Research article Special Issues

Analytical solutions for the model of moderately thick plates by symplectic elasticity approach

  • Received: 09 May 2023 Revised: 04 June 2023 Accepted: 08 June 2023 Published: 28 June 2023
  • MSC : 47A70, 47B99, 74B05

  • A general moderately thick rectangular plate model is proposed and its analytical solutions are obtained by using the symplectic elasticity approach (SEA). First, the equilibrium equations of the model are transformed into a Hamiltonian dual equation and the eigenvalues and eigenvectors of the corresponding Hamiltonian operators are calculated. Furthermore, the symplectic orthogonality and the completeness of eigenvectors are proved, and the analytical solutions of the problem are presented based on boundary conditions. The feasibility of the proposed framework and the effectiveness of the SEA are verified by numerical examples of the bending problems of moderately thick rectangular plates on the different elastic foundations and the free vibration problem of moderately thick rectangular plates.

    Citation: Jianan Qiao, Guolin Hou, Jincun Liu. Analytical solutions for the model of moderately thick plates by symplectic elasticity approach[J]. AIMS Mathematics, 2023, 8(9): 20731-20754. doi: 10.3934/math.20231057

    Related Papers:

  • A general moderately thick rectangular plate model is proposed and its analytical solutions are obtained by using the symplectic elasticity approach (SEA). First, the equilibrium equations of the model are transformed into a Hamiltonian dual equation and the eigenvalues and eigenvectors of the corresponding Hamiltonian operators are calculated. Furthermore, the symplectic orthogonality and the completeness of eigenvectors are proved, and the analytical solutions of the problem are presented based on boundary conditions. The feasibility of the proposed framework and the effectiveness of the SEA are verified by numerical examples of the bending problems of moderately thick rectangular plates on the different elastic foundations and the free vibration problem of moderately thick rectangular plates.



    加载中


    [1] S. P. Timoshenko, S.Woinowsky-Krieger, Theory of Plates and Shells, New York: McGraw-Hill College, 1959.
    [2] A. C. Ugural, Plates and Shells: Theory and Analysis, Boca Raton: CRC Press, 2018.
    [3] P. Xia, S. Y. Long, H. X. Cui, G. Y. Li, The static and free vibration analysis of a nonhomogeneous moderately thick plate using the meshless local radial point interpolation method, Eng. Anal. Bound. Elem., 33 (2009), 770–777. https://doi.org/10.1016/j.enganabound.2009.01.001 doi: 10.1016/j.enganabound.2009.01.001
    [4] $\ddot{O}$. Civalek, Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method, Int. J. Mech. Sci., 49 (2007), 752–765. https://doi.org/10.1016/j.ijmecsci.2006.10.002 doi: 10.1016/j.ijmecsci.2006.10.002
    [5] F. Abad, J. Rouzegar, Exact wave propagation analysis of moderately thick Levy-type plate with piezoelectric layers using spectral element method, Thin-Walled Struct., 141 (2019), 319–331. https://doi.org/10.1016/j.tws.2019.04.007 doi: 10.1016/j.tws.2019.04.007
    [6] P. Xia, S. Y. Long, X. Wei, An analysis for the elasto-plastic problem of the moderately thick plate using the meshless local Petrov-Galerkin method, Eng. Anal. Bound. Elem., 35 (2011), 908–914. https://doi.org/10.1016/j.enganabound.2011.02.006 doi: 10.1016/j.enganabound.2011.02.006
    [7] J. B. Han, K. W. Liew, Static analysis of Mindlin plates: the differential quadrature element method (DQEM), Comput. Methods Appl. Mech. Eng., 177 (1999), 51–75. https://doi.org/10.1016/S0045-7825(99)00371-0 doi: 10.1016/S0045-7825(99)00371-0
    [8] S. Ullah, H. Y. Wang, X. R. Zheng, J. H. Zhang, Y. Zhong, R. Li, New analytic buckling solutions of moderately thick clamped rectangular plates by a straightforward finite integral transform method, Arch. Appl. Mech., 89 (2019), 1885–1897. https://doi.org/10.1007/s00419-019-01549-6 doi: 10.1007/s00419-019-01549-6
    [9] E. Bahmyari, Free and forced vibration analysis of moderately thick plates with uncertain material properties using the Chaotic Radial Basis Function, Eng. Anal. Bound. Elem., 106 (2019), 349–358. https://doi.org/10.1016/j.enganabound.2019.04.035 doi: 10.1016/j.enganabound.2019.04.035
    [10] B. Tian, R. Li, Y. Zhong, Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundation, Appl. Math. Model., 39 (2015), 128–136. https://doi.org/10.1016/j.apm.2014.05.012 doi: 10.1016/j.apm.2014.05.012
    [11] J. H. Zhang, J. L. Lu, S. Ullah, Y. Y. Gao, D. H. Zhao, Buckling analysis of rectangular thin plates with two opposite edges free and others rotationally restrained by finite Fourier integral transform method, Z. Angew. Math. Mech., 101 (2021), e202000153. https://doi.org/10.1002/zamm.202000153 doi: 10.1002/zamm.202000153
    [12] J. H. He, Semi-inverse method and generalized variational principles with multi-variables in elasticity, Appl. Math. Mech., 21 (2000), 797–808. https://doi.org/10.1007/BF02428378 doi: 10.1007/BF02428378
    [13] S. Kshirsagar, K. Bhaskar, Accurate and elegant free vibration and buckling studies of orthotropic rectangular plates using untruncated infinite series, J. Sound. Vib., 314 (2008), 837–850. https://doi.org/10.1016/j.jsv.2008.01.013 doi: 10.1016/j.jsv.2008.01.013
    [14] A. D. Kerr, M. A. El-Sibaie, Green's functions for continuously supported plates, J. Appl. Math. Phys., 40 (1989), 15–38. https://doi.org/10.1007/BF00945307 doi: 10.1007/BF00945307
    [15] W. A. Yao, W. X. Zhong, C. W. Lim, Symplectic Elasticity, Singapore: World Scientific, 2009.
    [16] C. W. Lim, X. S. Xu, Symplectic elasticity: theory and applications, Appl. Mech. Rev., 63 (2010), 050802. http://doi.org./10.1115/1.4003700 doi: 10.1115/1.4003700
    [17] C. H. Xu, S. Leng, Z. H. Zhou, X. S. Xu, Z. C. Deng, Accurate and straightforward symplectic approach for fracture analysis of fractional viscoelastic media, Appl. Math. Mech., 43 (2022), 403–416. https://doi.org/10.1007/s10483-022-2825-8 doi: 10.1007/s10483-022-2825-8
    [18] Y. Zhao, H. Liang, Y. W. Zhang, J. H. Lin, Symplectic approach on the wave propagation problem for periodic structures with uncertainty, Acta Mech. Solida Sin., 382 (2019), 287–297. https://doi.org/10.1007/s10338-019-00084-9 doi: 10.1007/s10338-019-00084-9
    [19] Y. F. Qiao, G. L. Hou, A. Chen, Symplectic approach for plane elasticity problems of two-dimensional octagonal quasicrystals, Appl. Math. Comput., 400 (2021), 126043. https://doi.org/10.1016/j.amc.2021.126043 doi: 10.1016/j.amc.2021.126043
    [20] C. Zhou, D. Q. An, J. Y. Zhou, Z. X. Wang, R. Li, On new buckling solutions of moderately thick rectangular plates by the sympletic superposition method within the Hamiltonian-system framwork, Appl. Math. Model., 94 (2021), 226–241. https://doi.org/10.1016/j.apm.2021.01.020 doi: 10.1016/j.apm.2021.01.020
    [21] R. Li, C. Zhou, X. R. Zheng, On new analytic free vibration solutions of doubly curved shallow shells by the symplectic superposition method within the Hamiltonian-system framework, J. Vib. Acoust., 143 (2021), 011002. https://doi.org/10.1115/1.4047701 doi: 10.1115/1.4047701
    [22] X. Su, E. Bai, Analytical free vibration solutions of fully free orthotropic rectangular thin plates on two-parameter elastic foundations by the symplectic superposition method, J. Vib. Control, 28 (2022), 3–16. https://doi.org/10.1177/1077546320967823 doi: 10.1177/1077546320967823
    [23] W. Yao, X. Li, Symplectic dual system in plane magnetoelectroelastic solids, Appl. Math. Mech., 27 (2006), 195–205. http://dx.doi.org/10.1007/s10483-006-0207-z doi: 10.1007/s10483-006-0207-z
    [24] S. Xiong, C. Zhou, X. Zheng, D. An, D. Xu, Z. Hu, et al., New analytic thermal buckling solutions of non-Lévy-type functionally graded rectangular plates by the symplectic superposition method, Acta Mech., 233 (2022), 2955–2968. https://doi.org/10.1007/s00707-022-03258-8 doi: 10.1007/s00707-022-03258-8
    [25] Z. Y. Jiang, L. Jiang, G. Q. Zhou, Symplectic elasticity analysis of stress in surrounding rock of elliptical tunnel, KSCE J. Civil Eng., 24 (2020), 3119–3130. https://doi.org/10.1007/s12205-020-1810-7 doi: 10.1007/s12205-020-1810-7
    [26] X. Hou, S. Zhou, Z. Cheng, Z. Zhu, Y. Wang, Z. Deng, Buckling of regular and auxetic honeycombs under a general macroscopic stress state in symplectic system, Appl. Math. Model., 109 (2022), 318–340. https://doi.org/10.1016/j.apm.2022.04.033 doi: 10.1016/j.apm.2022.04.033
    [27] Z. Y. Hu, Y, Q. Shi, S. J. Xiong, X. R. Zheng, R. Li, New analytic free vibration solutions of non-Lévy-type porous FGM rectangular plates within the symplectic framework, Thin Wall Struct., 185 (2023), 110609. https://doi.org/10.1016/j.tws.2023.110609 doi: 10.1016/j.tws.2023.110609
    [28] Z. Y. Hu, Z. F. Ni, D. Q. An, Y. M. Chen, R. Li, Hamiltonian system-based analytical solutions for the free vibration of edge-cracked thick rectangular plates, Appl. Math. Model., 117 (2023), 451–478. https://doi.org/10.1016/j.apm.2022.12.036 doi: 10.1016/j.apm.2022.12.036
    [29] Z. Y. Hu, C. Zhou, Z. F. Ni, X. Q. Lin, R. Li, New symplectic analytic solutions for buckling of CNT reinforced composite rectangular plates, Compos. Struct., 303 (2023), 116361. https://doi.org/10.1016/j.compstruct.2022.116361 doi: 10.1016/j.compstruct.2022.116361
    [30] Y. F. Qiao, G. L. Hou, A. Chen, A complete symplectic approach for a class of partial differential equations arising from the elasticity, Appl. Math. Model., 89 (2021), 1124–1139. https://doi.org/10.1016/j.apm.2020.08.002 doi: 10.1016/j.apm.2020.08.002
    [31] Y. Zhong, R. Li, Y. M. Liu, B. Tian, On new sympletic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported, Int. J. Solids Struct., 46 (2009), 2506–2513. https://doi.org/10.1016/j.ijsolstr.2009.02.001 doi: 10.1016/j.ijsolstr.2009.02.001
    [32] R. Li, P. C. Wang, Y. R. Xue, X. Guo, New analytic solutions for free vibration of rectangular thick plates with an edge free, Int. J. Mech. Sci., 131-132 (2017), 179–190. https://doi.org/10.1016/j.ijmecsci.2017.07.002 doi: 10.1016/j.ijmecsci.2017.07.002
    [33] D. Frederick, Thick rectangular plates on elastic foundation, Trans. American Soci. Civil Eng., 122 (1957), 1069–1085. https://doi.org/10.1061/TACEAT.0007435 doi: 10.1061/TACEAT.0007435
    [34] Q. H. Qin, Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation, Comput. Methods Appl. Mech. Eng., 122 (1995), 379–392. https://doi.org/10.1016/0045-7825(94)00730-b doi: 10.1016/0045-7825(94)00730-b
    [35] H. S. Shen, Nonlinear bending of simply supported rectangular Reissner Mindlin plates under transverse and in-plane loads and resting on elastic foundations, Eng. Struct., 22 (2000), 847–856. https://doi.org/10.1016/s0141-0296(99)00044-9 doi: 10.1016/s0141-0296(99)00044-9
    [36] J. B. Han, K. M. Liew, Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations, Int. J. Mech. Sci., 39 (2000), 977–989. https://doi.org/10.1016/j.ijmecsci.2006.10.002 doi: 10.1016/j.ijmecsci.2006.10.002
    [37] J. G. Wang, X. X. Wang, M. K. Huang, Fundamental solutions and boundary integral equations for Reissner's plates on two parameter foundations, Int. J. Solids Struct., 29 (1992), 1233–1239. https://doi.org/10.1016/0020-7683(92)90234-K doi: 10.1016/0020-7683(92)90234-K
    [38] Knowledge Management System of Institue of Mechanics, CAS, Bending, Stabilization and Vibration of Sandwich Plate Shell, in Chinese, 1977. Available from: http://dspace.imech.ac.cn/handle/311007/15281.
    [39] R. Li, Y. Zhong, On new symplectic approach for exact free vibration solutions of moderately thick rectangular plates with two opposite edges simply supported, Int. J. Eng. Appl. Sci., 1 (2009), 13–28.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1089) PDF downloads(91) Cited by(1)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog