

k∑
r=2

ζαr−1

1 − a

≤ 2αk∥ f ∥∞ −
A1ζα

(1 − a)(1 − α)

(
1 − αk−1

)
≤ αk

[
2∥ f ∥∞ −

A1ζ

(1 − a)(1 − α)αk−1 +
A1ζ

(1 − a)(1 − α)

)]
.

Therefore, we only have to take k such that

A1ζ

(1 − a)(1 − α)αk−1 ≥ 2∥ f ∥∞ +
A1ζ

(1 − a)(1 − α)
:= Ξ1

or
αk−1 ≤

A1ζ

Ξ1(1 − a)(1 − α)
.

In particular, take Φ(x) = |x|θ for θ ∈ (0, 1]. It follows, since we can choose ξ = 1 and then ξr = a−r,
that

| f (x) − f (y)| ≤
k∑

r=1

ξrα
r−1
∣∣∣x − y

∣∣∣θ + k∑
r=2

ζαr−1

1 − a

∣∣∣x − y
∣∣∣a1−r

≤

∣∣∣x − y
∣∣∣θ

α

∞∑
r=1

(α
a
)r
+

ζa
(1 − a)α

∣∣∣x − y
∣∣∣ ∞∑

r=2

(α
a
)r

≤
1

a − α

∣∣∣x − y
∣∣∣θ + ζα

(1 − a)(a − α)

∣∣∣x − y
∣∣∣.
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Example 3.1. The nowhere differentiable Weierstrass function is given by

f ϕλ,l(x) =
∞∑

k=0

λkϕ(lkx), x ∈ R, (3.7)

where l ≥ 2 be an integer, 1/l < λ < 1 and ϕ : R −→ R is a Z-periodic real analytic function. This
function displays self-similarity on different scales (see Figure 5) and it’s graph exhibits fractal-like
behavior, with intricate and complex structure on all scales [35, 36].

Figure 5. Weierstrass function for different choice of variables λ and l with ϕ(x) = cos(2πx).

In this example, we consider the classical Weierstrass function f , that is, when ϕ(x) = cos(2πx).
Let I = [0, 1], N = l = 3 and λ = 1/2. Now consider

Wn(x, y) =
( x + n − 1

3
, αn(x)y + ϕ

( x + n − 1
3

))
, (x, y) ∈ I × R, (3.8)

where αn(x) = 1
2 + (−1)1+⌊n/2⌋ sin(2πx)

4 , for n ∈ {1, 2, 3}, where ⌊n/2⌋ means the integer part of x. In this
case, we have Weierstrass function f is the FIF defined by {Wn}

3
n=1 [37]. Therefore, for n = 1, 2, 3, we

have ψn(x) = cos( 2π(x+n−1)
3 ) and then, for x, y ∈ I, we have∣∣∣∣ψn(x) − ψn(y)

∣∣∣∣ = ∣∣∣∣ sin
(2π

3
x +

2π
3

n −
π

6

)
− sin

(2π
3

y +
2π
3

n −
π

6

)∣∣∣∣
≤ 2
∣∣∣∣ sin
(π
3

(x − y)
)∣∣∣∣ ≤ 2π

3
|x − y|,

where, we have used the inequality | sin(x) − sin(y)| ≤ sin( x−y
2 ) cos( x+y

2 ). Therefore, the function ψn is
Φ-Hölder function with Φ(x) = 2π

3 x (ξ = 1). In this case, we have

a =
1
3
, ξr = a−r ; C =

1
4
, α ≤

1
4

and ζ = 1.

Now, applying Remark 3.1, for k large enough and a given x, y ∈ Ln1n2...nk(I), we obtain

| f (x) − f (y)| ≤
k∑

r=1

ξrα
r−1Φ
(∣∣∣x − y

∣∣∣) + k∑
r=2

ζαr−2C
1 − a

∣∣∣x − y
∣∣∣a1−r

≤
2π
3α

∣∣∣x − y
∣∣∣ k∑

r=1

(α
a
)r
+

ζC
(1 − a)α

∣∣∣x − y
∣∣∣ k−1∑

r=1

(α
a
)r

≤
α

a − α

∣∣∣x − y
∣∣∣(8π

3
+

3
2

)
=
(
8π +

9
2

)∣∣∣x − y
∣∣∣.
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3.2. Proof of Corollary 1.1

In this section, we will prove some consequences of Theorem 1.1. For this, for each n ∈ J, let
ψn ∈ H

d
Φ

(I) and assume that ς :=
∑∞

r=1 ξrα
r < ∞. We define the function

χ(x) = 2M1

(
Φ
(∣∣∣x − y

∣∣∣) + |x − y|
)
,

where
M1 = max

{ ς
α
,
ςζCα
ξ(1 − a)

+
2
a
∥ f ∥∞
}
.

As a consequence of Remark 3.1, we obtain, the following result.

Proposition 3.1. Let f be the FIF generated by the IFS (1.1) such that ψn ∈ H
d
Φ

(I) and αn are Lipschitz
functions for each n ∈ J. Assume that ς :=

∑∞
r=1 ξrα

r < ∞. Then f is χ-Hölder function on I.

Proof. Let x, y ∈ I, then there exists k0 such that (3.6) is satisfied. If k0 = 0 then we prescribe
Ln1n2...nk0

(I) = I. First, we consider the case when x, y ∈ Ln1n2...nk0
(I), then, using the same notation as in

Theorem 1.1, we have

| f (x) − f (y)| ≤
k0∑

r=1

ξrα
r−1Φ
(∣∣∣x − y

∣∣∣) + k0∑
r=2

ζαr−2C
1 − a

∣∣∣x − y
∣∣∣a1−r + 2αk0∥ f ∥∞

≤

k0∑
r=1

ξrα
r−1Φ
(∣∣∣x − y

∣∣∣) + ζCα
ξ(1 − a)

∣∣∣x − y
∣∣∣ k0∑

r=2

ξr−1α
r−1 +

2αk0ξk0+1

ξ
∥ f ∥∞|x − y|

≤
ς

α
Φ
(∣∣∣x − y

∣∣∣) + [ ςζCα
ξ(1 − a)

+
2
a
∥ f ∥∞
]
|x − y|,

≤ M1

(
Φ
(∣∣∣x − y

∣∣∣) + |x − y|
)
=

1
2
χ
(∣∣∣x − y

∣∣∣).
where we have used the fact that ξk0α

k0 < 1. Now, we consider the other case, that is, when x, y do
not belong to the same subinterval Ln1n2...nk0

(I) but (3.6) holds. Then, clearly the reals numbers x and y
must belong to the adjacent two intervals with common boundary point denoted by z. It follows that

| f (x) − f (y)| ≤ | f (x) − f (z)| + | f (z) − f (y)| ≤
1
2
χ
(∣∣∣x − z

∣∣∣) + 1
2
χ
(∣∣∣y − z

∣∣∣)
≤ χ

(∣∣∣x − y
∣∣∣).

□

In the following we will give the proof of the Corollary 1.1. For this, let f be the FIF generated by
the IFS (1.1) and let Φ(x) := Φ0(x) = s|x|θ, for some positive real number s and θ ∈]0, 1]. We assume
that, for each n ∈ J, ψn ∈ H

d
Φ0

(I). Again, we set ζ := maxn ∥ψn∥∞, a = minn an, α := maxn |αn| such
that α < a.

Now, under our hypothesis, we note that C = α, ξ = 1, ξl = a−l and

ς =

∞∑
r=1

(α
a

)r
=

α

a − α
< ∞.
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Therefore, we deduce

| f (x) − f (y)| ≤ 2
ς

α
Φ
(∣∣∣x − y

∣∣∣) + 2
[ ςζCα
(1 − a)

+
2
a
∥ f ∥∞
]
|x − y|

≤
2α sθ

a − α

∣∣∣x − y
∣∣∣θ + [ 2 ζα3

(a − α)(1 − a)
+

4
a
∥ f ∥∞
]
|x − y|

≤
[2α sθ

a − α
+

2ζα3

(a − α)(1 − a)
+

4
a
∥ f ∥∞
]
|x − y|θ

that is, the function f is a θ-Hölder on I.

Example 3.2. In this example, we consider the Weierstrass function defined in Example 3.1 by (3.7).
Let I = [0, 1] and the interpolating points x0 = 0 < x1 < · · · < xN = 1 such that xn − xn−1 = 1/N
(N = l). We consider the following system defined asLn(x) = x

N +
n−1
N ,

Fn(x, y) = αy + ϕ
( x+n−1

N

)
,

(3.9)

where α = λ. It is well known that the function f is a FIF [37]. Indeed, consider, for n ∈ J, the function

Wn(x, y) =
( x + n − 1

N
, αy + ϕ

( x + n − 1
N

))
, (x, y) ∈ [0, 1] × R.

It follows that

f
(
Ln(x)

)
= f
( x + n − 1

N
)
= ϕ
( x + n − 1

N
)
+ α

∞∑
k=0

αkϕ(Nkx) = ϕ
( x + n − 1

N
)
+ α f (x)

and thus

C f =

N⋃
n=1

Wn
(
C f
)
.

Therefore, for n ∈ J, we have ψn(x) = cos
(2π(x+n−1)

N

)
. It follows, as in Example 3.1, that ψn is Φ-Hölder

function with Φ(x) = 2π
N x and then we may choose ξ = 1. In addition, choose α = 1

2N , we get

a =
1
N
, ξr = N−r, C = α =

1
2N

and ς = ζ = 1.

It follows, from Corollary 1.1, that

| f (x) − f (y)| ≤
[ 2α
a − α

2π
N
+

2ζα3

(a − α)(1 − a)
+

4
a
∥ f ∥∞
]
|x − y|

≤
[4π

N
+

1
2N(N − 1)

+ 4N∥ f ∥∞
]
|x − y|.
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4. Upper bound of the maximum range of FIF

Let I = [0, 1], P =
{
( n

N , yn) ∈ R2, n ∈ J
}

be the interpolation points and D =
{ n

N ∈ I, n ∈ J0
}
. We

define

L0(D) = D, L(D) =
N⋃

n=1

Ln(D), and Lk(D) = L ◦ · · · ◦ L(D),

k times composition. In this section, an interesting case of the system (1.1) will studied. Indeed,
in [38], the author observed that we can use the theory of FIF to generate a family of continuous
functions having fractal property from a given continuous function and with different values of fractal
dimension. Let f ∈ C(I), the normed space of real valued endowed with the uniform norm continuous
function on I, we define the following systemLn(x) = anx + en

Fn(x, y) = αn(x)y + f (Ln(x)) − αn(x)b(x),
(4.1)

where the real constants an and en are determined by condition (2.1), the functions αn : I −→ R are
Lipschitz functions, with Lipschitz constant Cn such that α := maxn ∥αn∥∞ < 1 and b ∈ C(I) such
that b(0) = f (0) and b(1) = f (1). Then the FIF generated by (4.1) will be denoted by f α which
interpolates f at the nodes of the partition. Moreover, According to (2.4), the FIF f α satisfies the fixed
point equation [30, 38–40]

f α(x) = f (x) + αn(L−1
n (x))

(
f α − b

)
(L−1

n (x), for all x ∈ In, n ∈ J. (4.2)

Now, we will assume through this section that f and b are Φ1 and Φ2 Hölder functions with Hölder
constants ξ f and ξb respectively.

Lemma 4.1. Let f α be the FIF generated by the system (4.1) and assume that α = maxn ∥αn∥∞ < 1.
Then, there exists a positive constant A1 such that

∣∣∣ f α(x) − yn−1

∣∣∣ ≤ αΓ1 + ξ f + αξb

1 − α
, x ∈ In.

Proof. We define, for k = 1, 2, . . . ,

Γk = max
{
| f α(x) − y0|, x ∈ Lk−1(D)

}
and γk = max

n

{
| f α(x) − yn−1|, x ∈ Lk−1(D) ∩ In

}
.

First, observe that

Γk ≤ max
n

{
| f α(x) − yn−1|, x ∈ Lk−1(D) ∩ In

}
+max

n

{
|yn−1 − y0|

}
≤ Γ1 + γk. (4.3)

For x ∈ Lk(D) ∩ In, we have,

f α(x) = f (x) + αn(L−1
n (x))

(
f α − b

)(
L−1

n (x)
)
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and then ∣∣∣ f α(x) − yn−1

∣∣∣ ≤∣∣∣ f (x) − f
(n − 1

N
)∣∣∣ + α∣∣∣ f α(L−1

n (x)
)
− y0

∣∣∣ + α∣∣∣b(L−1
n (x)
)
− y0

∣∣∣
≤Φ1

(∣∣∣x − n − 1
N

∣∣∣) + αΓk−1 + αΦ2

(∣∣∣L−1
n (x)
∣∣∣)

≤ξ fΦ1(1) + αΓk−1 + αξbΦ2(1)
≤ξ f + αΓk−1 + αξb.

We denote by A = ξ f + αξb which nor depends on k. It follows, using (4.3), that

γk+1 ≤ αΓk + A ≤ αγk + αΓ1 + A

≤ β
(
αΓk−1 + A

)
+ αΓ1 + A

≤ α2γk−1 + α
2Γ1 + αΓ1 + αA + A

...

≤

k∑
j=1

α jΓ1 +

k−1∑
j=0

α jA ≤
αΓ1 + A

1 − α
.

For any x ∈ In, there exits a sequence {x j} j ∈ In ∩
(⋃

k Lk(D)
)

such that x j −→ x and then
lim j→∞ | f α(x j) − yn−1| = | f α(x) − yn−1|, by continuity of the function f α . Therefore, we get∣∣∣ f α(x) − yn−1

∣∣∣ ≤ αΓ1 + ξ f + αξb

1 − α
, x ∈ In.

□

Given a function S defined on I, we define the maximum range RS of S as

RS (I) = sup
s1,s2∈I

∣∣∣S (s1) − S (s2)
∣∣∣.

Theorem 4.1. Let f α be the α-FIF the IFS (4.1) with interpolation points P. Assume that α < 1, then

R f̃ α(I) ≤ min
{
N
αΓ1 + H f + αHb

1 − α
,

2
1 − α

(
α∥b∥∞ + ∥ f ∥∞

)}
.

Proof. From Lemma 4.1, we have

sup
In

∣∣∣ f α(x) − yn−1

∣∣∣ ≤ αΓ1 + H f + αHb

1 − α
.

Now, let s1, s2 ∈ I, then there exists n1 ≤ n2 ∈ J such that s1 ∈ In1 and s2 ∈ In2 . It follows,∣∣∣ f α(s1) − f α(s2)
∣∣∣ ≤ ∣∣∣ f α(s1) − yn1−1

∣∣∣ + ∣∣∣yn1−1 − yn1

∣∣∣ + · · · + ∣∣∣yn2−1 − f α(s2)
∣∣∣

≤ N
αΓ1 + H f + αHb

1 − α
.

In the other hand, using (4.2), we obtain

R f̃ α ≤ 2∥ f α∥∞ ≤ 2∥ f α − f ∥∞ + 2∥ f ∥∞
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≤
2α

1 − α
∥ f − b∥∞ + 2∥ f ∥∞

≤
2

1 − α
(
α∥b∥∞ + ∥ f ∥∞

)
.

as required. □

Example 4.1. Let I = [0, 1] and f (x) = x − x2. Observe that for any x, y ∈ I, we have

| f (x) − f (y)| ≤ |x − y| + |x2 − y2| ≤ 3|x − y|

then the function f is Hölderian with exponent 1 and Hölder constant H f = 3. In this example, we
consider the following perturbed systemLn(x) = x

N +
n−1
N

Fn(x, y) = αy + f (Ln(x)) − αb(x),
(4.4)

where b(x) = f (x)/3. It follows that

∥ f α − f ∥∞ ≤
α

1 − α
∥ f − b∥∞ ≤

α

6(1 − α)
.

In particular if α = 1/6, we obtain

∥ f α − f ∥∞ ≤
1
30
.

Therefore, we have

R f̃ α(I) ≤
2

1 − α
(
α∥b∥∞ + ∥ f ∥∞

)
≤

1
1 − α

(
α/12 + 1/4

)
and then R f̃ α(I) = 19

60 for α = 1/6.

5. Conclusions

In the present work, a class of generalized affine FIFs with variable parameters, where ordinate
scaling is substituted by real-valued control function, is investigated. Their smoothness is discussed
according to the choice of ψn, n ∈ J. We prove, in particular, that the FIF is θ-hölder function whenever
ψn are. Our study is limited to functions ψn ∈ H

d
Φ

(I) and it is worth studying more general cases, for
example when doubling condition is not satisfied. Furthermore, we note that the thechnique using in
this paper does not allows to study more general case, for example where Fn(x, y) = φn(y)+ψn(x) with
φn are Matkowski contractions [22].
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