The purpose of this paper is to establish an existence and uniqueness theorem for the nonlocal fourth-order nonlinear beam differential equations with a parameter
$ \begin{equation*} u^{(4)}+A(x)u = \lambda f (x, \ u, \ u''), \ 0<x<1 \end{equation*} $
subject to the integral boundary conditions:
$ \begin{equation*} u(0) = u(1) = \int_{0}^{1}p(x)u(x)dx, \ u''(0) = u''(1) = \int_{0}^{1}q(x)u''(x)dx, \end{equation*} $
where $ A\in \mathbb{C}[0, 1], $ $ \lambda > 0 $ is a parameter and $ p, q \in \mathbb{L}^{1}[0, 1]. $
Citation: Ammar Khanfer, Lazhar Bougoffa. On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions[J]. AIMS Mathematics, 2021, 6(9): 9899-9910. doi: 10.3934/math.2021575
The purpose of this paper is to establish an existence and uniqueness theorem for the nonlocal fourth-order nonlinear beam differential equations with a parameter
$ \begin{equation*} u^{(4)}+A(x)u = \lambda f (x, \ u, \ u''), \ 0<x<1 \end{equation*} $
subject to the integral boundary conditions:
$ \begin{equation*} u(0) = u(1) = \int_{0}^{1}p(x)u(x)dx, \ u''(0) = u''(1) = \int_{0}^{1}q(x)u''(x)dx, \end{equation*} $
where $ A\in \mathbb{C}[0, 1], $ $ \lambda > 0 $ is a parameter and $ p, q \in \mathbb{L}^{1}[0, 1]. $
[1] | D. G. Zill, M. R. Cullen, Differential Equations with Boundary-value Problems, 2 Eds., Brooks, Cole, 2008. |
[2] | R. A. Usmani, A uniqueness theorem for a boundary value problem, Proc. Amer. Math. Soc., 77 (1979), 329–335. doi: 10.1090/S0002-9939-1979-0545591-4 |
[3] | A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415–426. doi: 10.1016/S0022-247X(86)80006-3 |
[4] | Y. S. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc., 104 (1988), 175–180. doi: 10.1090/S0002-9939-1988-0958062-3 |
[5] | Z. Bai, H. Wang, On positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357–368. doi: 10.1016/S0022-247X(02)00071-9 |
[6] | R. Ma, Multiple positive solutions for a semipositone fourth-order boundary value problem, Hiroshima Math. J., 33 (2003), 217–227. |
[7] | Q. Zhang, S. Chena, J. Lv, Upper and lower solution method for fourth-order four-pointboundary value problems, J. Comput. Appl. Math., 196 (2006), 387–393. doi: 10.1016/j.cam.2005.09.007 |
[8] | Z. Wei, C. Pang, The method of lower and upper solutions for fourth order singular m-point boundary value problems, J. Math. Anal. Appl., 322 (2006), 675–692. doi: 10.1016/j.jmaa.2005.09.064 |
[9] | G. Infante, P. Pietramala, A cantilever equation with nonlinear boundary conditions, Electron. J. Qual. Theory Differ. Equ., 15 (2009), 1–14. |
[10] | H. Ma, Symmetric positive solutions for nonlocal boundary value problems of fourth order, Nonlinear Anal., 68 (2008), 645– 651. doi: 10.1016/j.na.2006.11.026 |
[11] | X. Han, H. Gao, J. Xu, Existence of positive solutions for nonlocal fourth-order boundary value problem with variable parameter, Fixed Point Theory Appl., 2011 (2011), 1–11. |
[12] | A. Cabada, S. Tersian, Multiplicity of solutions of a two point boundary value problem for a fourth-order equation, Appl. Math. Comput., 219 (2013), 5261–5267. |
[13] | R. Jiang, C. Zhai, Positive solutions for a system of fourth-order differential equations with integral boundary conditions and two parameters, Nonlinear Anal-Model, 23 (2018), 401–422. doi: 10.15388/NA.2018.3.7 |
[14] | Z. Bai, Positive solutions of some nonlocal fourth-order boundary value problem, Appl. Math. Comput., 215 (2010), 4191–4197. |
[15] | X. Lv, L. Wang, M. Pei, Monotone positive solution of a fourth-order BVP with integral boundary conditions, Bound. Value Probl., 2015 (2015), 172. doi: 10.1186/s13661-015-0441-2 |
[16] | J. M. Gere, B. J. Goodno, Mechanics of Materials, Cengage Learning, 8th edition SI, 2012. |
[17] | L. Bougoffa, A. Khanfer, Existence and uniqueness theorems of second-order equations with integral boundary conditions, Bull. Korean Math. Soc., 55 (2018), 899–911. |