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Abstract: The purpose of this paper is to establish an existence and uniqueness theorem for the
nonlocal fourth-order nonlinear beam differential equations with a parameter

u(4) + A(x)u = λ f (x, u, u′′), 0 < x < 1

subject to the integral boundary conditions:

u(0) = u(1) =

∫ 1

0
p(x)u(x)dx, u′′(0) = u′′(1) =

∫ 1

0
q(x)u′′(x)dx,

where A ∈ C[0, 1], λ > 0 is a parameter and p, q ∈ L1[0, 1].
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1. Introduction

Fourth-order boundary value problems have important applications in physics and mechanical
engineering because they describe deflection (deformation) or bending of elastic beams. The state of
the deflection of an elastic beam is modeled by the Euler-Bernoulli equation

u(4) = λ f (x, u, u′′). (1.1)

This equation is widely used in mechanics and it is called the beam equation. Here; u represents the
deflection of the beam, u′′ is the bending moment stiffness, u(4) is the load density stiffness, f is the
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force per unit length, which represents the distributed load, and λ is a parameter that represents the
reciprocal of the flexural rigidity which measures the resistance to bend (see [1], page 199 for further
details regarding the mechanics of the beam equation).

In [2], the author considered the linear fourth-order differential equation

u(4) + q(x)u = f (x) (1.2)

subject to
u(0) = a, u(1) = b, u′′(0) = c, u′′(1) = d, (1.3)

where q and f are continuous functions on [0, 1], and established a sufficient condition sup
0≤x≤1

|q(x)| < π4

to guarantee a unique solution for this problem. In [3], the author investigated (1.1) under the condition
that f is continuous and bounded on [0, 1] × R × R, and subject to (1.3) as well as other types of
boundary conditions, and established results on the existence and uniqueness theorems under suitable
conditions. In [4] the author considered the same problem of [3] under more general conditions on f ,
and established the existence of the solution of the equation subject to (1.3) under the condition that f
is continuous on [0, 1] × R × R, and replacing the boundedness condition with the growth condition

| f (x, u, v)| ≤ a |u| + b |v| + c (1.4)

for some positive constants a, b, c such that a + bπ2 < π4. Since then, the problem of investigating
existence of solutions of the equation received considerable attention from researchers in the last two
decades (see [5–13] and references therein). The authors in [9, 11, 13–15] considered the equation
under integral boundary conditions.

In this paper, we establish an existence and uniqueness theorem for the following boundary value
problem

u(4) + A(x)u = λ f (x, u, u′′), 0 < x < 1 (1.5)

subject to the integral boundary conditions

u(0) = u(1) =

1∫
0

p(x)u(x)dx, u′′(0) = u′′(1) =

1∫
0

q(x)u′′(x)dx, (1.6)

where A ∈ C[0, 1], p, q ∈ L1[0, 1] and f is continuous on [0, 1]×R×R and satisfies a growth condition
with variable parameters:

| f (x, u, v)| ≤ a(x) |u| + b(x) |v| + c(x), (1.7)

where a, b, c are positive continuous functions on [0, 1]. The problem (1.5)-(1.6) generalizes the
preceding problems in the following sense:

1. If A = 0 then (1.5) reduces to (1.1).
2. If p = q = 0 then (1.6) reduces to (1.3).
3. If a, b, c are constants then (1.7) reduces to (1.4).

We are particularly interested in the case of small deflection. Deflections are small as long as they
are below the elastic limit, and in this case the deflection curve might be almost flat, so the bending
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won’t be noticed by eye. When the deflection is small, Hook’s law is applicable, and this will give
Euler-Bernoulli Equation. Here, shear distortion and effects of rotatory inertia are negligible due to the
absence of the axial forces. If the axial force exists and becomes a function of transverse displacement,
large deflection occurs and we need to seek help from nonlinear beam theory. It should be noted that
most of the beams used in industry and constructions (Towers, bridges, aircrafts,...) possess enery
small deflections, since large deflections can cause cracks in the beams, and this may eventually lead
to catastrophic damages. For more details about the beam theory we refer the reader to ( [16], pp
758–760). Small deflections usually occur when either the loaded force f is small (so a, b, c are small),
or the material of the beam has high flexural rigidity which implies that λ is small.
We propose the following hypothesis

sup
0≤x≤1

A(x) = A1 < 16αβ, 1 −

1∫
0

p2(x)dx = α > 0, 1 −

1∫
0

q2(x)dx = β > 0, λ <
16αβ − A1

5d
, (1.8)

where d = max{a, b}. Note that if A1 = 0 then λ <
16αβ

5d
. This seems natural and reflects the fact that

small amount of force and large amount of force loaded on a beam of high flexural rigidity will always
produce small deflections.

2. Existence and uniqueness theorems

2.1. Existence theorem

The Pr.(1.5)-(1.6) can be converted into the following system: u′′ = v, u(0) = u(1) =
∫ 1

0
p(x)u(x)dx,

v′′ = −A(x)u + λ f (x, u, v), v(0) = v(1) =
∫ 1

0
q(x)v(x)dx.

(2.1)

Thus, we shall prove the following statement

Proposition 2.1. If (1.7) and (1.8) hold, then there exists a constant M > 0 such that for any x ∈ [0, 1]
and any solution u to Pr.(1.5)-(1.6), we have

‖ u ‖ρ,0 + ‖ u ‖ρ,1≤ M, (2.2)

where ‖ u ‖ρ,0= max
0≤x≤1

| ρ(x)u(x) |, ‖ u ‖ρ,1=‖ u′′ ‖ρ,0 and ρ(x) = x(1 − x), x ∈ [0, 1].

Proof. Multiplying both sides of the first equation of (2.1) by ρ(x)u and integrating the resulting
equation from 0 to 1, then employing integration by parts, we obtain

2
∫ 1

0
u2(x)dx + 2

∫ 1

0
ρ(x)u′2(x)dx =

[
u2(1) + u2(0)

]
− 2

∫ 1

0
ρ(x)u(x)v(x)dx. (2.3)

Taking into account u(0) = u(1) =
∫ 1

0
p(x)u(x)dx, we have∫ 1

0
u2(x)dx +

∫ 1

0
ρ(x)(u′(x))2dx =

[∫ 1

0
p(x)u(x)dx

]2

−

∫ 1

0
ρ(x)u(x)v(x)dx. (2.4)
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The integrals
∫ 1

0
p(x)u(x)dx and

∫ 1

0
ρ(x)u(x)v(x)dx can be estimated by means of the Cauchy-Schwarz

inequality [∫ 1

0
p(x)u(x)dx

]2

≤

(∫ 1

0
p2(x)dx

) (∫ 1

0
u2(x)dx

)
(2.5)

and

|

∫ 1

0
ρ(x)u(x)v(x)dx | ≤

(∫ 1

0
ρ(x)u2(x)dx

) 1
2
(∫ 1

0
ρ(x)v2(x)dx

) 1
2

. (2.6)

Since sup
0≤x≤1

ρ(x) = 1
4 , we have

|

∫ 1

0
ρ(x)u(x)v(x)dx | ≤

1
4

(∫ 1

0
u2(x)dx

) 1
2
(∫ 1

0
v2(x)dx

) 1
2

. (2.7)

Thus (
1 −

∫ 1

0
p2(x)dx

) ∫ 1

0
u2(x)dx +

∫ 1

0
ρ(x)u′2(x)dx ≤

1
4

(∫ 1

0
u2(x)dx

) 1
2
(∫ 1

0
v2(x)dx

) 1
2

. (2.8)

Hence ∫ 1

0
u2(x)dx +

∫ 1

0
ρ(x)u′2(x)dx ≤

1
4α

(∫ 1

0
u2(x)dx

) 1
2
(∫ 1

0
v2(x)dx

) 1
2

. (2.9)

Since ∫ 1

0
u2(x)dx ≤

∫ 1

0
u2(x)dx +

∫ 1

0
ρ(x)u′2(x)dx. (2.10)

Thus (∫ 1

0
u2(x)dx

) 1
2

≤
1

4α

(∫ 1

0
v2(x)dx

) 1
2

. (2.11)

It follows that ∫ 1

0
u2(x)dx +

∫ 1

0
ρ(x)u′2(x)dx ≤ C1

∫ 1

0
v2(x)dx, (2.12)

where C1 =
1

16α2 and α = 1 −
∫ 1

0
p2(x)dx.

Proceeding as before, multiplying both sides of the second equation of (2.1) by ρ(x)v and integrating
the resulting equation from 0 to 1, then employing integration by parts, taking into account the nonlocal
boundary conditions v(0) = v(1) =

∫ 1

0
q(x)v(x)dx, we obtain∫ 1

0
v2(x)dx +

∫ 1

0
ρ(x)(v′(x))2dx =

[∫ 1

0
q(x)v(x)dx

]2

+

∫ 1

0
A(x)ρ(x)u(x)v(x)dx
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−λ

∫ 1

0
f (x, u, v)ρ(x)v(x)dx. (2.13)

Note that

|

∫ 1

0
A(x)ρ(x)u(x)v(x)dx |≤

A1

4

(∫ 1

0
u2(x)dx

) 1
2
(∫ 1

0
v2(x)dx

) 1
2

(2.14)

and [∫ 1

0
q(x)v(x)dx

]2

≤

(∫ 1

0
q2(x)dx

) (∫ 1

0
v2(x)dx

)
. (2.15)

Applying (1.7) to f (x, u, v) by assuming that a(x) ≤ a, b(x) ≤ b, c(x) ≤ c, ∀x ∈ [0, 1] with a, b, c > 0,
to obtain

|

∫ 1

0
f (x, u, v)ρ(x)v(x)dx |≤

a
4

∫ 1

0
| u(x)v(x) | dx +

b
4

∫ 1

0
v2(x)dx +

1
4

∫ 1

0
| c(x)v(x) | dx. (2.16)

The integral
∫ 1

0
| c(x)v(x) | dx can be estimated by means of the ε−inequality∫ 1

0
| c(x)v(x) | dx ≤

1
2ε

c2 +
ε

2

∫ 1

0
v2(x)dx, ε > 0. (2.17)

Thus

|

∫ 1

0
f (x, u, v)ρ(x)v(x)dx |≤

a
4

(∫ 1

0
u2(x)dx

) 1
2
(∫ 1

0
v2(x)dx

) 1
2

+
b
4

∫ 1

0
v2(x)dx

+

(
c2

8ε
+
ε

8

∫ 1

0
v2(x)dx

)
, ε > 0. (2.18)

Since ∫ 1

0
u2(x)dx ≤

∫ 1

0
u2(x)dx +

∫ 1

0
ρ(x)u′2(x)dx ≤ C1

∫ 1

0
v2(x)dx. (2.19)

Substituting (2.19) into (2.14) and (2.18), we obtain

|

∫ 1

0
A(x)ρ(x)u(x)v(x)dx |≤

A1

4

√
C1

∫ 1

0
v2(x)dx (2.20)

and

|

∫ 1

0
f (x, u, v)ρ(x)v(x)dx |≤

[
a
4

√
C1 +

b
4

+
ε

8

] ∫ 1

0
v2(x)dx +

c2

8ε
, ε > 0. (2.21)

Now using (2.15), (2.20) and (2.21), we obtain[
1 −

(∫ 1

0
q2(x)dx + (

A1

4
+
λa
4

)
√

C1 +
λb
4

+
λε

8

)] ∫ 1

0
v2(x)dx
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+

∫ 1

0
ρ(x)v′2(x)dx ≤

λc2

8ε
. (2.22)

Let

γ = 1 −
(∫ 1

0
q2(x)dx + (

A1

4
+
λa
4

)
√

C1 +
λb
4

+
λε

8

)
. (2.23)

Writing
√

C1 =
1

4α
and using the fact that α < 1 and β = 1 −

∫ 1

0
q2(x)dx, we see that

(
A1

4
+
λa
4

)
1

4α
+
λb
4

=
1

16α
[A1 + λa + 4λαb]

<
1

16α
[A1 + 5λd]

< 1 −

1∫
0

q2(x)dx.

This implies that 1 −
(∫ 1

0
q2(x)dx + ( A1

4 + λa
4 )
√

C1 + λb
4

)
> 0.

Now, we can choose ε small such that γ > 0. It follows that∫ 1

0
q2(x)dx + (

A1

4
+
λa
4

)
√

C1 +
λb
4

+
λε

8
< 1. (2.24)

Hence

∫ 1

0
v2(x)dx +

∫ 1

0
ρ(x)v′2(x)dx ≤ M1, (2.25)

where M1 =

λc2

8ε

γ
. Combining (2.25) with (2.12), we have

∫ 1

0
u2(x)dx +

∫ 1

0
ρ(x)u′2(x)dx ≤ M2, (2.26)

where M2 = C1M1.

On the other hand, we have

ρ(x)u(x) =

∫ x

0
(ρ(x)u(x))′ dx + ρ(0)u(0) =

∫ x

0
(ρ(x)u(x))′ dx. (2.27)

Thus

| ρ(x)u(x) |≤
∫ 1

0
| (ρ(x)u(x))′ | dx =

∫ 1

0

[
| ρ′(x)u(x) + ρ(x)u′(x) |

]
dx. (2.28)
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Using sup
0≤x≤1

| ρ′(x) |= 1, applying Hölder’s inequality and using ρ2(x) ≤ ρ(x), x ∈ [0, 1], we obtain

| ρ(x)u(x) |≤
[∫ 1

0

(
| u(x) + ρ(x)u′(x) |

)2
] 1

2

dx ≤
√

2
[∫ 1

0

(
u2(x) + (ρ(x)u′(x))2

)
dx

] 1
2

≤
√

2M2. (2.29)

Similarly,

| ρ(x)v(x) |≤
√

2
[∫ 1

0

(
v2(x) + ρ(x)v′2(x)

)
dx

] 1
2

≤
√

2M1. (2.30)

These two inequalities imply the required result, and complete the proof of the proposition. �

The fundamental theorem used in proving the existence of the solution is Schauder’s theorem. In
order to make use of this theorem, it is sufficient to present the following lemmas.

Lemma 2.2. [17] Let g : [0, 1] → R be a continuous function. If 1 −
∫ 1

0
p2(x)dx = α > 0, then the

unique solution u of the following boundary value problem

u′′ = g(x) (2.31)

subject to the nonlocal boundary conditions u(0) = u(1) =
∫ 1

0
p(x)u(x)dx is given by

u(x) =

∫ 1

0
G1(x, y)g(y)dy, (2.32)

where G1(x; y) is the Green function of this BVP and given by (Eqs.(7)-(10) see [17]).

Thus from (2.1), we obtain an equivalent integral system u =
∫ 1

0
G1(x, s)v(s)ds, x ∈ [0, 1],

v = −
∫ 1

0
G1(x, s)A(s)u(s)ds + λ

∫ 1

0
G1(x, s) f (s, u(s), v(s))ds, x ∈ [0, 1].

(2.33)

Define the Banach space

Yρ =

{
u ∈ C2[0, 1] : u(0) = u(1) =

∫ 1

0
p(x)u(x)dx, u′′(0) = u′′(1) =

∫ 1

0
q(x)u(x)dx

}
(2.34)

with norm ‖ u ‖ρ,2=‖ u ‖ρ,0 + ‖ u ‖ρ,1, where ‖ u ‖ρ,1=‖ u′′ ‖ρ,0 . Also, define the operator T : X −→ X
by T (u, v) = (T1(u, v),T2(u, v)) , where X = Yρ × Yρ with norm ‖ (u, v) ‖ρ,2=‖ u ‖ρ,0 + ‖ v ‖ρ,0 and

T1(u, v) =

∫ 1

0
G1(x, s)v(s)ds (2.35)

and

T2(u, v) = −

∫ 1

0
G1(x, s)A(s)u(s)ds + λ

∫ 1

0
G1(x, s) f (s, u(s), v(s))ds. (2.36)

Consider the closed and convex set

S =
{
(u, v) ∈ X : ‖(u, v)‖ρ,2 ≤ M

}
. (2.37)
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Lemma 2.3. For any (u, v) ∈ S, T (u, v) is contained in S.

Proof. From the definition of T (u, v) we have

| ρ(x)T1(u, v) |≤ ρ(x)
∫ 1

0
| G1(x, s) || v(s) | ds ≤

1
4

∫ 1

0
| G1(x, s) || v(s) | ds, (2.38)

Thus

| ρ(x)T1(u, v) |≤
1
4

(∫ 1

0
| G1(x, s) |2

) 1
2
(∫ 1

0
| v(s) |2

) 1
2

. (2.39)

Assume that sup
0≤x≤1

| G1(x, s) |≤ L and from (2.25), in particular, we have
∫ 1

0
v2(x)dx ≤ M1, thus

| ρ(x)T1(u, v) |≤
1
4

LM
1
2
1 = M∗

1. (2.40)

Similarly

| ρ(x)T2(u, v) |≤ ρ(x)
∫ 1

0
| G1(x, s) || A(s) || u(s) | ds + λρ(x)

∫ 1

0
| G1(x, s) || f (s, u(s), v(s)) | ds.

(2.41)
Thus

| ρ(x)T2(u, v) |≤
1

16α
LA1M

1
2
2 +

√
3Lλ
4

(
a2M2 + b2M1 + c2

) 1
2

= M∗
2. (2.42)

It follows that ‖ T (u, v) ‖ρ,2≤ M, where M = M∗
1 + M∗

2. On account of the continuity of f (x, u, v), u and
v, it follows that T (u, v) is continuous. This shows that T (u, v) is also contained in S. �

To prove that T (u, v) is compact, we use the Arzela-Ascoli lemma, that is T (S) must be closed,
bounded and equicontinuous.

In order to prove that T (S) is equicontinuous, it is sufficient to prove that the inequality

| T (u, v) |≤ K | x − y | (2.43)

is satisfied for any x and y in the interval [0, 1]. It follows by the definition of T (u, v) that

| T1(u(x), v(x)) − T1(u(y), v(y)) |≤|
∫ x

y
G1(x, s)v(s)ds |≤ LM

1
2
1 | x − y |= 4M∗

1 | x − y | . (2.44)

Similarly, for T2(u(x), v(x)), we have

| T2(u(x), v(x)) − T2(u(y), v(y)) |≤ 4M∗
2 | x − y | for any x, y ∈ [0, 1], (2.45)

which proves the equicontinuous of T (u, v).
Consequently, T (u, v) has a fixed point by the Schauder’s fixed point theorem.
Thus, we have

Theorem 2.4. Under the hypothesis of Proposition 2.1, there exists a continuous solution (u, v) which
satisfies system (2.1).
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2.2. A uniqueness theorem

A uniqueness theorem can also be obtained if we assume that f (x, u, u′′) satisfies a Lipschitz
condition in u and u′′ with constants ki > 0, i = 0, 1 such that∫ 1

0
q2(x)dx + (

A1
√

C1

4
+
λk0
√

C1

4
) +

λk1

4
< 1 (2.46)

and
| f (x, u, u′′) − f (x, v, v′′) |≤ k0 | u − v | +k1 | u′′ − v′′ | . (2.47)

Thus, we have

Theorem 2.5. If f is Lipschitz in u and u′′, where the constants ki > 0, i = 0, 1 satisfy (2.46) and if
(1.7) and (1.8) hold, then the system (2.1) has a unique solution (u, v).

Proof. Suppose there are two solutions u and v such that u , v. Then from Pr.(1.5)-(1.6), we have

w(4) + A(x)w = λ
[
f (x, u, u′′) − f (x, v, v′′)

]
, 0 < x < 1, (2.48)

subject to

w(0) = w(1) =

∫ 1

0
p(x)w(x)dx, w′′(0) = w′′(1) =

∫ 1

0
q(x)w′′(x)dx, (2.49)

where w = u − v.
Thus  w′′ = z, w(0) = w(1) =

∫ 1

0
p(x)w(x)dx,

z′′ = −A(x)w + λ
[
f (x, u, u′′) − f (x, v, v′′)

]
, z(0) = z(1) =

∫ 1

0
q(x)z(x)dx.

(2.50)

Proceeding as before, we obtain∫ 1

0
w2(x)dx +

∫ 1

0
ρ(x)w′2(x)dx ≤ C1

∫ 1

0
z2(x)dx (2.51)

and ∫ 1

0
z2(x)dx +

∫ 1

0
ρ(x)(z′(x))2dx =

[∫ 1

0
q(x)z(x)dx

]2

+

∫ 1

0
A(x)ρ(x)w(x)z(x)dx

−λ

∫ 1

0

[
f (x, u, u′′) − f (x, v, v′′)

]
ρ(x)z(x)dx, (2.52)

where

|

∫ 1

0
A(x)ρ(x)w(x)z(x)dx |≤

A1

4

(∫ 1

0
w2(x)dx

) 1
2
(∫ 1

0
z2(x)dx

) 1
2

(2.53)

and [∫ 1

0
q(x)z(x)dx

]2

≤

(∫ 1

0
q2(x)dx

) (∫ 1

0
z2(x)dx

)
. (2.54)
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Applying the Lipschitz condition to f (x, u, u′′) − f (x, v, v′′) to obtain

|

∫ 1

0
f (x, u, u′′) − f (x, v, v′′)ρ(x)z(x)dx |≤

k0

4

∫ 1

0
| w(x)z(x) | dx +

k1

4

∫ 1

0
z2(x)dx. (2.55)

Combining these inequalities, we obtain

γ1

∫ 1

0
z2(x)dx +

∫ 1

0
ρ(x)z′2(x)dx ≤ 0, (2.56)

where γ1 = 1 −
(∫ 1

0
q2(x)dx + ( A1

√
C1

4 +
λk0
√

C1
4 ) + λk1

4

)
> 0. This is a contradiction.

This completes the proof. �

Example 1. Consider

u(4) + π2xu =
1
2

√
r2(x) + u2 + u′′2, 0 < x < 1 (2.57)

under the boundary conditions (1.6) with p(x) = q(x) = 1
2 x2. Here r : [0, 1] → R is a continuous

function. Let

f (x, u, u′′) =
√

r2(x) + u2 + u′′2, λ =
1
2
. (2.58)

It is clear that
f (x, u, u′′) ≤| r(x) | + | u(x) | + | u′′(x) | . (2.59)

So that a(x) = b(x) = 1 and c(x) = r(x). However, λ = 1
2 < 16αβ−A1

5d since sup
0≤x≤1

A(x) = A1 = π2 and

d = max{a, b} = 1.
Hence by Theorem 2.4, the solution exists.
To prove the uniqueness, note that f (x, u, u′′) is Lipschitz:

| f (x, u, u′′) − f (x, v, v′′) |≤| u − v | + | u′′ − v′′ | . (2.60)

Indeed,

|
√

r2 + u2 + u′′2 −
√

r2 + v2 + (v′′)2 |

≤| u − v |
| u | + | v |

√
r2 + u2 + u′′2 +

√
r2 + v2 + v′′2

+ | u′′ − v′′ |
| u′′ | + | v′′ |

√
r2 + u2 + u′′2 +

√
r2 + v2 + v′′2

≤| u − v | + | u′′ − v′′ | . (2.61)

So k0 = 1 and k1 = 1. But the condition (2.46) implies that λ < 16αβ−A1
1+4α . A simple substitution gives

16αβ−A1
1+4α ≈ 0.95 > 1

2 , this means that the condition (2.46) is satisfied. So by Theorem 2.5 the solution is
unique.
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