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1. Introduction

Fractional differential equations (FDEs) appear as tractable mathematical models to depict
anomalously diffusive transport, long-range spatial interactions and memory effect [3,8–10,13,19,30]
and have attracted extensive research on the theoretical aspects of the existence and uniqueness of
solutions [2, 7, 12, 21, 22, 24]. Due to the non-locality of the fractional operators, the FDEs can rarely
be solved explicitly. For this reason, a large number of literature has a growing interest in the
development of analytic and numerical analysis of numerical approximations, and spectral method is
one of the most widely used numerical methods. Compared with the finite difference method and the
finite element method for FDEs, which obtain lower convergence accuracy, the spectral method is a
numerical calculation method with high accuracy.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231486


29018

Up to now, there are very promising efforts have been devoted to developing spectral methods for
solving FDEs. In pioneer work [11], by constructing intermediate functional spaces in terms of
fractional derivatives that are essentially equivalent to the fractional Sobolev spaces, Li and Xu
established the well-posedness of the weak problems of fractional diffusion equations and proposed a
Galerkin spectral method based on Jacobi polynomials for temporal discretisation and Lagrangian
polynomials for space discretization. Subsequently, an efficient space-time Galerkin spectral method
based on Jacobi polynomials for temporal discretisation and on Fourier-like basis functions for spatial
discretisation was investigated in [33, 34]. An alternating direction implicit Galerkin-Legendre
spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation
is studied in [31]. Mao and Shen [18] then developed a spectral-Galerkin algorithm to solve
multi-dimensional fractional elliptic equations with variable coefficients, and they derived rigorous
weighted error estimates which improved convergence rate than the usual non-weighted estimates.

On the one hand, the solutions of FDEs are singular near the boundaries because of fractional
operators bearing singular kernel/weight functions. On the other hand, the spectral methods based
on the traditional polynomial cannot obtain exponential convergence for non-smooth solutions. In
order to improve the spectral convergence accuracy and better account for the singularity of solutions
of fractional order problems, some scholars have constructed new spectral methods by improving the
basis functions. Most notably, Zayernouri and Karniadakis [29] introduce a family of eigenfunctions of
a fractional Sturm-Liouville problem in bounded domains, called Jacobi poly-fractonomials, as basis
functions, achieving spectral accuracy for some simple fractional model problems. Furthermore, Chen,
Shen and Wang [6] extended the range of definition of Jacobi poly-fractonomials and defined a new
class of generalised Jacobi functions (GJFs). The optimal approximation results for GJFs in weighted
spaces are established in [6], and the a priori error estimates of Petrov-Galerkin method for a class of
prototypical FDEs utilizing the GJFs are studied. It turns out that Petrov-Galerkin spectral methods
using weighted polynomial bases are particularly well suited for the accurate approximation of FDEs.
More recent works in this area can be found in [14, 17].

Besides the a priori error estimation mentioned above, the a posterior error estimation has become
an important part of modern scientific computations utilizing various adaptive algorithms since the
work of Babuška and Rheinboldt [1]. With a growing number of successful applications of spectral
methods to FDEs, the a posterior error analysis of spectral methods for FDEs has been given more
and more attention. Mao et al. [15] studied Petrov-Galerkin spectral methods for fractional initial
value problems, and a recovery based a posteriori error estimator with postprocessing solutions was
obtained. In addition, it is worth noting that Wang et al. studied a posteriori error analysis of the
Galerkin spectral methods for space-time fractional diffusion equations [26] and the authors in [25]
presented a posteriori error analysis of the Galerkin spectral methods for Multi-term time fractional
diffusion equations. In addition, the a posteriori error estimates of the Galerkin spectral method for
the fractional optimal control problems is discussed in [5, 27, 28]. To the best of our knowledge,
there exists no work currently on residual-type a posteriori error analysis of Petrov-Galerkin spectral
methods using GJFs for FDEs, which motivated this work.

In this paper, we investigate the a posteriori error estimates of a class of typical fractional initial
value problems and fractional boundary value problems, which pave the way for the research of a
posteriori error estimation for spectral element methods. The Petrov-Galerkin spectral method is used
as the discretization technique, and some variable involving fractional derivative are discretized by
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GJFs with various parameters. A rigorous proof of unique solvability of the spectral discrete problem
is presented under some essential assumptions. Then, the a posteriori error estimates without any
postprocessing solutions are established, and we investigate numerically the efficiency and reliability
of the a posteriori error estimators.

The paper is organized as follows: In Section 2, we introduce some notations and definition of
fractional integrals and derivatives, and give some preliminaries on GJFs. First, we state in the first part
of Section 3 the Petrov-Galerkin spectral schemes using GJFs for solving a class of fractional initial
problems, and we introduce the corresponding a posteriori error estimators, where their efficiency and
reliability are proved. Then, we extend the results for a class of fractional boundary problems in the
second part of Section 3. Some numerical examples, presented in Section 4, are given to confirm the
theoretical findings in above sections, and conclude with some remarks in the final section.

2. Preliminaries

In this section, we collect some basic relations and properties of fractional derivatives and GJFs.
Throughout this part, we set Λ := (−1, 1). There are some notations that we have to introduce here.
Let N+, R and R+ be the set of positive integers, real numbers and positive real numbers, respectively,
and denote N0 := {0} ∪ N+. Set p ∈ R+. We denote by Lp

ω(Λ) the class of all measurable functions u
with the weight function ω(x) defined on Λ for which∫

Λ

|u|pω < ∞,

and the functional ‖u‖Lp
ω
, defined

‖u‖Lp
ω

=
( ∫

Λ

|u|pω
) 1

p
,

is a norm on Lp
ω(Λ) provided 1 ≤ p < ∞. In general, for u, v ∈ L2

ω(Λ), we define

(u, v)L2
ω

=

∫
Λ

uvω, ‖u‖L2
ω

= (u, u)
1
2

L2
ω

to stand for the inner product and norm of the weighted space L2
ω(Λ). For convenience, we denote

(u, v)L2
ω

by (u, v)ω and ‖ · ‖L2
ω

by ‖ · ‖ω. Notice that if ω ≡ 1, then ω will be omitted from the notations,
and the weighted space L2

ω(Λ) is to be L2(Λ).

2.1. Fractional integrals and derivatives

Let us recall the general definitions of fractional integrals and derivatives [20].

Definition 2.1. (Fractional integrals) For any u ∈ L1(Λ), the left- and right-sided Riemann-Liouville
fractional integral of order s ∈ R+ are respectively defined as

−1I s
xu(x) =

1
Γ(s)

∫ x

−1
(x − τ)s−1u(τ)dτ, xI s

1u(x) =
1

Γ(s)

∫ 1

x
(τ − x)s−1u(τ)dτ,

where Γ(·) denote the Gamma function.
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Definition 2.2. (Fractional derivatives) Let number s ≥ 0. For a function u given in Λ, the expression

RL
−1D

s
xu(x) = Dn

x(−1In−s
x u(x)), RL

xDs
1u(x) = (−1)nDn

x(xIn−s
1 u(x)),

where n = [s] + 1, [s] denotes the integer part of s, is called the left- and right-handed Riemann-
Liouville fractional derivative of order s, respectively. In addition, the left-handed Caputo fractional
derivative of order s is defined as

−1
CDs

xu(x) = RL
−1D

s
x

(
u(x) −

n−1∑
k=0

u(k)(−1)
k!

(x + 1)k
)
, (2.1)

and the right-handed Caputo fractional derivative of order s is defined as

C
xD

s
1u(x) = RL

xDs
1

(
u(x) −

n−1∑
k=0

u(k)(1)
k!

(1 − x)k
)
. (2.2)

In particular, for any n ∈ N0, RL
−1D

n
x = Dn

x,
RL
xDn

1 = (−1)nDn
x, where Dn

x is the usual derivative of order
n in x. Clearly, it observe from (2.1)-(2.2) that if u(i)(−1) = 0, i = 0, 1, . . . , n − 1, then −1

CDs
xu(x) =

RL
−1D

s
xu(x), and if u(i)(1) = 0, i = 0, 1, . . . , n − 1, then C

xD
s
1u(x) = RL

xDs
1u(x). At the same time, for

u(i)(−1) = 0, i = 0, 1, · · ·, n − 1, the Riemann-Liouville fractional derivative operator commutes with
integer-order derivative, i.e., that

RL
−1D

s
x(D

n
xu(x)) = Dn

x(
RL
−1D

s
xu(x)) = RL

−1D
s+n
x u(x). (2.3)

2.2. GJFs for fractional derivatives

In this subsection, we will introduce the modified GJFs defined in [6], and investigate their
properties.

Definition 2.3. (GJFs) Let x ∈ Λ and m ∈ N0.

• For β > −1, α ∈ R,

−J(α,−β)
m (x) := (1 + x)βP(α,β)

m (x). (2.4)

• For α > −1, β ∈ R,

+J(−α,β)
m (x) := (1 − x)αP(α,β)

m (x), (2.5)

where P(α,β)
m (x) is the Jacobi polynomials with real parameters α, β ∈ R on finite interval Λ.

Here, readers may refer to [23] for a summary of the messages associated with Jacobi polynomials.
Indeed, for k ∈ N+, α ∈ R, there holds the transformation formula for Jacobi polynomials [23]:

P(−k,α)
m (x) = d(k,α)

m

( x − 1
2

)k
P(k,α)

m−k (x), P(α,−k)
m (x) = d(k,α)

m

( x + 1
2

)k
P(α,k)

m−k (x), (m ≥ k ≥ 1), (2.6)

where

d(k,α)
m =

(m − k)! Γ(m + α + 1)
m! Γ(m + α − k + 1)

.
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Combining (2.6) with (2.4) and (2.5), it’s clear that for any α ≥ −1, k ∈ N+,

−J(−k,−α)
m (x) := (−1)k2−kd(k,α)

m (1 − x)k(1 + x)αP(k,α)
m−k (x), (m ≥ k ≥ 1),

and

+J(−α,−k)
m (x) := 2−kd(k,α)

m (1 − x)α(1 + x)kP(α,k)
m−k (x), (m ≥ k ≥ 1).

Notice that for α, β > −1, the Jacobi polynomials P(α,β)
m (x) naturally turn to the classical Jacobi

polynomials. They are orthogonal with respect to the weight function ω(α,β)(x) = (1 − x)α(1 + x)β,
namely, ∫

Λ

P(α,β)
m P(α,β)

m′ ω(α,β) = γ(α,β)
m δmm′ , (m,m′ ≥ 0), (2.7)

where δmm′ denotes the dirac Delta symbol, and the constant γ(α,β)
m is given by

γ(α,β)
m = ‖P(α,β)

m ‖2
ω(α,β) =

2α+β+1Γ(m + α + 1)Γ(m + β + 1)
m!(2m + α + β + 1)Γ(m + α + β + 1)

. (2.8)

Accordingly, the GJFs are orthogonal. It straightforwardly from (2.7) and Definition 2.3 that:

• for α, β > −1,∫
Λ

+J(−α,β)
m

+J(−α,β)
m′ ω(−α,β) = γ(α,β)

m δmm′ =

∫
Λ

−J(α,−β)
m

−J(α,−β)
m′ ω(α,−β), (m,m′ ≥ 0), (2.9)

where γ(α,β)
m is defined in (2.8),

• for α > −1, k ∈ N+,∫
Λ

−J(−k,−α)
m

−J(−k,−α)
m′ ω(−k,−α) = γ(α,−k)

m δmm′ =

∫
Λ

+J(−α,−k)
m

+J(−α,−k)
m′ ω(−α,−k), (m,m′ ≥ k), (2.10)

where γ(α,−k)
m is defined in (2.8).

Thanks to the above orthogonality, the completeness of GJFs is proved in following lemma.

Lemma 2.1. (Completeness of GJFs)

• For α > 0, β > −1, {+J(−α,β)
m } is complete in L2

ω(−α,β)(Λ).
• For β > 0, α > −1, {−J(α,−β)

m } is complete in L2
ω(α,−β)(Λ).

• For α > 0, k ∈ N+, {+J(−α,−k)
m } and {+J(−k,−α)

m } are complete in L2
ω(−α,−k)(Λ) and L2

ω(−k,−α)(Λ),
respectively.

Proof. This lemma can be proved by the same process in [6] using the orthogonality of Jacobi
polynomials. Hence we omit the proof here. �

We review the fractional calculus properties of GJFs below.

Lemma 2.2. [6] Let s ∈ R+, m ∈ N0 and x ∈ Λ.
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• For α ∈ R and β − s > −1,

RL
−1D

s
x
−J(α,−β)

m (x) =
Γ(m + β + 1)

Γ(m + β − s + 1)
−J(α+s,−β+s)

m (x). (2.11)

• For β ∈ R and α − s > −1,

RL
xDs

1
+J(−α,β)

m (x) =
Γ(m + α + 1)

Γ(m + α − s + 1)
+J(−α+s,β+s)

m (x). (2.12)

Remark 2.1. Note that it isn’t different to derive from (2.9)–(2.11) the orthogonality of {RL
−1D

s
x
−J(α,−β)

m }

as β − s > −1, and α + s > −1 or α + s ∈ −N+. If α − s > −1, and β + s > −1 or β + s ∈ −N+,
{RL

xDs
1

+J(−α,β)
m } are orthogonal by (2.9)–(2.12).

Significantly, there are the orthogonality of fractional derivatives of −J(α,−β)
m (x).

Lemma 2.3. [6] For α + β > −1, β > 0 and m,m′ ≥ l ≥ 0 with m,m′, l ∈ N0,∫
Λ

RL
−1D

β+l
x
−J(α,−β)

m
RL
−1D

β+l
x
−J(α,−β)

m′ ω(α+β+l,l) = h(α,β)
m,l δmm′ , (2.13)

where

h(α,β)
m,l :=

2α+β+1 Γ2(m + β + 1) Γ(m + α + β + l + 1)
(2m + α + β + 1) m! (m − l)! Γ(m + α + β + 1)

.

Meanwhile, from (2.10) and (2.12) we obtain the orthogonality of integer derivatives of +J(−α,−k)
m that

for α − n > −1, k − n ∈ N+,∫
Λ

Dn
x

+J(−α,−k)
m Dn

x
+J(−α,−k)

m′ ω(n−α,n−k) = h(α,−k)
m,n δmm′ , (m,m′ ≥ n ≥ 0). (2.14)

where

h(α,−k)
m,n :=

Γ2(m + α + 1)
Γ2(m + α − n + 1)

γ(α−n,n−k)
m . (2.15)

3. Spectral methods for fractional differential equations

In this section, we investigate the Petrov-Galerkin spectral methods employing GJFs as basis
function for some prototypical fractional differential equations. The unique solvability of the variation
formulation is presented by verifying the Babuška-Brezzi inf-sup condition of the involved bilinear
form, and then a posteriori error estimates for the spectral approximation is derived.

3.1. Fractional initial value problems

Let I = (0,T ), we consider the Caputo fractional differential equation of order α ∈ (0, 1) with
nonzero initial condition {

C
0Dα

t u(t) + λu(t) = g(t), ∀t ∈ I,
u(0) = u0,

(3.1)
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where λ ∈ R, and g is a given function with regularity to be specified later.
Let x = 2t/T − 1, t ∈ I. We define ū(x) in the interval Λ as follow:

ū(x) = u[T (1 + x)/2] = u(t).

Through above substitution, the original problem (3.1) becomes{
ρ −1

CDα
x ū(x) + λū(x) = ḡ(x), ∀x ∈ Λ,

ū(−1) = u0,
(3.2)

where ρ = (2/T )α and ḡ(x) = g[T (1 + x)/2] = g(t). For the non-homogeneous initial conditions
ū(−1) = u0, we consider decompose the solution ū(x) into two parts as

ū(x) = uh(x) + u0,

with uh(−1) = 0. For α ∈ (0, 1), we then derive from (2.1) that the Eq (3.2) is equivalent to the
following Riemann-Liouville type fractional differential equation:{

ρ RL
−1D

α
x uh(x) + λuh(x) = f (x), ∀x ∈ Λ,

uh(−1) = 0,
(3.3)

in which f (x) = ḡ(x) − λu0.
Next, we are about to explore the variational formulation of problem (3.3). First of all, we introduce

the solution function space: for α ∈ (0, 1),

HL
ω(Λ) := {uh ∈ L2

ω(−α,−α)(Λ) : RL
−1D

α
x uh ∈ L2(Λ) such that uh(−1) = 0}, (3.4)

endowed with the norms

‖uh‖HL
ω

= (‖uh‖2
ω(−α,−α) + |uh|2α)

1
2 , (3.5)

in which |uh|α = ‖RL
−1D

α
x uh‖. By the orthogonality (2.9), we can expand uh ∈ HL

ω(Λ) as

uh(x) =

∞∑
m=0

ûh
m
−J(−α,−α)

n (x), where ûh
m =

1

γ(−α,α)
m

∫
Λ

uh−J(−α,−α)
m ω(−α,−α), (3.6)

and there holds the Parseval identity

‖uh‖2
ω(−α,−α) =

∞∑
m=0

γ(−α,α)
m |ûh

m|
2.

Remark 3.1. The above setup depends on the completeness of {−J(−α,−α)
m }m≥0 in L2

ω(−α,−α)(Λ).

Now for f ∈ L2(Λ), the variational formulation of problem (3.3) is: Find uh ∈ HL
ω(Λ) such that

A(uh, v) = ( f , v), ∀v ∈ L2(Λ), (3.7)
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where the bilinear formA(·, ·) is defined by

A(uh, v) := ρ(RL
−1D

α
x uh, v) + λ(uh, v).

Let PM(Λ) be the set of algebraic polynomials of degree at most M. In order to discretize problem
(3.7), we define the finite-dimensional fractional-polynomial space

−F
(−α,−α)
M (Λ) = {φ = (1 + x)αψ : ψ ∈ PM(Λ)} = span{−J(−α,−α)

m : 0 ≤ m ≤ M},

which satisfying the zero initial conditions at x = −1. Therefore, we establish the Petrov-Galerkin
spectral approximation for (3.7): Find uM ∈

−F
(−α,−α)
M (Λ) such that

A(uh
M, vM) = ρ(RL

−1D
α
x uh

M, vM) + λ(uh
M, vM) = (IM f , vM), ∀vM ∈ PM(Λ), (3.8)

where IM f is the Legendre-Gauss-Lobatto interpolation of f relative to (M + 1) Legendre-Gauss-
Lobatto points, namely,

(IM f )(x) =

M∑
m=0

f̂mLm(x).

Here, { f̃m} are the ‘pseudo-spectral’ coefficients computed by the discrete Legendre transform, and
Lm(x) = P(0,0)

m (x) denotes the Legendre polynomial in Λ.
We next consider the numerical implementation of Petrov-Galerkin spectral method as follows:

Setting

uh
M(x) =

M∑
m=0

ûh
m
−J(−α,−α)

m (x),

and let vM go through all basis functions in PM(Λ) = span{Lm′(x) : m′ = 0, 1, . . . ,M}. Let uh =

[ûh
0, û

h
1, . . . , û

h
M] be the unknown coefficient matrix, we arrive at the linear system

ρuhA + λuhB = f, (3.9)

where A = [amm′](M+1)2 is a diagonal matrix with diagonal elements

amm = (RL
−1D

α
x
−J(−α,−α)

m , Lm)Λ =
2Γ(m + α + 1)

(2m + 1)Γ(m + 1)
,

and the matrix B is defined by element bmm′ , that is,

bmm′ = (−J(−α,−α)
m , Lm′)Λ =

∫
Λ

P(−α,α)
m Lm′ω

(0,α).

Here, bmm′ can be exactly calculated by the (M + 2)-nodes Jacobi-Gauss-Lobatto quadrature with
respect to weight ω(0,α). For the right vector f in (3.9), it is defined as f = [ f0, · · · , fm′ , · · · , fM], and
fm′ = (IM f , Lm′)Λ.
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3.1.1. Well-posedness

We show the well-posedness of weak formulation (3.7) and Petrov-Galerkin spectral scheme (3.8)
using the well-known Babuška-Brezzi theorem. For this purpose, we have to prove the following
Lemma, which provide the equivalence relation of norm.

Lemma 3.1. Let α ∈ (0, 1), and let HL
ω(Λ) be the spaces defined in (3.4). There holds

Cα‖uh‖HL
ω
≤ ‖RL

−1D
α
x uh‖ ≤ ‖uh‖HL

ω
, ∀uh ∈ HL

ω(Λ), (3.10)

where

Cα =

(
1 +

Γ(1 − α)
Γ(1 + α)

)− 1
2

. (3.11)

Proof. By the orthogonality (2.9) and (2.13), we obtain that

‖uh‖2
ω(−α,−α) =

∞∑
m=0

γ(−α,α)
m |ûh

m|
2 and ‖RL

−1D
α
x uh‖2 =

∞∑
m=0

h(α,−α)
m,α |û

h
m|

2, (3.12)

in which

h(α,−α)
m,α =

Γ2(m + α + 1)
(m!)2 γ(0,0)

m . (3.13)

Therefore,

‖uh‖2
ω(−α,−α) =

∞∑
m=0

γ(−α,α)
m

h(α,−α)
m,α

h(α,−α)
m,α |û

h
m|

2 ≤
γ(−α,α)

0

h(α,−α)
0,α

‖RL
−1D

α
x uh‖2,

and by (3.5), one has

‖uh‖2HL
ω
≤
(
1 +

γ(−α,α)
0

h(α,−α)
0,α

)
‖RL
−1D

α
x uh‖2 ≤

(
1 +

Γ(1 − α)
Γ(1 + α)

)
‖RL
−1D

α
x uh‖2.

This immediately yields the equivalence (3.10). �

Thanks to the above Lemma, the well-posedness of (3.7) can be proved.

Theorem 3.1. Let f ∈ L2(Λ). Then, the problem (3.7) exists a unique solution uh ∈ HL
ω(Λ), and it

holds

‖uh‖HL
ω
≤

1
γ
‖ f ‖. (3.14)

where γ = ρCα − |λ| > 0.
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Proof. We can verify the continuity of the bilinear formA(·, ·) by the Cauchy-Schwarz inequality, that
is, for ∀uh ∈ HL

ω(Λ) and v ∈ L2(Λ), we have

|A(uh, v)| ≤ |ρ(−1Dα
x uh, v) + λ(uh, v)| ≤ ρ‖RL

−1D
α
x uh‖ · ‖v‖ + |λ|‖uh‖ω(−α,−α) · ‖v‖.

Therefore,

|A(uh, v)| ≤ Cρ,λ‖uh‖HL
ω
· ‖v‖.

in which Cρ,λ is positive constant dependant of ρ and λ.
We are now led to verify the inf-sup condition ofA(·, ·), that is, for any 0 , uh ∈ HL

ω(Λ),

sup
0,v∈L2(Λ)

|A(uh, v)|
‖v‖

≥ (ρCα − |λ|)‖uh‖HL
ω
. (3.15)

where Cα is given in (3.11). For this purpose, we construct v∗ ∈ L2(Λ) from the expansion of uh ∈

HL
ω(Λ) in (3.6) as follows:

v∗(x) =

∞∑
m=0

v̂∗mLm(x) with v̂∗m =
Γ(m + α + 1)

m!
ûh

m.

By the orthogonality of the Legendre Polynomials, we have

‖v∗‖2 =

∞∑
m=0

γ(0,0)
m |v̂∗m|

2 =

∞∑
m=0

Γ2(m + α + 1)
(m!)2 γ(0,0)

m |ûh
m|

2 =

∞∑
m=0

h(α,−α)
m,0 |û

h
m|

2 = ‖RL
−1D

α
x uh‖2. (3.16)

Then, by a direct calculation, one has

|A(uh, v∗)| = |ρ(−1Dα
x uh, v∗)Λ + λ(uh, v∗)Λ|

≥ ρ
∣∣∣∣ ∫

Λ
−1Dα

x uh · v∗
∣∣∣∣ − |λ|∣∣∣∣ ∫

Λ

uh · v∗
∣∣∣∣

= ρ
∣∣∣∣ ∞∑

m=0

ûh
m

∞∑
m′=0

v̂∗m′
∫

Λ
−1Dα

x
−J(−α,−α)

m · Lm′

∣∣∣∣ − |λ|∣∣∣∣ ∫
Λ

ω( α2 ,
α
2 )uhω(− α2 ,−

α
2 ) · v∗

∣∣∣∣
≥ ρ

∣∣∣∣ ∞∑
m=0

ûh
m

Γ(m + α + 1)
Γ(m + 1)

∞∑
m′=0

v̂∗m′
∫

Λ

P(0,0)
m Lm′

∣∣∣∣ − |λ|( ∫
Λ

(uh)2ω(−α,−α)
) 1

2
( ∫

Λ

v2
∗

) 1
2
.

Thus, using Lemma 3.1 and (3.12), we infer that for any 0 , u ∈ HL
ω(Λ), there exists 0 , v∗ ∈ L2(Λ)

such that

|A(uh, v∗)| ≥ ρ‖RL
−1D

α
x uh‖ · ‖v∗‖ − |λ|‖uh‖HL

ω
· ‖v∗‖ ≥ (ρCα − |λ|)‖uh‖HL

ω
· ‖v∗‖. (3.17)

This yields (3.15).
Furthermore, we can verify the ‘transposed’ inf-sup condition, that is, for any 0 , v ∈ L2(Λ),

sup
0,uh∈HL

ω(Λ)
|A(uh, v)| > 0. (3.18)
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In fact, assuming that 0 , v∗ ∈ L2(Λ) is an arbitrary function, we construct

uh(x) =

∞∑
m=0

ûh
m
−J(−α,−α)

m (x), with ûh
m =

m!
Γ(m + α + 1)

v̂∗m.

Using a similar process, we can derive the inf-sup condition (3.18).
To sum up, we can claim from the Babuška-Brezzi theorem that the weak problem (3.7) is well-

posed. That means for problem (3.7), there is a unique solution. Furthermore, for f ∈ L2(Λ), we have
from Cauchy-Schwarz inequality that

|( f , v)Λ| ≤ ‖ f ‖ · ‖v‖.

By taking v = v∗, then using (3.17), we get (3.14) right away, which depict the stability. �

Remark 3.2. The inf-sup condition of A(·, ·) in Theorem 3.1 is also valid for the discrete problem
(3.8), which also admits a unique solution.

3.1.2. A posteriori error estimation

According to the above results, we follow a standard argument to derive the a posteriori error
estimates for the spectral Galerkin method in this subsection. First, let us review the importance
projection in L2(Λ). Let ΠT

M be the orthogonal projection operator from L2(Λ) onto PM(Λ).
Equivalently, it means that, for any function ϕ ∈ L2(Λ), ΠT

Mϕ ∈ PM(Λ), such that

(ϕ − ΠT
Mϕ, ψM) = 0, ∀ψM ∈ PM(Λ).

Then, for any nonnegative real number s, there exists a positive constant Cσ depending only on σ
such that, for any function ϕ ∈ Hσ(Λ), the following estimate holds [4]:

‖ϕ − ΠT
Mϕ‖ ≤ CσM−σ‖ϕ‖σ,Λ, (σ ≥ 0). (3.19)

Theorem 3.2. Let uh, uh
N be the solutions of (3.7) and (3.8), respectively. Then, there exists positive

constants c and C independent of any function and the degree of polynomials, such that

‖uh − uh
M‖HL

ω
≤ C{η + ‖ f − IM f ‖},

η ≤ c{‖uh − uh
M‖HL

ω
+ ‖ f − IM f ‖},

where

η = ‖ f − ρ RL
−1D

α
x uh

M − λuh
M‖.

Proof. For any v ∈ L2(Λ), one has

A(uh − uh
M, v) = A(uh − uh

M, v − ΠT
Mv) + ( f − IM f ,ΠT

Mv)
= A(uh, v − ΠT

Mv) −A(uh
M, v − ΠT

Mv) + ( f − IM f ,ΠT
Mv)

= ( f , v − ΠT
Mv) − (ρ RL

−1D
α
x uh

M + λuh
M, v − ΠT

Mv) + ( f − IM f ,ΠT
Mv)

= ( f − ρ RL
−1D

α
x uh

M − λuh
M, v − ΠT

Mv) + ( f − IM f ,ΠT
Mv).
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Furthermore, we have

|A(uh − uh
M, v)|

‖v‖

=
|( f − ρ RL

−1D
α
x uh

M − λuh
M, v − ΠT

Mv)Λ + ( f − IM f ,ΠT
Mv)|

‖v‖
(3.20)

≤
‖ f − ρ RL

−1D
α
x uh

M − λuh
M‖ · ‖v − ΠT

Mv‖ + ‖ f − IM f ‖ · ‖ΠT
Mv‖

‖v‖
.

Then, in view of formula (3.20) and estimate (3.19), we immediately derive from inf-sup condition
(3.15) that

‖uh − uh
M‖HL

ω
≤ C{‖ f − ρ RL

−1D
α
x uh

M − λuh
M‖ + ‖ f − IM f ‖}.

This means that the a posteriori error estimator η along with the truncation of f is an upper bound for
‖uh − uh

M‖H, i.e., the reliability holds.
In what follows, we investigate the efficiency of η. For any v ∈ L2(Λ), and with the help of the

continuity ofA(·, ·) and estimate (3.19), we have

( f − ρ RL
−1D

α
x uh

M − λuh
M, v) = A(uh − uh

M, v − ΠT
Mv) + ( f − IM f ,ΠT

Mv)
≤ Cρ,λ‖uh − hh

M‖HL
ω
· ‖v − ΠT

Mv‖ + ‖ f − IM f ‖ · ‖ΠT
Mv‖

≤ c(‖uh − uh
M‖HL

ω
+ ‖ f − IM f ‖)‖v‖.

Thus, it can be seen that

‖ f − ρ RL
−1D

α
x uh

M − λuh
M‖ = sup

v∈L2(Λ)\{0}

( f − ρ RL
−1D

α
x uh

M − λuh
M, v)

‖v‖

≤ c(‖uh − uh
M‖HL

ω
+ ‖ f − IM f ‖).

Hence, the proof is completed. �

3.2. Fractional boundary value problems

Now we consider the Riemman-Liouville fractional differential equation with homogeneous
Dirichlet boundary conditions{

RL
−1D

ν
xu(x) + κu′(x) − λu(x) = f (x), ∀x ∈ Λ,

u(±1) = 0,
(3.21)

where ν ∈ (1, 2), κ, λ ∈ R and f is a given function.
Let s = ν − 1, the trial and test spaces are introduced as follows:

U := {u ∈ L2
ω(−1,−s)(Λ) : RL

−1D
s
xu ∈ L2

ω(s−1,0)(Λ), u(±1) = 0}, (3.22)
V := {v ∈ L2

ω(−s,−1)(Λ) : Dxv ∈ L2
ω(1−s,0)(Λ), v(±1) = 0}, (3.23)

endowed with the norms

‖u‖U = (‖u‖2
ω(−1,−s) + ‖RL

−1D
s
xu‖

2
ω(s−1,0))

1
2 , (3.24)
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‖v‖V = (‖v‖2
ω(−s,−1) + ‖Dxv‖2ω(1−s,0))

1
2 . (3.25)

According to the completeness of {−J(−1,−s)
m } in L2

ω(−1,−s), we can expand u ∈ U as

u(x) =

∞∑
m=1

ûm
−J(−1,−s)

m (x) with ûm =
1

γ(s,−1)
m

∫
Λ

u −J(−1,−s)
m ω(−1,−s), (3.26)

where γ(s,−1)
m is defined in (2.8). Similarly, we write from the completeness of {+J(−s,−1)

m } in L2
ω(−s,−1) that

v(x) =

∞∑
m=1

v̂m
+J(−s,−1)

m (x) with v̂m =
1

γ(s,−1)
m

∫
Λ

v −J(−s,−1)
m ω(−s,−1). (3.27)

There holds the Parseval identity

‖u‖2
ω(−1,−s) =

∞∑
m=1

γ(s,−1)
m |ûm|

2, ‖v‖2
ω(−s,−1) =

∞∑
m=1

γ(s,−1)
m |v̂m|

2.

With the above setup, we now consider the variational formulation of original problem (3.21).
By (2.3) and integration by parts, we derive the following identity: for f ∈ L2

ω(s,1)(Λ), find u ∈ U
such that

A(u, v) := −(RL
−1D

s
xu,Dxv)Λ − κ(u,Dxv)Λ − λ(u, v)Λ = ( f , v)Λ, ∀v ∈ V. (3.28)

Let −F (−1,−s)
M (Λ and +F

(−s,−1)
M (Λ) be the finite-dimensional fractional-polynomial space as follows:

−F
(−1,−s)
M (Λ) = {φ = (1 + x)sψ : ψ ∈ PM(Λ), ψ(1) = 0} = span{−J(−1,−s)

m : 1 ≤ m ≤ M},

and

+F
(−s,−1)
M (Λ) = {φ = (1 − x)sψ : ψ ∈ PM(Λ), ψ(−1) = 0} = span{+J(−s,−1)

m : 1 ≤ m ≤ M}.

Then the Petrov-Galerkin approximation for (3.28) is to find uM ∈
−F

(−1,−s)
M (Λ) such that

A(uM, vM) = (IM−1 f , vM)Λ, ∀vM ∈
+F

(−s,−1)
M (Λ), (3.29)

where IM f is the Jacobi-Gauss-Lobatto interpolation relative to the Jacobi-Gauss-Lobatto points,
namely,

(IM−1 f )(x) =

M−1∑
m=0

f̃mP(s,1)
m (x).

where { f̃m} are determined by the Jacobi transform.
In the following, we present Petrov-Galerkin spectral method to efficiently calculate the numerical

integration. Indeed, the choice of function +J(−s,−1)
m and −J(−1,−s)

m is motivated by the consideration of
computing the integral involving fractional derivative. With this choice, the integrand
−J(−1,−s)

m (x)+J(−s,−1)
m (x) can be converted into a polynomial multiplied by corresponding weight function
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ω(s+1,s+1), and the integrand −J(−1,−s)
m (x)Dx

+J(−s,−1)
m (x) is converted into a polynomial multiplied by

weight ω(s,s). In addition, the integrand RL
−1D

s
x
−J(−1,−s)

m (x)Dx
+J(−s,−1)

m (x) is transformed to a a polynomial
multiplied by ω(s−1,0). As a consequence, by expressing uM in the space −F (−1,−s)

M (Λ)

uM(x) =

M∑
m=1

ûm
−J(−1,−s)

m (x),

and let the test function vM go through all basis functions in +F
(−s,−1)
M (Λ), we arrive at the matrix

statement of (3.29):

uA + κuB − λuC = f, (3.30)

where u = [û1, û2, . . . , ûM], and

A = [amm′]M2 , amm′ = (RL
−1D

s
x
−J(−1,−s)

M ,Dx
+J(−s,−1)

M ) =
2sΓ2(m + s + 1)

m!(2m + s) Γ(m + s)
δmm′;

B = [bmm′]M2 , bmm′ = (−J(−1,−s)
M ,Dx

+J(−s,−1)
M ) = −

(m + s)Γ(m′ + s + 1)
2mΓ(m′ + s)

(P(1,s)
m−1, P

(s−1,0)
m′ )ω(s,s);

C = [cmm′]M2 , cmm′ = (−J(−1,−s)
M , +J(−s,−1)

M ) = −
(m + s)(m′ + s)

4mm′
(P(1,s)

m−1, P
(s,1)
m′−1)ω(s+1,s+1) .

Here, bmm′ and cmm′ can be exactly evaluated by Jacobi-Gauss-Lobatto quadrature with weight function
ω(s,s) and ω(s+1,s+1), respectively. For the right vector f in (3.30), it is defined as f = [ fm′]M×1 with
fm′ = m′+s

2m′ (IM−1 f , P(s,1)
m′−1)ω(s,1) .

3.2.1. Well-posedness

In the following part, we show the well-posedness of variational formulation (3.28) and the spectral
scheme (3.29). The equivalence of the norms (see, e.g., [16]) will be used subsequently.

Lemma 3.2. Let s ∈ (0, 1), and let U and V be the space defined in (3.22) and (3.23), respectively.
Then, there holds

Cu‖u‖U ≤ ‖RL
−1D

s
xu‖ω(s−1,0) ≤ ‖u‖U , ∀u ∈ U,

Cv‖v‖V ≤ ‖Dxv‖ω(1−s,0) ≤ ‖v‖V , ∀v ∈ V,

where

Cu =
(
1 +

1
Γ(s + 1)Γ(s + 2)

)− 1
2
, Cv =

(
1 +

Γ(s + 1)
Γ(s + 2)

)− 1
2
. (3.31)

Theorem 3.3. Let s ∈ (0, 1), and let f ∈ L2
ω(s,1)(Λ). Assume that ϑ = CuCv − |κ| − |λ| > 0, Then the weak

problem (3.28) has a unique solution u ∈ U. Moreover,

‖u‖U ≤
1
ϑ
‖ f ‖ω(s,1) . (3.32)
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Proof. The unique solvability (3.28) is guaranteed by the well-known Babuška-Brezzi theorem. It is
obvious that the bilinear formA(·, ·) is continuous. Next, we focus on proving the inf-sup condition of
A(·, ·), that is, for any 0 , u ∈ U,

sup
0,v∈V

|A(u, v)|
‖u‖U‖v‖V

≥ η := CuCv − |κ| − |λ|, (3.33)

where Cu, Cv is defined in (3.31). For this purpose, we construct function v∗ ∈ V judging by the
expansion of u ∈ U

v∗(x) =

∞∑
m=1

v̂∗m
+J(−s,−1)

m (x) with v̂∗m =
Γ(m + s)

m!
ûm.

With the above setup, we have from Lemma 2.2 that for any 0 , u ∈ U,

|(RL
−1D

s
xu,Dxv∗)Λ| =

∣∣∣∣( ∞∑
m=1

ũm
−J(s−1,0)

m ,

∞∑
m′=1

ṽ∗m′
+J(1−s,0)

m′

)
Λ

∣∣∣∣
=

∞∑
m=1

|ũm|
2 · ‖P(s−1,0)

m ‖2
ω( s−1,0) =

∞∑
m=1

2sΓ2(m + s + 1)
(2m + s)(m!)2 |ûm|

2

= ‖RL
−1D

s
xu‖

2
ω(s−1,0) = ‖Dxv∗‖2ω(1−s,0) (3.34)

= ‖RL
−1D

s
xu‖ω(s−1,0) ‖Dxv∗‖ω(1−s,0)

≥ CuCv · ‖u‖U · ‖v∗‖V .

where Cu,Cv are defined in (3.31). By Cauchy-Schwarz inequality, one has

|(u,Dxv∗)Λ| =
∣∣∣∣ ∫

Λ

uDxv∗
∣∣∣∣ ≤ ∣∣∣∣ ∫

Λ

uω(− 1
2 ,−

s
2 )Dxv∗ω( 1−s

2 ,0)ω( s
2 ,

s
2 )
∣∣∣∣

≤

∫
Λ

|u|2ω(−1,−s) ·

∫
Λ

|Dxv∗|2ω(1−s,0) (3.35)

=‖u‖ω(−1,−s) · ‖Dxv∗‖ω(1−s,0) ≤ ‖u‖U · ‖v∗‖V ,

and

|(u, v∗)Λ| =

∫
Λ

uv∗ ≤
∫

Λ

uω(− 1
2 ,−

s
2 )v∗ω(− s

2 ,−
1
2 )ω( s+1

2 , s+1
2 )

≤ ‖u‖ω(−1,−s) · ‖v∗‖ω(−s,−1) ≤ ‖u‖U · ‖v∗‖V . (3.36)

Combining (3.34)–(3.36), then we obtain

|A(u, v∗)| = | − (RL
−1D

s
xu,Dxv∗)Λ − κ(u,Dxv∗)Λ − λ(u, v∗)Λ|

≥ |(RL
−1D

s
xu,Dxv∗)Λ| − |κ| · |(u,Dxv∗)Λ| − |λ| · |(u, v∗)Λ|, (3.37)

≥ (CuCv − |κ| − |λ|) · ‖u‖U · ‖v∗‖V .

This means the inf-sup condition (3.33) holds.
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Analogously, we are able to verify from a converse process the “transposed” inf-sup condition

sup
0,u∈U

|A(u, v)| > 0, (0 , v ∈ V).

To this end, the well-posedness of weak problem (3.28) is proved by Babuška-Brezzi theorem, which
means (3.28) has a unique solution u ∈ U.

Finally, if f ∈ L2
ω(s,1)(Λ), we directly have from Cauchy-Schwarz inequality that

|( f , v)Λ| ≤ ‖ f ‖ω(s,1) · ‖v‖ω(−s,−1) ≤ ‖ f ‖ω(s,1) · ‖v‖V .

Then, we can derive (3.32) using (3.37). The proof is complete. �

Remark 3.3. As the similar arguments for the continuous problem (3.28), the well-posedness of
discrete problem (3.29) can be established by verifying the Babuška-Brezzi inf-sup condition of the
bilinear form.

3.2.2. A posteriori error estimation

In the purpose of carrying a posteriori error estimation to the Petrov-Galerkin spectral method for
problem (3.21), we first define the L2

ω(−1,−s)-orthogonal projection −Π(−1,−s)
M on −F (−1,−s)

M (Λ), such that

(−Π(−1,−s)
M u − u, ϕm)ω(−1,−s) = 0, ∀ϕm ∈

−F
(−1,−s)
M (Λ).

By the expansion of u ∈ U, we have

−Π
(−1,−s)
M u(x) =

M∑
m=1

ûm
−J(−1,−s)

m (x).

Similarly, we let +Π
(−s,−1)
M denote the L2

ω(−s,−1)-orthogonal projection operator upon +F
(−s,−1)
M (Λ), that is,

+Π
(−s,−1)
M v(x) =

M∑
m=1

v̂m
+J(−s,−1)

m (x), (3.38)

which satisfies

(φm,
+Π

(−s,−1)
M v − v)ω(−s,−1) = 0, ∀φm ∈

+F
(−s,−1)
M (Λ). (3.39)

The approximation result on the projection error +Π
(−s,−1)
M v − v is state as follows.

Lemma 3.3. Let s > 0. For any v ∈ V, we have the L2
ω(−s,−1)-estimates

‖+Π
(−s,−1)
M v − v‖ω(−s,−1) ≤ ((M + 1)(M + s + 1))−

1
2 ‖Dxv‖ω(1−s,0) . (3.40)

For 0 < l ≤ n ≤ M, l, n ∈ N, we also obtain the estimates

‖Dl
x(

+Π
(−s,−1)
M v − v)‖ω(l−s,l−1) ≤ cMl−n‖Dn

xv‖ω(n−s,n−1) . (3.41)
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Proof. In view of the expansion (3.27), we find from (2.14) that for any v ∈ V ,

‖Dn
xv‖

2
ω(n−s,n−1) =

∞∑
m=1

h(s,−1)
m,n |v̂m|

2.

By (2.14), (3.27) and (3.38), we obtain

‖Dl
x(

+Π
(−s,−1)
M v − v)‖2

ω(l−s,l−1) =

∞∑
m=M+1

h(s,−1)
m,l |v̂m|

2 =

∞∑
m=M+1

h(s,−1)
m,l

h(s,−1)
m,n

h(s,−1)
m,n |v̂m|

2

≤
h(s,−1)

M+1,l

h(s,−1)
M+1,n

‖Dn
xv‖

2
ω(n−s,n−1) .

We now turn to estimate the constant term on the right-hand side of the above equation. By (2.15), and
a direct calculation, we have

h(s,−1)
M+1,l

h(s,−1)
M+1,n

=
Γ(M + s − n + 2)
Γ(M + s − l + 2)

Γ(M + l + 1)
Γ(M + n + 1)

≤ cMl−n Γ(M + l + 1)
Γ(M + n + 1)

.

Thanks to the Lemma 2.1 in [32], for 0 < l ≤ n ≤ M, we have

Γ(M + l + 1)
Γ(M + n + 1)

≤ cMl−n.

Combining the above three inequalities, we can derive (3.41).
The L2

ω(−s,−1)-estimates can be derived by a similar proof. In fact, by (2.10) and

‖+Π
(−s,−1)
M v − v‖2

ω(−s,−1) =

∞∑
m=M+1

γ(s,−1)
m |v̂m|

2

=

∞∑
m=M+1

2sΓ(m + s + 1)Γ(m)
(2m + s) m! Γ(m + s)

|v̂m|
2

≤
1

(M + 1)(M + s + 1)

∞∑
m=M+1

h(s,−1)
m,1 |v̂m|

2

≤
1

(M + 1)(M + s + 1)
‖Dxv‖2ω(1−s,0) .

Hence, the estimate (3.40) holds immediately. �

Actually, the approximation properties of the projection operator −Π(−1,−s)
M can be directly derived

using the similar argument. Only we perform the corresponding results below.

Corollary 3.1. Let s > 0. For any u ∈ U, we have the L2
ω(−1,−s)-estimates

‖−Π
(−1,−s)
M u − u‖ω(−1,−s) ≤ ((M + 1)(M + s + 1))−

1
2 ‖Dxu‖ω(0,1−s) ,

For 0 < l ≤ n ≤ M, l, n ∈ N, we also obtain the estimates

‖Dl
x(
−Π

(−1,−s)
M v − v)‖ω(l−1,l−s) ≤ cMl−n‖Dn

xv‖ω(n−1,n−s) .
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With the aid of the above results, we can follow a standard argument to carry out the reliability of
the a posteriori error estimates.

Theorem 3.4. Let uh, uh
M be the solutions of (3.28) and (3.29), respectively. Then there exists a positive

constants C and c independent of any function and the degree of polynomials, such that

‖u − uM‖U ≤ C{ηu + ‖ f − IM−1 f ‖ω(s,1)},

ηl ≤ c{‖u − uM‖U + ‖ f − IM−1 f ‖ω(s,1)},

where

ηu = ((M + 1)(M + ν))−
1
2 ‖ f − RL

−1D
ν
xuM − κDxuM + λuM‖ω(s,1) ,

ηl = |( f − RL
−1D

ν
xuM − κDxuM + λuM, ω

(s,1))|.

Proof. For any v ∈ V , we have

A(u − uM, v) = A(u − uM, v −+Π
(−s,−1)
M v) + ( f − IM−1 f ,+Π

(−s,−1)
M v)

= A(u, v −+Π
(−s,−1)
M v) −A(uM, v −+Π

(−s,−1)
M v) + ( f − IM−1 f ,+Π

(−s,−1)
M v)

= ( f , v −+Π
(−s,−1)
M v) + (RL

−1D
s
xuM,Dx(v −+Π−s,−1

M v))

+ κ(uM,Dx(v −+Π
(−s,−1)
M v)) + λ(u, v −+Π

(−s,−1)
M v) + ( f − IM−1 f ,+Π

(−s,−1)
M v)

= ( f − RL
−1D

ν
xuM − κDxuM + λuM, v −+Π

(−s,−1)
M v) + ( f − IM−1 f ,+Π

(−s,−1)
M v).

Furthermore, one has

|A(u − uM, v)|
‖v‖V

=
|( f − RL

−1D
ν
xuM − κDxuM + λuM, v −+Π

(−s,−1)
M v) + ( f − IM−1 f ,+Π

(−s,−1)
M v)|

‖v‖V

≤
‖ f − RL

−1D
ν
xuM − κDxuM + λuM‖ω(s,1) · ‖v −+Π

(−s,−1)
M v‖ω(−s,−1)

‖v‖V

+
‖ f − IM−1 f ‖ω(s,1) · ‖+Π

(−s,−1)
M v‖ω(−s,−1)

‖v‖V
.

So by (3.25), (3.40) and (3.33), we obtain from Lemma 3.3 that

‖u − uM‖U ≤ C{((M + 1)(M + ν))−
1
2 ‖ f − RL

−1D
ν
xuM − κDxuM + λuM‖ω(s,1) + ‖ f − IM−1 f ‖ω(s,1)}.

Therefore, we claim that the a posteriori error estimator ηu with the truncation error of f is an upper
bound for ‖u − uM‖U , i.e., the reliable property holds.

We next investigate the lower bound property of ηl, which means the efficient property. For any
v ∈ V , and with the help of the estimates listed in Lemma 3.3, we have

( f − RL
−1D

ν
xuM − κDxuM + λuM, v)

= A(u − uM, v −+Π
(−s,−1)
M v) + ( f − IM−1 f ,+Π

(−s,−1)
M v)

≤ C‖u − uM‖U · ‖v −+Π
(−s,−1)
M v‖V + ‖ f − IM−1 f ‖ω(s,1) · ‖v − +Π

(−s,−1)
M v‖ω(−s,−1)

≤ c‖u − uM‖U · ‖Dx(v −+Π
(−s,−1)
M v)‖ω(1−s,0) + ‖ f − IM−1 f ‖ω(s,1) · ‖v − +Π

(−s,−1)
M v‖ω(−s,−1) .
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Hence, we obtain from the dual space of L2
ω(−s,−1) itself that

‖ f − RL
−1D

ν
xuM − κDxuM + λuM‖ω(s,1)

= sup
v∈V\{0}

( f − RL
−1D

ν
xuM − κDxuM + λuM, v)

‖v‖V

≤ sup
v∈V\{0}

c‖u − uM‖U · ‖Dxv‖ω(1−s,0) + ‖ f − IM−1 f ‖ω(s,1) · ‖v‖ω(−s,−1)

‖v‖V
.

By Lemma 3.2, one immediately goes to

‖ f − RL
−1D

ν
xuM − κDxuM + λuM‖ω(s,1) ≤ c{‖u − uM‖U + ‖ f − IM f ‖ω(s,1)}.

The proof is completed. �

4. Numerical experiments

In what follows, we provide numerical results to illustrate the accuracy of the proposed Petrov-
Galerkin schemes and to validate the reliability and efficiency of the a posteriori error estimators. The
corresponding data reveal that the a posteriori error estimators ηu and ηl can depict the error estimates
of the numerical solution.
Example 4.1. Test problem 1 upon fractional initial value problems. We consider the problem (3.1)
with the case {

C
0Dα

t u(t) + λu(t) = g(t), ∀t ∈ (0, 1),
u(0) = 1,

(4.1)

and given the source term g(t) =
22.5Γ(3.5)
Γ(3.5−α) t2.5−α + λ(2t)2.5 + 1.

Let x = 2t − 1. Then (4.1) is written as{
2αRL
−1D

α
x uh(x) + λuh(x) = f (x), ∀x ∈ (−1, 1),

uh(−1) = 0,
(4.2)

where f (x) = g((x + 1)/2) − 1 =
2αΓ(3.5)
Γ(3.5−α) (x + 1)2.5−α + λ(x + 1)2.5. Here, It’s not hard to calculate that

the solution uh(x) = u((x + 1)/2) + 1 = (x + 1)2.5.
For the modified problem (4.2) with α = 0.5 and λ = 0, we note that the source term f is polynomial

while uh has singularity at x = −1. Table 1 shows HL
ω-numerical errors reach machine accuracy

fast, which illustrates the GJFs basis absolutely matches the singularities of the solution in this case.
Furthermore, we observe that η-error indicators have the same rate of convergence as the numerical
errors, which conforms to the results in Theorem 3.2.

Table 1. Errors of Example 4.1 with α = 0.5, λ = 0 on M = 4, 6, 8.

M ‖uh − uh
M‖HL

ω
η ‖ f − IM f ‖

4 1.5203×10−15 1.0694×10−15 1.2186×10−15

6 4.2902×10−15 5.5510×10−15 5.4775×10−15

8 2.8798×10−15 3.8731×10−15 3.9362×10−15
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Since ρCα − |λ| > 0 in Theorem 3.1, hence we could set λ = 0.5. In this case, we list the numerical
errors ‖u − uM‖HL

ω
, truncation error ‖ f − IM f ‖ and error indicators η mentioned in Theorem 3.2 against

various M and α. We see from the Figure 1 that its approximation indicates the algebraic convergence.
It is a matter of fact that the numerical errors at this point are determined not only by the regularity of
the source term but also by the exact solution. In view of the numerical results, ‖uh − uh

M‖HL
ω

can be
depicted with the a posteriori error estimator, i.e., η-indicator. The numerical results suggest that the a
posteriori error estimator is valid, which is consistent with our theoretical results of Theorem 3.2.
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Figure 1. HL
ω-errors, f -truncation errors and η-indicator in log-log sale against various M

and α for Example 4.1 with λ = 0.5.

Example 4.1’. Test problem 1 upon fractional initial value problems. We consider (4.1) with a given
source function g(t) = sin(2t), whose exact solution has singularity at t = 0 due to the Caputo fractional
derivative. Obviously, the source term f (x) = sin(x + 1) − 1 in (4.2). Here, we determine a numerical
solution with M = 150 as the reference ‘exact’ solution. In Figure 2, we list the HL

ω-errors, f -truncation
errors and η-indicator in log-log scale against various M and α for this case with λ = 0.1. As expected,
we observe that the truncation errors of f has spectral accuracy and the numerical errors can be depicted
with the η-indicator. Hence, we declare that the a posteriori error estimators stated in Theorem 3.2 are
reliable and efficient.

AIMS Mathematics Volume 8, Issue 12, 29017–29041.



29037

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

log
10

(Polynomial degree M)

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g

1
0
(E

rr
o
r)

=0.4, =0.1

H
L
-error

f-truncation error

-indicator

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

log
10

(Polynomial degree M)

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g

1
0
(E

rr
o
r)

=0.6, =0.1

H
L
-error

f-truncation error

-indicator

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

log
10

(Polynomial degree M)

-16

-14

-12

-10

-8

-6

-4

-2

lo
g

1
0
(E

rr
o
r)

=0.8, =0.1

H
L
-error

f-truncation error

-indicator

Figure 2. HL
ω-errors, f -truncation errors and η-indicator in log-log sale against various M

and α for Example 4.1’ with λ = 0.1.

Example 4.2. Test problem 2 upon fractional boundary value problems. Let k = λ = 1/4 in (3.21) to
fix the hypothesis of Theorem 3.3. We now consider the following fractional boundary value problem:{

RL
−1D

ν
xu(x) + 1

4 Dxu(x) − 1
4u(x) = f (x), x ∈ (−1, 1),

u(±1) = 0,
(4.3)

with the source function is u(x) = (1 − x2)2.5.
We let ν = 1.3, 1.7 in (4.3). Figure 3 shows the data containing the numerical errors ‖u−uM‖U , error

indicators η and truncation error ‖ f − IM f ‖ω(s,1) against various M and ν. Like the previous cases, we
can only observe an algebraic convergence. Furthermore, the errors between the numerical and exact
solutions have the same order of accuracy as the a posteriori error indicator η, which agree well with
our theoretical analysis of Theorem 3.4.
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Figure 3. U-errors, f -truncation errors and η-indicator in log-log sale against various M and
ν for Example 4.2 with κ = λ = 0.25.

In addition, we also consider (4.3) with the smooth solution u(x) = (1 − x) sin2(πx). In this case,
we list the errors mentioned in Theorem 3.4 against various M with ν = 1.2, 1.8 in Figure 4. In view
of this figure, the case suggests that we only obtain algebraic convergence even for smooth data due
to the regularity of the source term. As predicted by Theorem 3.4, the error of the Petrov-Galerkin
spectral method between the numerical and exact solutions has the same convergence behaviors as
the a posteriori error indicators. Hence, we declare that the a posteriori error estimators η stated in
Theorem 3.4 are valid.
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Figure 4. U-errors, f -truncation errors and η-indicator in log-log sale against various M and
ν for Example 4.2 with κ = λ = 0.25.

5. Conclusions

We investigate in this paper the a posteriori error estimators of the generalized Jacobi function
spectral methods for solving FDEs. In this study, we constructed a global Petrov-Galerkin spectral
method to approximate a general class of fractional initial value problems and fractional boundary
value problems without discretization, which reduce the computational complexity. With rigorous
analyses, the efficiency and reliability of the a posteriori error estimators of proposed methods without
any postprocessing solutions is established. Using these error bounds, a suitable degree M can be
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found without the need to solve the discrete system step by step, which will lead to a reduction in our
economic computational cost. The corresponding numerical data reveal that the obtained a posteriori
error estimators can capture the error estimates of its approximations between the numerical and exact
solutions. This study is just the first step for a posteriori error analysis of generalized Jacobi function
spectral methods for FDEs. The problem focusing on adaptive p-version finite element methods with
this kind of estimators are included in our ongoing work.
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